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A 30-minute crash course in signal processing
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The Speech Signal: Sampling

• The analog speech signal captures pressure variations in air 
that are produced by the speaker
– The same function as the ear

• The analog speech input signal from the microphone is 
sampled periodically at some fixed sampling rate
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• What remains after sampling is the value of 
the analog signal at discrete time points

• This is the discrete-time signal
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• The analog speech signal has many 
frequencies
– The human ear can perceive frequencies in the 

range 50Hz-15kHz (more if you’re young)
• The information about what was spoken is 

carried in all these frequencies
• But most of it is in the 150Hz-5kHz range

The Speech Signal: Sampling
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• A signal that is digitized at N samples/sec can represent frequencies up 
to N/2 Hz only

– The Nyquist theorem

• Ideally, one would sample the speech signal at a sufficiently high rate 
to retain all perceivable components in the signal
– > 30kHz

• For practical reasons, lower sampling rates are often used, however
– Save bandwidth / storage
– Speed up computation

• A signal that is sampled at N samples per second must first be low-pass 
filtered at N/2 Hz to avoid distortions from “aliasing”
– A topic we wont go into

The Speech Signal: Sampling
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• Audio hardware typically supports several standard rates
– E.g.: 8, 16, 11.025, or 44.1 KHz (n Hz = n samples/sec)
– CD recording employs 44.1 KHz per channel – high enough to 

represent most signals most faithfully

• Speech recognition typically uses 8KHz sampling rate for 
telephone speech and 16KHz for wideband speech
– Telephone data is narrowband and has frequencies only up to 4 

KHz
– Good microphones provide a wideband speech signal

• 16KHz sampling can represent audio frequencies up to 8 KHz
• This is considered sufficient for speech recognition

The Speech Signal: Sampling
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The Speech Signal: Digitization

• Each sampled value is digitized (or quantized or 
encoded) into one of a set of fixed discrete levels
– Each analog voltage value is mapped to the nearest 

discrete level
– Since there are a fixed number of discrete levels, the 

mapped values can be represented by a number; e.g. 8-
bit, 12-bit or 16-bit

• Digitization can be linear (uniform) or non-linear 
(non-uniform)
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The Speech Signal: Linear Coding

• Linear coding (aka pulse-code modulation or 
PCM) splits the input analog range into some 
number of uniformly spaced levels

• The no. of discrete levels determines no. of bits 
needed to represent a quantized signal value; e.g.:
– 4096 levels need a 12-bit representation
– 65536 levels require 16-bit representation

• In speech recognition, PCM data is typically 
represented using 16 bits
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The Speech Signal: Linear Coding

• Example PCM quantizations into 16 and 64 
levels:
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The Speech Signal: Non-Linear Coding
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• Converts non-uniform segments of the 
analog axis to uniform segments of the 
quantized axis
– Spacing between adjacent segments on the 

analog axis is chosen based on the relative 
frequencies of sample values in that region

– Sample regions of high frequency are 
more finely quantized

qu
an

tiz
ed

 v
al

ue

Analog value

Analog range



16  March 2009
Signal Reperesentation

The Speech Signal: Non-Linear Coding

• Thus, fewer discrete levels can be used, without 
significantly worsening average quantization error
– High resolution coding around the most probable analog levels

• Thus, most frequently encountered analog levels have lower 
quantization error

– Lower resolution coding around low probability analog levels
• Encodings with higher quantization error occur less frequently

• A-law and μ-law encoding schemes use only 256 levels (8-
bit encodings)
– Widely used in telephony
– Can be converted to linear PCM values via standard tables

• Speech systems usually deal only with 16-bit PCM, so 8-
bit signals must first be converted as mentioned above
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Effect of Signal Quality
• The quality of the final digitized signal depends critically 

on all the other components:
– The microphone quality
– Environmental quality – the microphone picks up not just the 

subject’s speech, but all other ambient noise
– The electronics performing sampling and digitization

• Poor quality electronics can severely degrade signal quality
– E.g. Disk or memory bus activity can inject noise into the analog 

circuitry

– Proper setting of the recording level
• Too low a level underutilizes the available signal range, increasing 

susceptibility to  noise
• Too high a level can cause clipping

• Suboptimal signal quality can affect recognition accuracy 
to the point of being completely useless
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Digression: Clipping in Speech Signals

• Clipping and non-linear distortion are the most common 
and most easily fixed problems in audio recording
– Simply reduce the signal gain (but AGC is not good)
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• Speech recognition is a type of pattern recognition problem
• Q: Should the pattern matching be performed on the audio sample 

streams directly?  If not, what?
• A: Raw sample streams are not well suited for matching
• A visual analogy: recognizing a letter inside a box

