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HMMs

• This structure is a generic representation of a statistical 
model for processes that generate time series

• The “segments” in the time series are referred to as states
– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization 
of the DTW models we have discussed thus far

Recap: Recap: HMMsHMMs
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The HMM ProcessThe HMM Process
The HMM models the process underlying the observations as 
going through a number of states

For instance, in producing the sound “W”, it first goes through a 
state where it produces the sound “UH”, then goes into a state 
where it transitions from “UH” to “AH”, and finally to a state 
where it produced “AH”

The true underlying process is the vocal tract here
Which roughly goes from the configuration for “UH” to the 
configuration for “AH”

UH

W AH
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HMMsHMMs are abstractionsare abstractions
The states are not directly observed

Here states of the process are analogous to configurations of the vocal 
tract that produces the signal
We only hear the speech; we do not see the vocal tract
i.e. the states are hidden

The interpretation of states is not always obvious
The vocal tract actually goes through a continuum of configurations
The model represents all of these using only a fixed number of states

The model abstracts the process that generates the data
The system goes through a finite number of states
When in any state it can either remain at that state, or go to another 
with some probability
When at any states it generates observations according to a distribution 
associated with that state



HMMs

• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there

are, and how they can follow one another
– A set of probability distributions, one for each state, which 

specifies the distribution of all vectors in that state

Hidden Markov ModelsHidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

Markov chain

Data distributions



HMMs

• An HMM is a statistical model for a time-varying process
• The process is always in one of a countable number of states at 

any time

• When the process visits in any state, it generates an observation 
by a random draw from a distribution associated with that state

• The process constantly moves from state to state. The 
probability that the process will move to any state is 
determined solely by the current state
– i.e. the dynamics of the process are Markovian

• The entire model represents a probability distribution over the 
sequence of observations
– It has a specific probability of generating any particular sequence
– The probabilities of all possible observation sequences sums to 1

HMM as a statistical modelHMM as a statistical model



HMMs

HMM assumed to be 
generating data

How an HMM models a processHow an HMM models a process

state 
distributions

state 
sequence

observation
sequence
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HMM Parameters

• The topology of the HMM
– No. of states and allowed 

transitions
– E.g. here we have 3 states and 

cannot go from the blue state to 
the red

• The transition probabilities
– Often represented as a matrix as 

here
– Tij is the probability that when in 

state i, the process will move to j

• The probability of beginning at 
a particular state

• The state output distributions
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HMM state output distributions
• The state output distribution represents the distribution of 

data produced from any state
• In the previous lecture we assume the state output 

distribution to be Gaussian
• Albeit largely in a DTW context

• In reality, the distribution of vectors for any state need not 
be Gaussian

In the most general case it can be arbitrarily complex
The Gaussian is only a coarse representation of this distribution

• If we model the output distributions of states better, we can 
expect the model to be a better representation of the data
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Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is 
a weighted combination of several Gaussian distributions

• v is any data vector. P(v) is the probability given to that vector by the 
Gaussian mixture

• K is the number of Gaussians being mixed
• wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is 

its covariance

• The Gaussian mixture distribution is also a distribution
• It is positive everywhere. 
• The total volume under a Gaussian mixture is 1.0.
• Constraint: the mixture weights wi must all be positive and sum to 1
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Generating an observation from a 
Gaussian mixture state distribution

First draw the identity of the 
Gaussian from the a priori 
probability distribution of 
Gaussians (mixture weights)

Then draw a vector from
the selected Gaussian
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Gaussian Mixtures
• A Gaussian mixture can represent data 

distributions far better than a simple Gaussian

• The two panels show the histogram of an 
unknown random variable

• The first panel shows how it is modeled by a 
simple Gaussian

• The second panel models the histogram by a 
mixture of two Gaussians

• Caveat: It is hard to know the optimal number 
of Gaussians in a mixture distribution for any 
random variable
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• The parameters of an HMM with Gaussian 
mixture state distributions are:
– π the set of initial state probabilities for all states
– T the matrix of transition probabilities
– A Gaussian mixture distribution for every state in 

the HMM. The Gaussian mixture for the ith state is 
characterized by

• Ki, the number of Gaussians in the mixture for the ith state

• The set of mixture weights  wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci,j 0 < j <Ki