– The input happens to be pixel-wise inverse of the template

• But blind, pixel-wise comparison (i.e. on the raw data) shows 
maximum dis-similarity

First Step: Feature Extraction

A A
template input
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• Needed: identification of salient features in the images
• E.g. edges, connected lines, shapes

– These are commonly used features in image analysis
• An edge detection algorithm generates the following for both 

images and now we get a perfect match

• Our brain does this kind of image analysis automatically and we 
can instantly identify the input letter as being the same as the
template

Feature Extraction (contd.)
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• Figures below show energy at various frequencies in a 
signal as a function of time
– Called a spectrogram

• Different instances of a sound will have the same 
generic spectral structure

• Features must capture this spectral structure

Sound Characteristics are in Frequency Patterns

AA IY UW M
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Computing “Features”
• Features must be computed that capture the spectral 

characteristics of the signal
• Important to capture only the salient spectral characteristics 

of the sounds
– Without capturing speaker-specific or other incidental structure

• The most commonly used feature is the Mel-frequency 
cepstrum
– Compute the spectrogram of the signal
– Derive a set of numbers that capture only the salient apsects of this 

spectrogram
– Salient aspects computed according to the manner in which humans

perceive sounds

• What follows: A quick intro to signal processing
– All necessary aspects
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Capturing the Spectrum: The discrete Fourier 
transform

• Transform analysis: Decompose a sequence of numbers 
into a weighted sum of other time series

• The component time series must be defined
– For the Fourier Transform, these are complex 

exponentials

• The analysis determines the weights of the component time 
series
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The complex exponential

• The complex exponential is a complex sum of two sinusoids

ejθ = cosθ + j sinθ
• The real part is a cosine function 
• The imaginary part is a sine function
• A complex exponential time series is a complex sum of two time series

ejωt = cos(ωt) + j sin(ωt)
• Two complex exponentials of different frequencies are “orthogonal” to 

each other. i.e.

βαβα ≠=∫
∞
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• The discrete Fourier transform decomposes the signal into 
the sum of a finite number of complex exponentials
– As many exponentials as there are samples in the signal being 

analyzed

• An aperiodic signal cannot be decomposed into a sum of a 
finite number of complex exponentials
– Or into a sum of any countable set of periodic signals

• The discrete Fourier transform actually assumes that the 
signal being analyzed is exactly one period of an infinitely 
long signal
– In reality, it computes the Fourier spectrum of the infinitely long 

periodic signal, of which the analyzed data are one period

The discrete Fourier transform
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• The discrete Fourier transform of the above signal actually computes 
the Fourier spectrum of the periodic signal shown below
– Which extends from –infinity to +infinity
– The period of this signal is 31 samples in this example

The discrete Fourier transform
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• The kth point of a Fourier transform is computed as:

– x[n] is the nth point in the analyzed data sequence
– X[k] is the value of the kth point in its Fourier spectrum
– M is the total number of points in the sequence

• Note that the (M+k)th Fourier coefficient is identical to the 
kth Fourier coefficient
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• Discrete Fourier transform coefficients are generally complex
– ejθ has a real part cosθ and an imaginary part sinθ

ejθ = cosθ + j sinθ
– As a result, every X[k] has the form

X[k] = Xreal[k] + jXimaginary[k]
• A magnitude spectrum represents only the magnitude of the 

Fourier coefficients
Xmagnitude[k] = sqrt(Xreal[k]2 + Ximag[k]2)

• A power spectrum is the square of the magnitude spectrum
Xpower[k] = Xreal[k]2 + Ximag[k]2

• For speech recognition, we usually use the magnitude or power 
spectra

The discrete Fourier transform



16  March 2009
Signal Reperesentation

• A discrete Fourier transform of an M-point sequence will 
only compute M unique frequency components
– i.e. the DFT of an M point sequence will have M points
– The M-point DFT represents frequencies in the continuous-time 

signal that was digitized to obtain the digital signal

• The 0th point in the DFT represents 0Hz, or the DC 
component of the signal

• The (M-1)th point in the DFT represents (M-1)/M times the 
sampling frequency

• All DFT points are uniformly spaced on the frequency axis 
between 0 and the sampling frequency

The discrete Fourier transform
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• A 50 point segment of a decaying sine wave sampled at 8000 Hz

• The corresponding 50 point magnitude DFT. The 51st point (shown in red) 
is identical to the 1st point.