HMMs with Gaussian mixture state 
distributions
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Three Basic HMM Problems

• Given an HMM:
– What is the probability that it will generate a 

specific observation sequence

– Given a observation sequence, how do we 
determine which observation was generated 
from which state

• The state segmentation problem

– How do we learn the parameters of the HMM 
from observation sequences 
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Computing the Probability of  an Observation 
Sequence

• Two aspects to producing the observation:
– Precessing through a sequence of states
– Producing observations from these states
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HMM assumed to be 
generating data

Precessing through states

state 
sequence

• The process begins at some state (red) here
• From that state, it makes an allowed transition

– To arrive at the same or any other state
• From that state it makes another allowed 

transition
– And so on
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Probability that the HMM will follow a 
particular state sequence

• P(s1) is the probability that the process will initially 
be in state s1

• P(si | si) is the transition probability of moving to 
state si at the next time instant when the system is 
currently in si
– Also denoted by Tij earlier

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...1 2 3 1 2 1 3 2=
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HMM assumed to be 
generating data

Generating Observations from States

state 
distributions

state 
sequence

observation
sequence

• At each time it generates an observation from 
the state it is in at that time
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P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...1 2 3 1 2 3 1 1 2 2 3 3=

• P(oi | si) is the probability of generating 
observation oi when the system is in state si

Probability that the HMM will generate a 
particular observation sequence given a 
state sequence (state sequence known)

Computed from the Gaussian or Gaussian mixture for state s1
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HMM assumed to be 
generating data

Precessing through States and Producing 
Observations

state 
distributions

state 
sequence

observation
sequence

• At each time it produces an observation and 
makes a transition
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Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =

P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)1 2 3 1 2 3 1 2 3 =
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Probability of Generating an Observation 
Sequence

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.
.

1 1 2 2 3 3 1 2 1 3 2∑

P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.
.

1 2 3 1 2 3 =∑P o o o( , , ,...)1 2 3 =

• If only the observation is known, the precise 
state sequence followed to produce it is not 
known

• All possible state sequences must be 
considered
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Computing it Efficiently

• Explicit summing over all state sequences is not 
efficient
– A very large number of possible state sequences
– For long observation sequences it may be intractable

• Fortunately, we have an efficient algorithm for 
this: The forward algorithm

• At each time, for each state compute the total 
probability of all state sequences that generate 
observations until that time and end at that state
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Illustrative Example

• Consider a generic HMM with 5 states and a 
“terminating state”. We wish to find the probability of 
the best state sequence for an observation 
sequence assuming it was generated by this HMM
– P(si) = 1 for state 1 and 0 for others
– The arrows represent transition for which the probability is 

not 0. P(si | si) = aij

– We sometimes also represent the state output probability 
of si as P(ot | si) = bi(t) for brevity

91
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Diversion: The Trellis

Feature vectors
(time)

αu s t( , )
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• The trellis is a graphical representation of all possible paths through the 
HMM to produce a given observation
– Analogous to the DTW search graph / trellis

• The Y-axis represents HMM states, X axis represents observations
• Every edge in the graph represents a valid transition in the HMM over a 

single time step 
• Every node represents the event of a particular observation being 

generated from a particular state
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The Forward Algorithm

α λu u u u ts t P x x x state t s( , ) ( , ,..., , ( ) | ), , ,= =1 2

time

αu s t( , )
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� αu(s,t) is the total probability of ALL state 
sequences that end at state s at time t, 
and all observations until xt
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The Forward Algorithm

α αu u
s

u ts t s t P s s P x s( , ) ( , ) ( | ) ( | ),= ′ −∑ ′
′

1

α λu u u u ts t P x x x state t s( , ) ( , ,..., , ( ) | ), , ,= =1 2

timeαu t( , )1 1−

αu s t( , )−1

t-1 t

Can be recursively 
estimated starting 
from the first time 
instant 
(forward recursion)
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� αu(s,t) can be recursively computed in terms of 
αu(s’,t’), the forward probabilities at time t-1 
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The Forward Algorithm

time

S
ta

te
 in

de
x

T

• In the final observation the alpha at each state gives 
the probability of all state sequences ending at that 
state

• The total probability of the observation is the sum of 
the alpha values at all states

∑=
s

u TsTotalprob ),(α
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Problem 2: The state segmentation problem

• Given only a sequence of observations, 
how do we determine which sequence of 
states was followed in producing it?
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HMM assumed to be 
generating data

The HMM as a generator

state 
distributions

state 
sequence

observation
sequence

• The process goes through a series of states 
and produces observations from them
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HMM assumed to be 
generating data

States are Hidden

state 
distributions

state 
sequence

observation
sequence

• The observations do not reveal the underlying 
state
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HMM assumed to be 
generating data

The state segmentation problem

state 
distributions

state 
sequence

observation
sequence

• State segmentation: Estimate state sequence 
given observations
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Estimating the State Sequence

• Any number of state sequences could have 
been traversed in producing the observation
– In the worst case every state sequence may have 

produced it
• Solution: Identify the most probable state 

sequence
– The state sequence for which the probability of 

progressing through that sequence and gen    erating
the observation sequence is maximum

– i.e is maximumP o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 
expensive

• But once again a simple dynamic-programming 
solution is available

• Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 
expensive

• But once again a simple dynamic-programming 
solution is available

• Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy
ending at time t is simply the probability of 
?,?,?,?, sx multiplied by P(ot|sy)P(sy|sx)

• The best state sequence that ends with sx,sy at t 
will have a probability equal to the probability of 
the best state sequence ending at t-1 at sx times 
P(ot|sy)P(sy|sx)
– Since the last term is independent of the state 

sequence leading to sx at t-1
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Trellis

time

94

• The graph below shows the set of all possible 
state sequences through this HMM in five time 
intants

t



17 March 2007 HMMs

The cost of extending a state sequence

time

94

• The cost of extending a state sequence ending 
at sx is only dependent on the transition from sx
to sy, and the observation probability at sy

t

sy

sx
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The cost of extending a state sequence

time

94

• The best path to sy through sx is simply an 
extension of the best path to sx

t

sy

sx
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The Recursion

• The overall best path to sx is an extension 
of the best path to one of the states at the 
previous time

time
t

sy

sx
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The Recursion

• Bestpath prob(sy,t) = 
Best (Bestpath prob(s?,t) * P(sy | s?) * P(ot|sy)) 

time
t

sy

sx
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Finding the best state sequence
• This gives us a simple recursive formulation to find the 

overall best state sequence:

1. The best state sequence X1,i of length 1 ending at state si
is simply si.
– The probability C(X1,i) of X1,i is P(o1 | si) P(si)

2. The best state sequence of length t+1 is simply given by 
– (argmax Xt,i

C(Xt,i)P(ot+1 | sj) P(sj | si)) si

3. The best overall state sequence for an utterance of length 
T is given by 
argmax Xt,i sj

C(XT,i)
– The state sequence of length T with the highest overall probability

89
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Finding the best state sequence
• The simple algorithm just presented is called the VITERBI 

algorithm in the literature
– After A.J.Viterbi, who invented this dynamic programming 

algorithm for a completely different purpose: decoding error 
correction codes!

• The Viterbi algorithm can also be viewed as a breadth-first 
graph search algorithm
– The HMM forms the Y axis of a 2-D plane

• Edge costs of this graph are transition probabilities P(s|s). Node costs 
are P(o|s)

– A linear graph with every node at a time step forms the X axis
– A trellis is a graph formed as the crossproduct of these two graphs
– The Viterbi algorithm finds the best path through this graph

90
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Viterbi Search (contd.)

time
Initial state initialized with path-score = P(s1)b1(1)

All other states have score 0 since P(si) = 0 for them
92
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Viterbi Search (contd.)

time

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) a   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

93
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Viterbi Search (contd.)

time

94

P (t)j = max [P (t-1) a   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
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Viterbi and DTW

• The Viterbi algorithm is identical to the 
string-matching procedure used for DTW 
that we saw earlier

• It computes an estimate of the state 
sequence followed in producing the 
observation

• It also gives us the probability of the best 
state sequence
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Problem3: Training HMM parameters

• We can compute the probability of an 
observation, and the best state sequence given 
an observation, using the HMM’s parameters

• But where do the HMM parameters come from?