Sample 0 = 0 Hz Sample 50 = 8000Hz
Sample 50 is the 51st point
It is identical to Sample 0

The discrete Fourier transform
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• The Fast Fourier Transform (FFT) is simply a fast 
algorithm to compute the DFT
– It utilizes symmetry in the DFT computation to reduce 

the total number of arithmetic operations greatly

• The time domain signal can be recovered from its 
DFT as:
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• The DFT of one period of the sinusoid shown in the figure computes the 
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Windowing
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• The DFT of one period of the sinusoid shown in the figure computes the 
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Magnitude spectrum

Windowing
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• The DFT of any sequence computes the Fourier series for an infinite repetition
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing
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• The DFT of any sequence computes the Fourier series for an infinite repetition
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

Magnitude spectrum
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Windowing

Magnitude spectrum of segment

Magnitude spectrum of complete sine wave
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• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like 

outside the observed window 
– We must infer what happens outside the observed window from what

happens inside

• The implicit repetition of the observed signal introduces large 
discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed

Windowing
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• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like 

outside the observed window 
– We must infer what happens outside the observed window from what

happens inside

• The implicit repetition of the observed signal introduces large 
discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed
– The actual signal (whatever it is) is unlikely to have such discontinuities

Windowing
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Windowing

• While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal
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Windowing

• While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal
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Windowing

• The DFT of the windowed signal does not have any artefacts introduced by 
discontinuities in the signal

• Often it is also a more faithful reproduction of the DFT of the complete signal 
whose segment we have analyzed

Magnitude spectrum
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Windowing

Magnitude spectrum of windowed signal

Magnitude spectrum of complete sine wave

Magnitude spectrum of original segment
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Windowing

• Windowing is not a perfect solution
– The original (unwindowed) segment is identical to the original (complete) signal 

within the segment
– The windowed segment is often not identical to the complete signal anywhere

• Several windowing functions have been proposed that strike different 
tradeoffs between the fidelity in the central regions and the smoothing at the 
boundaries 
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• Cosine windows:
– Window length is M
– Index begins at 0

• Hamming: w[n] = 0.54 – 0.46 cos(2πn/M)
• Hanning: w[n] = 0.5 – 0.5 cos(2πn/M)
• Blackman: 0.42 – 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

Windowing
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• Geometric windows:

– Rectangular (boxcar):

– Triangular (Bartlett):

– Trapezoid:

Windowing
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Zero Padding

• We can pad zeros to the end of a signal to make it a desired 
length
– Useful if the FFT (or any other algorithm we use) requires signals of a 

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2. 

We must zero pad the signal to increase its length to the appropriate 
number

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT
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• We can pad zeros to the end of a signal to make it a desired 
length
– Useful if the FFT (or any other algorithm we use) requires signals of a 

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2. 

We must zero pad the signal to increase its length to the appropriate 
number

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT

Zero Padding
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• The DFT of the zero padded signal is essentially the same as the DFT 
of the unpadded signal, with additional spectral samples inserted in 
between
– It does not contain any additional information over the original DFT
– It also does not contain less information

Zero Padding

Magnitude spectrum
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Magnitude spectra
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• Zero padding windowed signals results in signals 
that appear to be less discontinuous at the edges
– This is only illusory
– Again, we do not introduce any new information into 

the signal by merely padding it with zeros

Zero Padding



16  March 2009
Signal Reperesentation

Zero Padding

• The DFT of the zero padded signal is essentially the same as the DFT 
of the unpadded signal, with additional spectral samples inserted in 
between
– It does not contain any additional information over the original DFT
– It also does not contain less information
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Magnitude spectra
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8000Hz

8000Hz

time

frequency

frequency

128 samples from a speech signal sampled at 16000 Hz

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum

Zero padding a speech signal
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Preemphasizing a speech signal

• The spectrum of the 
speech signal naturally has 
lower energy at higher 
frequencies

• This can be observed as a 
downward trend on a plot 
of the logarithm of the 
magnitude spectrum of the 
signal

• For many applications this 
can be undesirable
– E.g. Linear predictive 

modeling of the spectrum

Log(average(magnitude spectrum))
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• This spectral tilt can be 
corrected by 
preemphasizing the signal
– spreemp[n] = s[n] – α∗s[n-1]
– Typical value of α = 0.95

• This is a form of 
differentiation that boosts 
high frequencies

• This spectrum of the 
preemphasized signal has 
a more horizontal trend
– Good for linear prediction 

and other similar methods

Log(average(magnitude spectrum))

Preemphasizing a speech signal



16  March 2009
Signal Reperesentation

The process of parametrization

The signal is processed in segments. 
Segments are typically 25 ms wide.
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The process of parametrization

The signal is processed in segments. 
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.
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Each segment is typically 20 or 
25 milliseconds wide
Speech signals do not change 
significantly within this short time interval

Segments shift every 10 
milliseconds 

The process of parametrization
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Each segment is preemphasized

The process of parametrization

Preemphasized segment

The preemphasized segment is windowed

Preemphasized and
windowed segment
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The DFT of the segment, and from it the 
power spectrum of the segment is computed

The process of parametrization

Preemphasized and
windowed segment

Frequency (Hz)

P
ow

er = power spectrum
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Auditory Perception

• Conventional Spectral analysis decomposes the signal into 
a number of linearly spaced frequencies
– The resolution (differences between adjacent frequencies) is the

same at all frequencies

• The human ear, on the other hand, has non-uniform 
resolution
– At low frequencies we can detect small changes in frequency
– At high frequencies, only gross differences can be detected

• Feature computation must be performed with similar 
resolution
– Since the information in the speech signal is also distributed in a 

manner matched to human perception
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Matching Human Auditory Response

• Modify the spectrum to model the 
frequency resolution of the human ear

• Warp the frequency axis such that small 
differences between frequencies at lower 
frequencies are given the same importance 
as larger differences at higher frequencies
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Linear frequency axis: equal increments of 
frequency at equal intervals

Warping the frequency axis
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Warped frequency 
axis: unequal increments 
of frequency at equal 
intervals or conversely, 
equal increments of 
frequency at unequal 
intervals

Warping function 
(based on studies of 
human hearing)

Linear frequency axis:
Sampled at uniform 
intervals by an FFT

Warping the frequency axis
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Warped frequency 
axis: unequal increments 
of frequency at equal 
intervals or conversely, 
equal increments of 
frequency at unequal 
intervals

Warping function 
(based on studies of 
human hearing)

Linear frequency axis:
Sampled at uniform 
intervals by an FFT

Warping the frequency axis

)
700

1(log2595)( 10
ffmel +=

A standard warping 
function is the Mel 
warping function
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Power spectrum of 
each frame

The process of parametrization
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Power spectrum of 
each frame

The process of parametrization

is warped in 
frequency as per the 
warping function
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Power spectrum of 
each frame

The process of parametrization

is warped in 
frequency as per the 
warping function
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Filter Bank

• Each hair cell in the human ear actually responds 
to a band of frequencies, with a peak response at a 
particular frequency

• To mimic this, we apply a bank of “auditory”
filters
– Filters are triangular

• An approximation: hair cell response is not triangular

– A small number of filters (40)
• Far fewer than hair cells (~3000)
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Power spectrum of 
each frame

The process of parametrization

is warped in 
frequency as per the 
warping function

Each intensity is 
weighted by the 
value of the filter at 
that frequncy. This 
picture shows a bank or 
collection of triangular filters 
that overlap by 50%
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The process of parametrization
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The process of parametrization
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The process of parametrization

For each filter:
Each power spectral 
value is weighted by 
the value of the filter 
at that frequency. 
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For each filter:
All weighted spectral 
values are integrated 
(added), giving one 
value for the filter

The process of parametrization
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Logarithm

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

The process of parametrization
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Additional Processing

• The Mel spectrum represents energies in 
frequency bands
– Highly unequal in different bands

• Energy and variations in energy are both much much greater at 
lower frequencies

• May dominate any pattern classification or template matching 
scores

– High-dimensional representation: many filters
• Compress the energy values to reduce imbalance
• Reduce dimensions for computational tractability

– Also, for generalization: reduced dimensional 
representations have lower variations across speakers 
for any sound
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Logarithm

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

The process of parametrization
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The process of parametrization

Another transform 
(DCT/inverse DCT)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7  Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter
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The process of parametrization

Another transform 
(DCT/inverse DCT)

The sequence is truncated 
(typically after 13 values)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7  Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter
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The process of parametrization

Another transform 
(DCT/inverse DCT)

Dim 1
Dim 2
Dim 3
Dim 4
Dim 5
Dim 6
…

Giving one n-dimensional 
vector for the frame

Logarithm

Log Mel spectrum

Mel Cepstrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter
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An example segment

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum 40 point Mel spectrum Log Mel spectrum

Mel cepstrum
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The entire speech signal is thus converted into a sequence of 
vectors. These are cepstral vectors.
There are other ways of converting the speech signal into a 
sequence of vectors

The process of feature extraction
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Variations to the basic theme

• Perceptual Linear Prediction (PLP) features:
– ERB filters instead of MEL filters
– Cube-root compression instead of Log
– Linear-prediction spectrum instead of Fourier 