• They must be learned from a collection of 
observation sequences

• We have already seen one technique for training 
HMMs: The segmental K-means procedure
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• The entire segmental K-means 
algorithm:
1. Initialize all parameters

• State means and covariances
• Transition probabilities
• Initial state probabilities

2. Segment all training sequences
3. Reestimate parameters from segmented 

training sequences
4. If not converged, return to 2

Modified segmental K-means AKA Viterbi training
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Segmental K-means

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate
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A Better Technique

• The Segmental K-means technique 
uniquely assigns each observation to one 
state

• However, this is only an estimate and may 
be wrong

• A better approach is to take a “soft”
decision
– Assign each observation to every state with a 

probability
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),...,,,)(( 21 TxxxststateP =

The “probability” of a state

• The probability assigned to any state s, for 
any observation xt is the probability that 
the process was at s when it generated xt

• We want to compute

• We will compute                                    first
– This is the probability that the process visited 

s at time t while producing the entire 
observation

),...,,,)((),...,,|)(( 2121 TT xxxststatePxxxststateP =∝=
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Probability of Assigning an Observation to a State

• The probability that the HMM was in a particular state s 
when generating the observation sequence is the 
probability that it followed a state sequence that passed 
through s at time t

s

time
t
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Probability of Assigning an Observation to a State

• This can be decomposed into two multiplicative sections
– The section of the lattice leading into state s at time t and the 

section leading out of it

s

time
t
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Probability of Assigning an Observation to a State

• The probability of the red section is the total probability 
of all state sequences ending at state s at time t
– This is simply α(s,t)
– Can be computed using the forward algorithm

s

time
t
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The forward algorithm

α αu u
s

u ts t s t P s s P x s( , ) ( , ) ( | ) ( | ),= ′ −∑ ′
′

1

α λu u u u ts t P x x x state t s( , ) ( , ,..., , ( ) | ), , ,= =1 2

timeαu t( , )1 1−

αu s t( , )−1

t-1 t

Can be recursively 
estimated starting 
from the first time 
instant 
(forward recursion)

s αu s t( , )

S
ta

te
 in

de
x

λ represents the complete current set of HMM parameters
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The Future Paths

• The blue portion represents the probability of all state 
sequences that began at state s at time t
– Like the red portion it can be computed using a backward 

recursion

time
t



17 March 2007 HMMs

The Backward Recursion

β λu u t u t u Ts t P x x x state t s( , ) ( , ,..., | ( ) , ), , ,= =+ +1 2

βu s t( , )+1

βu N t( , )+1

t+1

s

t

β βu u
s u ts t s t P s s P x s( , ) ( , ) ( | ) ( | ),= ′ +∑ ′ ′
′ +1 1

βu s t( , )

Can be recursively 
estimated starting 
from the final time 
time instant
(backward recursion)

time

� βu(s,t) is the total probability of ALL state sequences 
that depart from s at time t, and all observations after 
xt
� β(s,T) = 1 at the final time instant for all valid final states
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The complete probability

t+1tt-1

s

α β λu u u u u Ts t s t P x x x state t s( , ) ( , ) ( , ,..., , ( ) | ), , ,= =1 2

timeαu t( , )1 1−

αu s t( , )−1 βu s t( , )+1

βu N t( , )+1

= =P state t su( , ( ) | )X λ
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Posterior probability of a state

• The probability that the process was in 
state s at time t, given that we have 
observed the data is obtained by simple 
normalization

• This term is often referred to as the 
gamma term and denoted by γs,t

P state t s P state t s
P state t s

s t s t
s t s tu

u

u
s

u u

u u
s

( ( ) | , ) ( , ( ) | )
( , ( ) | )

( , ) ( , )
( , ) ( , )

= =
=
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=
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′ ′

X X
X

λ λ
λ

α β
α β
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Update Rules

• Once we have the state probabilities (the 
gammas) the update rules are obtained 
through a simple modification of the 
formulae used for segmental K-means
– This new learning algorithm is known as the 

Baum-Welch learning procedure

• Case1:  State output densities are 
Gaussians
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Update Rules
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Segmental K-means Baum Welch

• A similar update formula reestimates transition probabilities
• The initial state probabilities P(s) also have a similar update rule
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Case 2: State ouput densities are Gaussian 
Mixtures

• When state output densities are Gaussian 
mixtures, more parameters must be 
estimated

• The mixture weights ws,i, mean μs,i and 
covariance Cs,i of every Gaussian in the 
distribution of each state must be 
estimated

∑
−
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=
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0
,,, ),;()|(

K

i
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Splitting the Gamma

γ λ λk s u t u
th

u tP state t s P k Gaussian state t s x, , , ,( ( ) | , ) ( . | ( ) , , )= = =X
A posteriori probability that the tth vector was generated by the kth Gaussian of state s

Re-estimation of state 
parameters

We split the gamma for any state among all the Gaussians at that state
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Splitting the Gamma among Gaussians

γ λ λk s u t u
th

u tP state t s P k Gaussian state t s x, , , ,( ( ) | , ) ( . | ( ) , , )= = =X
A posteriori probability that the tth vector was generated by the kth Gaussian of state s
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Updating HMM Parameters

~
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γ

γ

• Note: Every observation contributes to the update of parameter
values of every Gaussian of every state
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Overall Training Procedure: Single Gaussian PDF

• Determine a topology for the HMM
• Initialize all HMM parameters

– Initialize all allowed transitions to have the same 
probability

– Initialize all state output densities to be Gaussians
• We’ll revisit initialization

1. Over all utterances, compute the “sufficient”
statistics

2. Use update formulae to compute new HMM 
parameters

3. If the overall probability of the training data has 
not converged, return to step 1
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An Implementational Detail

• Step1 computes “buffers” over all utterance

• This can be split and parallelized
– U1, U2 etc. can be processed on separate machines

–
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An Implementational Detail

• Step2 aggregates and adds buffers before updating the 
models
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An Implementational Detail

• Step2 aggregates and adds buffers before updating the 
models
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Training for HMMs with Gaussian Mixture State 
Output Distributions

• Gaussian Mixtures are obtained by splitting
1. Train an HMM with (single) Gaussian state output 

distributions
2. Split the Gaussian with the largest variance

• Perturb the mean by adding and subtracting a small number
• This gives us 2 Gaussians. Partition the mixture weight of the 

Gaussian into two halves, one for each Gaussian
• A mixture with N Gaussians now becomes a mixture of N+1 

Gaussians

3. Iterate BW to convergence
4. If the desired number of Gaussians not obtained, 

return to 2



17 March 2007 HMMs

Splitting a Gaussian

• The mixture weight w for the Gaussian gets 
shared as 0.5w by each of the two split 
Gaussians

μ μ

μ−ε μ+ε
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• Arithmetic underflow is a problem

Implementation of BW: underflow

α αu u
s

u ts t s t P s s P x s( , ) ( , ) ( | ) ( | ),= ′ −∑ ′
′

1

• The alpha terms are a recursive product of probability terms
– As t increases, an increasingly greater number probability terms are 

factored into the alpha
• All probability terms are less than 1

– State output probabilities are actually probability densities
– Probability density values can be greater than 1
– On the other hand, for large dimensional data, probability density values are 

usually much less than 1
• With increasing time, alpha values decrease
• Within a few time instants, they underflow to 0

– Every alpha goes to 0 at some time t. All future alphas remain 0
– As the dimensionality of the data increases, alphas goes to 0 faster

probability termsprobability term
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• One method of avoiding underflow is to scale 
all alphas at each time instant