Spectrum

• Auditory features
– Detailed and painful models of various 

components of the human ear
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Cepstral Variations from Filtering and Noise

• Microphone characteristics modify the spectral 
characteristics of the captured signal
– They change the value of the cepstra

• Noise too modifies spectral characteristics

• As do speaker variations

• All of these change the distribution of the 
cepstra
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Effect of Speaker Variations, Microphone 
Variations, Noise etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise nature of the distributions both 
before and after the “corruption” is hard to know
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Ideal Correction for Variations

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise nature of the distributions both 
before and after the “corruption” is hard to know



16  March 2009
Signal Reperesentation

Effect of Noise Etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise position of the distributions of 
the “good” speech is hard to know

? ?

?
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Solution: Move all distributions to a “standard” location

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch
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Solution: Move all distributions to a “standard” location

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch
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Cepstra Mean Normalization

• For each utterance encountered (both in 
“training” and in “testing”)

• Compute the mean of all cepstral vectors

• Subtract the mean out of all cepstral vectors

»

∑=
t

recordingrecording tc
Nframes

M )(1

recordingrecordingnormalized Mtctc −= )()(
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Variance

• The variance of the distributions is also 
modified by the corrupting factors

• This can also be accounted for by variance 
normalization

These “spreads” are different
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Variance Normalization

• Compute the standard deviation of the mean-
normalized cepstra

• Divide all mean-normalized cepstra by this 
standard deviation

• The resultant cepstra for any recording have 0 
mean and a variance of 1.0 

∑=
t

normalizedrecording tc
Nframes

sd )(1

)(1)(var tc
sd

tc normalized
recording

normalized =
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Histogram Normalization

• Go beyond Variances: Modify the entire 
distribution

• “Histogram normalization” : make the histogram 
of every recording be identical

• For each recording, for each cepstral value
– Compute percentile points
– Find a warping function that maps these percentile 

points to the corresponding percentile points on a 0 
mean unit variance Gaussian

– Transform the cepstra according to this function
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Temporal Variations

• The cepstral vectors capture instantaneous 
information only
– Or, more precisely, current spectral structure within the 

analysis window

• Phoneme identity resides not just in the snapshot 
information, but also in the temporal structure
– Manner in which these values change with time
– Most characteristic features

• Velocity: rate of change of value with time
• Acceleration: rate with which  the velocity changes

• These must also be represented in the feature
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Velocity Features

• For every component in the cepstrum for 
any frame
– compute the difference between the 

corresponding feature value for the next frame 
and the value for the previous frame

– For 13 cepstral values, we obtain 13 “delta”
values

• The set of all delta values gives us a “delta 
feature”
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C(t)

Δc(t)=c(t+τ)-c(t-τ)

The process of feature extraction
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Representing Acceleration

• The acceleration represents the manner in which the 
velocity changes

• Represented as the derivative of velocity
• The DOUBLE-delta or Acceleration Feature captures this
• For every component in the cepstrum for any frame

– compute the difference between the corresponding delta feature 
value for the next frame and the delta value for the previous frame

– For 13 cepstral values, we obtain 13 “double-delta” values

• The set of all double-delta values gives us an “acceleration 
feature”
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C(t)

Δc(t)=c(t+τ)-c(t-τ)

ΔΔc(t)=Δc(t+τ)-Δc(t-τ)

The process of feature extraction
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Feature extraction

ΔΔc(t)

Δc(t)

c(t)
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Function of the frontend block in a recognizer

FrontEnd

Audio

FeatureFrame

Derives other vector sequences 
from the original sequence and 
concatenates them to increase 
the dimensionality of each vector
This is called feature computation
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Normalization

• Vocal tracts of different people are different 
in length

• A longer vocal tract has lower resonant 
frequencies

• The overall spectral structure changes with 
the length of the vocal tract
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Effect of vocal tract length

• A spectrum for a sound produced by a person with 
a short vocal tract length

• The same sound produced by someone with a 
longer vocal tract
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Accounting for Vocal Tract Length Variation

• Recognition performance can be improved if the 
variation in spectrum due to differences in vocal 
tract length are reduced
– Reduces variance of each sound class

• Way to reduce spectral variation:
– Linearly “warp” the spectrum of every speaker to a 

canonical speaker
– The canonical speaker may be any speaker in the data
– The canonical speaker may even be a “virtual” speaker
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Warped frequency 
axis: frequency 
difference of f in 
canonical frequency 
maps to a difference of 
αf in the warped 
frequency

Warping function

Linear frequency axis:
Sampled at uniform 
intervals by an FFT

Warping the frequency axis

canonicalff α=
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Power spectrum of 
each frame

Frequency Scaling

is warped in 
frequency as per the 
warping function

Note: This frequency 
transform is separate 
from the MEL warping
used to compute mel
spectra
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Standard Feature Computation

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum 40 point Mel spectrum Log Mel spectrum

Mel cepstrum
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Frequency-warped Feature Comptuation

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum VTLN warping

Log Mel spectrum

Mel cepstrum

40 point Mel spectrum
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The process can be shortened

• The frequency warping for vocal-tract 
length normalization and the Mel-frequency 
warping can be combined into a single step
– The MEL frequency warping function changes 

from:

– To:

)
700

1(log2595)( 10
ffmel +=

)
700

1(log2595)( 10
ffmel α

+=



16  March 2009
Signal Reperesentation

Modified  Feature Computation

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum Log Mel spectrum

Mel cepstrum

40 point VTLN-Mel spectrum
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Computing the linear warping

• Based on the spectral characteristics of the 
signal
– Linearly scale the frequencies till spectral peaks 

on the canonical and current speakers match

• Based on statistical comparisons
– Identify slope of frequency scaling function 

such that the distribution of features computed 
from the frequency-scaled data is closest to that 
of the canonical speaker
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Spectral-Characteristic-based Estimation

• Formants are distinctive spectral characteristics
– Trajectories of peaks in the envelope

– These trajectories are similar for different instances of 
the phoneme

– But vary in a absolute frequency due to vocal tract 
length variations
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Spectral-Characteristic-based Estimation

• Formants are distinctive spectral characteristics
– Trajectories of peaks in the envelope

– These trajectories are similar for different instances of 
the phoneme

– But vary in a absolute frequency due to vocal tract 
length variations
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Formants

• Formants are visually identifiable characteristics 
of speech spectra

• Formants can be estimated for the signal using one 
of many algorithms
– Not covering those here

• Formants typically identified as F1, F2 etc. for the 
first formant, second formant, etc.
– F0 typically refers to the fundamental frequency – pitch

• The characteristics of phonemes are largely 
encoded in formant positions
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Length Normalization 

• To warp a speaker’s frequency axis to the 
canonical speaker, it is sufficient to match 
formant frequencies for the two
– i.e. warp the frequency so that F1(speaker) = 

F1(canonical), F2(speaker) = F2(canonical) etc. 
on average

• i.e. compute α such that αF1(speaker) = 
F1(canonical) (and so on) on average
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Spectrum-based Vocal Tract Length Normalization

• Compute average F1, F2, F3 for the speaker’s speech
– Run a formant tracker on the speech

• Returns formants F1, F2, F3.. for each analysis frame
– Average F1 values for all frames for average F1

• Similarly compute average F2 and F3.
– Three formants are sufficient

• Minimize the error: 

(αF1 – F1canonical)2 + (αF2 – F2canonical)2 + (αF3 – F3canonical)2

– The variables in the above equation are all average formant values
– This computes a regression between the average formant values for the 

canonical speaker and those for the test speaker
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Spectrum-Based Warping Function

• A is the slope of the regression between (F1, 
F1canonical), (F2, F2canonical) and (F3, F3canonical)
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But WHO is this canonical speaker?

• Simply an average speaker
– Compute average F1 for all utterances of all 

speakers
– Compute average F2 for all utterances of all 

speakers
– Compute average F3 for all utterances of all 

speakers



16  March 2009
Signal Reperesentation

Overall procedure

• Training:
– Compute average formant values for all speakers
– Compute speaker specific frequency warps for each 

speaker
– Frequency warp all spectra for the speaker

• Testing:
– Compute average formant values for the test utterance 

(or speaker)
– Compute utterance (or speaker) specific frequency 

warps
– Frequency warp all spectra prior to additional 

processing
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Spectra-based VTLN: What sounds to use

• Not useful to use all speech
– No formants in silence regions
– No formants in fricated sounds (S/SH/H/V/F..)

• Only compute formants from voiced sounds
– Vowels
– Easy to detect – voicing detection is relatively simple

• Where possible, better to use a specific vowel
– E.g “IY” (very distinctive formant structure)
– Typically possible where “enrollment” with short utterances is 

allowed
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Distribution-based Estimation 

• Compute the distribution of features from the canonical 
speaker
– “Features” are Mel-frequency cepstra
– The distribution is usually modelled as a Gaussian mixture

• For each speaker, identify the warping function such that 
features computed using it have the highest likelihood on 
the distribution for the canonical speaker
– For each of a number of warping functions:

• Compute features
• Compute the likelihood of the features on the canonical distribution
• Select the warping function for which this is highest
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Overall Procedure

• The canonical speaker is the average speaker
• Overall procedure: Training:

– Compute the global distribution of all feature vectors for all 
speakers

– For each speaker find the warping function that maximizes their 
likelihood on the global distribution

• Apply that warping function to the speaker
– Iterate (recompute the global distribution etc.)