– Scale with respect to the largest alpha to make 
sure the largest scaled alpha is 1.0

– Scale with respect to the sum of the alphas to 
ensure that all alphas sum to 1.0

– Scaling constants must be appropriately 
considered when computing the final probabilities 
of an observation sequence

Underflow: Solution
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• Similarly, arithmetic underflow can occur during beta 
computation

Implementation of BW: underflow

• The beta terms are also a recursive product of probability terms
and can underflow

• Underflow can be prevented by
– Scaling: Divide all beta terms by a constant that prevents underflow
– By performing beta computation in the log domain

∑ ++=
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Building a recognizer for isolated words

• Now have all necessary components to 
build an HMM-based recognizer for 
isolated words
– Where each word is spoken by itself in 

isolation
– E.g. a simple application, where one may 

either say “Yes” or “No” to a recognizer and it 
must recognize what was said
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Isolated Word Recognition with HMMs

• Assuming all words are equally likely
• Training

– Collect a set of “training” recordings for each word
– Compute feature vector sequences for the words
– Train HMMs for each word

• Recognition:
– Compute feature vector sequence for test utterance
– Compute the forward probability of the feature vector 

sequence from the HMM for each word
• Alternately compute the best state sequence probability 

using Viterbi
– Select the word for which this value is highest
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Issues

• What is the topology to use for the HMMs
– How many states
– What kind of transition structure
– If state output densities have Gaussian 

Mixtures: how many Gaussians?
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HMM Topology

• For speech a left-to-right topology works best
– The “Bakis” topology
– Note that the initial state probability P(s) is 1 for the 1st state and 

0 for others. This need not be learned

• States may be skipped
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Determining the Number of States
• How do we know the number of states to use for 

any word?
– We do not, really
– Ideally there should be at least one state for each 

“basic sound” within the word
• Otherwise widely differing sounds may be collapsed into one 

state
• The average feature vector for that state would be a poor 

representation

• For computational efficiency, the number of 
states should be small
– These two are conflicting requirements, usually 

solved by making some educated guesses
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Determining the Number of States
• For small vocabularies, it is possible to examine each 

word in detail and arrive at reasonable numbers:

• For larger vocabularies, we may be forced to rely on 
some ad hoc principles
– E.g. proportional to the number of letters in the word

• Works better for some languages than others
• Spanish and Indian languages are good examples where this 

works as almost every letter in a word produces a sound

S O ME TH I NG
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How many Gaussians

• No clear answer for this either
• The number of Gaussians is usually a 

function of the amount of training data 
available
– Often set by trial and error
– A minimum of 4 Gaussians is usually required 

for reasonable recognition



17 March 2007 HMMs

Implementation of BW: initialization of alphas 
and betas

• Initialization for alpha: αu(s,1) set to 0 for all 
states except the first state of the model. 
αu(s,1) set to P(o1|s) for the first state
– All observations must begin at the first state

• Initialization for beta: βu(s, T) set to 0 for all 
states except the terminating state. βu(s, t) 
set to 1 for this state
– All observations must terminate at the final state
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Initializing State Output Density Parameters

1. Initially only a single Gaussian per state assumed
• Mixtures obtained by splitting Gaussians

2. For Bakis-topology HMMs, a good initialization is the 
“flat” initialization

• Compute the global mean and variance of all feature vectors in 
all training instances of the word

• Initialize all Gaussians (i.e all state output distributions) with 
this mean and variance

• Their means and variances will converge to appropriate values 
automatically with iteration

• Gaussian splitting to compute Gaussian mixtures takes care of 
the rest
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Isolated word recognition: Final thoughts

• All relevant topics covered
– How to compute features from recordings of the 

words
• We will not explicitly refer to feature computation in future 

lectures

– How to set HMM topologies for the words
– How to train HMMs for the words

• Baum-Welch algorithm

– How to select the most probable HMM for a test 
instance

• Computing probabilities using the forward algorithm
• Computing probabilities using the Viterbi algorithm

– Which also gives the state segmentation
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Questions

• ?