• The final iteration step is needed since the frequency-
warped data for all speakers will have less inherent 
variability
– And thereby represent a more consistent canonical speaker
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On test data

• For each utterance (or speaker)
– Find the warping function that maximizes the 

likelihood for that utterance (or speaker)

– Apply that warping function
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Other Processing: Dealing with Noise

• The incoming speech signal is often corrupted by 
noise

• Noise may be reduced through spectral subtraction
• Theory: 

– Noise is uncorrelated to speech
– The power spectrum of noise adds to that of speech, to 

result in the power spectrum of noisy speech
– If the power spectrum of noise were known, it could 

simply be subtracted out from the power spectrum of 
noisy speech

• To obtain clean speech
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• Discrete Fourier transform coefficients are generally complex
– ejθ has a real part cosθ and an imaginary part sinθ

ejθ = cosθ + j sinθ
– As a result, every X[k] has the form

X[k] = Xreal[k] + jXimaginary[k]
• A magnitude spectrum represents only the magnitude of the 

Fourier coefficients
Xmagnitude[k] = sqrt(Xreal[k]2 + Ximag[k]2)

• A power spectrum is the square of the magnitude spectrum
Xpower[k] = Xreal[k]2 + Ximag[k]2

• For speech recognition, we usually use the magnitude or power 
spectra

Quick Review
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Denoising the speech signal
• The goal is to eliminate the noise from the speech signal 

itself before it is processed any further for recognition
• The basic procedure is as follows:

– Estimate the noise corrupting the speech signal in any analysis 
frame (somehow)

– Remove the noise from the signal

• Problem: The estimation of noise is never perfect
– It is impossible to estimate the exact noise signal that corrupted the 

speech signal
– At best, some average characteristic (e.g. the magnitude or power 

spectrum) may be estimated
• Also with significant error

• The noise cancellation technique must be able to eliminate 
the noise in spite of these drawbacks
– The noise cancellation may only be expected to improve the  noise 

“on average”
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Describing Additive Noise

• Let s(t) represent the speech signal in any frame of 
speech, and n(t) represent the noise corrupting the 
signal in that frame

• The observed noisy signal is the sum of the speech and 
the noise

x(t) = s(t) + n(t)

• Assumption: The magnitude spectra of the noise and 
the speech add to produce the magnitude spectrum of 
noisy speech

• In the frequency domain
Xmag(k) = Smag (k) + Nmag(k)
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Estimating the noise spectrum

• The first step is to obtain an estimate for the noise spectrum

• Problems:
– The precise noise spectrum varies from analysis frame to analysis frame
– It is impossible to determine the precise spectrum of the noise that has 

corrupted a noisy signal

• Assumption: The first few frames of a recording contain only 
noise
– The user begins speaking after hitting the “record” button

• Assumption: The signal in non-speech regions is all noise
• Assumption: The noise changes slowly
• Observation: The onset of speech is indicated by a sudden 

increase in signal power
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A running estimate of noise

• Initialize (from the first T non-speech frames):
N(T,k) = (1/T) Σt X(t,k)

– k represents frequency band; “t” is the frame index
• Subsequent estimates are obtained as

λ is an update factor, and depends on the rate at 
which noise changes
– Typically set to about 0.1

β is a threshold value: if the signal jumps by this 
amount, speech has begun
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Subtracting the Noise

α is an oversubtraction factor
– Typically set to about 5
– This accounts for the fact that the noise may be underestimated

γ is a spectral floor
– This prevents the estimated spectrum from becoming zero or negative

• The estimated noise spectrum can sometimes be greater than the observed 
noisy spectrum. Direct subtraction without a floor can result in negative values 
for the estimated power (or magnitude) spectrum of speech!

– Typically set to 0.1 or less

• Y(t,k) is used instead of X(t,k) for feature comptuation
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Modified  Feature Computation

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Magnitude spectrum

Log Mel spectrum

Mel cepstrum

(VTLN-)Mel spectrumDenoised power spectrum
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Caveats with Noise Subtraction

• Noise estimates are never perfect
• Subtracting estimated noise will always

– Leave a little of the real noise behind
– Remove some speech

• The perceptual quality of the signal improves, but 
the intelligibility decreases

• Difficult to strike a tradeoff between removing 
corrupting noise and retaining intelligibility
– Usually best to simply train on noisy speech with no 

processing
– Such data may not be available often, however
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Questions

• ?
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Wav2feat is a sphinx feature computation tool:
• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
• [Switch]      [Default]      [Description]                      
• -help         no             Shows the usage of the tool         
• -example      no             Shows example of how to use the tool
• -i                           Single audio input file             
• -o                           Single cepstral output file                        
• -c                           Control file for batch processing   
• -nskip If a control file was specified, the number of utterances to skip at the head of the file
• -runlen If a control file was specified, the number of utterances to process (see -nskip too)
• -di Input directory, input file names are relative to this, if defined
• -ei Input extension to be applied to all input files   
• -do                          Output directory, output files are relative to this
• -eo Output extension to be applied to all output files 
• -nist no             Defines input format as NIST sphere     
• -raw          no             Defines input format as raw binary data            
• -mswav no             Defines input format as Microsoft Wav (RIFF)       
• -input_endian little         Endianness of input data, big or little, ignored if NIST or MS Wav
• -nchans 1              Number of channels of data (interlaced samples assumed)
• -whichchan 1              Channel to process                           
• -logspec no             Write out logspectral files instead of cepstra
• -feat         sphinx         SPHINX format - big endian
• -mach_endian little         Endianness of machine, big or little               
• -alpha        0.97           Preemphasis parameter                              
• -srate 16000.0        Sampling rate                            
• -frate 100            Frame rate                               
• -wlen 0.025625       Hamming window length                   
• -nfft 512            Size of FFT                             
• -nfilt 40             Number of filter banks                   
• -lowerf 133.33334      Lower edge of filters                     
• -upperf 6855.4976      Upper edge of filters                     
• -ncep 13             Number of cep coefficients                         
• -doublebw no             Use double bandwidth filters (same center freq)    
• -warp_type inverse_linear Warping function type (or shape)                   
• -warp_params Parameters defining the warping function       
• -blocksize 200000         Block size, used to limit the number of samples used at a time when reading very large audio files
• -dither       yes            Add 1/2-bit noise to avoid zero energy frames      
• -seed         -1             Seed for random number generator; if less than zero, pick our own
• -verbose      no             Show input filenames 
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Wav2feat is a sphinx feature computation tool:

• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-
gnu/wave2feat
[Switch] [Default]      [Description]                           
-help         no             Shows the usage of the tool
-example  no             Shows example of how to use the tool    
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Wav2feat is a sphinx feature computation tool:
./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
-i                         Single audio input file               
-o                         Single cepstral output file  
-nist no             Defines input format as NIST sphere       
-raw        no             Defines input format as raw binary data      
-mswav no             Defines input format as Microsoft Wav
-logspec no             Write out logspectral files instead 

of cepstra
-alpha      0.97           Preemphasis parameter                        
-srate 16000.0        Sampling rate                              
-frate 100            Frame rate                                 
-wlen 0.025625       Hamming window length                     
-nfft 512            Size of FFT                               
-nfilt 40             Number of filter banks                     
-lowerf 133.33334      Lower edge of filters                       
-upperf 6855.4976      Upper edge of filters                       
-ncep 13             Number of cep coefficients 
-warp_type inverse_linear Warping function type (or shape)             
-warp_params Parameters defining the warping function 
-dither     yes            Add 1/2-bit noise to avoid zero energy 

frames 
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Format of output File

• Four-byte integer header
– Specifies no. of floating point values to follow
– Can be used to both determine byte order and 

validity of file

• Sequence of four-byte floating-point values
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Inspecting Output

• sphinxbase-0.4.1/src/sphinx_cepview
• [NAME]          [DEFLT]         [DESCR]
• -b                   0            The beginning frame 0-based.
• -d                  10           Number of displayed coefficients.
• -describe       0            Whether description will be shown.
• -e                  2147483647      The ending frame.
• -f                                  Input feature file.
• -i                    13         Number of coefficients in the feature 

vector.
• -logfn Log file (default stdout/stderr)
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Wav2feat Tutorial

• Install SphinxTrain1.0
– From cmusphinx.sourceforge.net

• Record multiple instances of digits
– Zero, One, Two etc.
– Compute log spectra and cepstra using wav2feat

• No. of features = Num. filters for logspectra
• No. of features = 13 for cepstra

– Visualize both using cepview
• Note similarity in different instances of the same word

– Modify no. of filters to 30 and 25
• Patterns will remain, but be more blurry

– Record data with noise
• Degradation due to noise may be lesser on 25-filter outputs


