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Recap and Recap and LookaheadLookahead
Covered so far:

String-matching-based recognition
Learning averaged models
Recognition

Hidden Markov Models
What are HMMs
HMM parameter definitions
Learning HMMs
Recognition of isolated words with HMMs

Including how to train HMMs with Gaussian Mixture state output 
densities

Continuous speech
Isolated-word recognition will only take us so far..
Need to deal with strings of words
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Connecting WordsConnecting Words
Most speech recognition applications require word sequences

Even for isolated word systems, it is most convenient to 
record the training data as sequences of words

E.g., if we only need a recognition system that recognizes 
isolated instances of “Yes” and “No”, it is still convenient to 
record training data as a word sequences like “Yes No Yes Yes..”

In all instances the basic unit being modelled is still the word
Word sequences are formed of words

Words are represented by HMMs. Models for word sequences 
are also HMMs composed from the HMMs for words
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Composing Composing HMMsHMMs for Word Sequencesfor Word Sequences
Given HMMs for word1 and word2

Which are both Bakis topology

How do we compose an HMM for the word sequence “word1 
word2”

Problem: The final state in this model has only a self-transition
According the model, once the process arrives at the final state
of word1 (for example) it never leaves
There is no way to move into the next word

word1 word2
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Introducing the NonIntroducing the Non--emitting stateemitting state
So far, we have assumed that every HMM state models some 
output, with some output probability distribution
Frequently, however, it is useful to include model states that 
do not generate any observation

To simplify connectivity

Such states are called non-emitting states or sometimes null
states
NULL STATES CANNOT HAVE SELF TRANSITIONS
Example: A word model with a final null state
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HMMsHMMs with NULL Final Statewith NULL Final State
The final NULL state changes the trellis

The NULL state cannot be entered or exited within the word

If there are exactly 5 vectors in word 5, the NULL state may 
only be visited after all 5 have been scored

WORD1 (only 5 frames)
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HMMsHMMs with NULL Final Statewith NULL Final State
The final NULL state changes the trellis

The NULL state cannot be entered or exited within the word

Standard forward-backward equations apply
Except that there is no observation probability P(o|s) associated with 
this state in the forward pass
α(t+1,3) = α(t,2) T2,3 + α(t,1) T1,3

The backward probability is 1 only for the final state
β(t+1,3) = 1.0; β(t+1,s) = 0 for s = 0,1,2

t
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The NULL final stateThe NULL final state

The probability of transitioning into the NULL final state at 
any time t is the probability that the observation sequence for 
the word will end at time t
Alternately, it represents the probability that the observation 
will exit the word at time t

t
word1 Next word
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Connecting Words with Final NULL StatesConnecting Words with Final NULL States

The probability of leaving word 1 (i.e the probability of going 
to the NULL state) is the same as the probability of entering 
word2

The transitions pointed to by the two ends of each of the colored 
arrows are the same

HMM for word1 HMM for word2

HMM for word2HMM for word1
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Retaining a NonRetaining a Non--emitting state between wordsemitting state between words

In some cases it may be useful to retain the non-emitting 
state as a connecting state

The probability of entering word 2 from the non-emitting state is 
1.0
This is the only transition allowed from the non-emitting state
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Retaining the NonRetaining the Non--emitting Stateemitting State

HMM for the word sequence “word2 word1”

HMM for word2HMM for word1

HMM for word2HMM for word1

1.0
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A Trellis With a NonA Trellis With a Non--Emitting StateEmitting State

t

W
ord2

W
ord1

Feature vectors
(time)

Since non-emitting states are not associated with observations, they 
have no “time”

In the trellis this is indicated by showing them between time marks
Non-emitting states have no horizontal edges – they are always exited 
instantly
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

At the first instant only one state has a non-zero forward 
probability
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

From time 2 a number of states can have non-zero forward 
probabilities

Non-zero alphas
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

From time 2 a number of states can have non-zero forward 
probabilities

Non-zero alphas
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

Between time 3 and time 4 (in this trellis) the non-emitting 
state gets a non-zero alpha
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

At time 4, the first state of word2 gets a probability 
contribution from the non-emitting state



17 March 2009 phoneme models

Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

Between time4 and time5 the non-emitting state may be 
visited
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Forward Through a nonForward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

At time 5 (and thereafter) the first state of word 2 gets 
contributions both from an emitting state (itself at the 
previous instant) and the non-emitting state
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Forward Probability computation with nonForward Probability computation with non--
emitting statesemitting states

The forward probability at any time has contributions from 
both emitting states and non-emitting states

This is true for both emitting states and non-emitting states.
This results in the following rules for forward probability 
computation

Forward probability at emitting states

Note – although non-emitting states have no time-instant associated 
with them, for computation purposes they are associated with the
current time

Forward probability at non-emitting states
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

The Backward probability has a similar property
States may have contributions from both emitting and non-
emitting states
Note that current observation probability is not part of beta

Illustrated by grey fill in circles representing nodes
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t
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Feature vectors
(time)

The Backward probability has a similar property
States may have contributions from both emitting and non-
emitting states
Note that current observation probability is not part of beta

Illustrated by grey fill in circles representing nodes
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2
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Feature vectors
(time)

The Backward probability has a similar property
States may have contributions from both emitting and non-
emitting states
Note that current observation probability is not part of beta

Illustrated by grey fill in circles representing nodes
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

To activate the non-emitting state, observation probabilities 
of downstream observations must be factored in
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

The backward probability computation proceeds past the non-
emitting state into word 1.
Observation probabilities are factored into (end-2) before the 
betas at (end-3) are computed
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

Observation probabilities at (end-3) are still factored into the 
beta for the non-emitting state between (end-3) and (end-4)
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Backward Through a nonBackward Through a non--emitting Stateemitting State

t

W
ord2

W
ord1

Feature vectors
(time)

Backward probabilities at (end-4) have contributions from 
both future emitting states and non-emitting states
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Backward Probability computation with nonBackward Probability computation with non--
emitting statesemitting states

The backward probability at any time has contributions from 
both emitting states and non-emitting states

This is true for both emitting states and non-emitting states.

Since the backward probability does not factor in current 
observation probability, the only difference in the formulae 
for emitting and non-emitting states is the time stamp

Emitting states have contributions from emitting and non-
emitting states with the next timestamp 

Non-emitting states have contributions from other states with 
the same time stamp
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Detour: Detour: ViterbiViterbi with Nonwith Non--emitting Statesemitting States
Non-emitting states affect Viterbi decoding

The process of obtaining state segmentations

This is critical for the actual recognition algorithm for word 
sequences
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ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

t

W
ord2

W
ord1

Feature vectors
(time)

At the first instant only the first state may be entered
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t

W
ord2

W
ord1

Feature vectors
(time)

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

At t=2 the first two states have only one possible entry path
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t

W
ord2

W
ord1

Feature vectors
(time)

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

At t=3 state 2 has two possible entries. The best one must be 
selected
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t

W
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W
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Feature vectors
(time)

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

At t=3 state 2 has two possible entries. The best one must be 
selected
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t

W
ord2

W
ord1

Feature vectors
(time)

After the third time instant we an arrive at the non-emitting 
state. Here there is only one way to get to the non-emitting 
state

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

Paths exiting the non-emitting state are now in word2
States in word1 are still active
These represent paths that have not crossed over to word2

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t
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Paths exiting the non-emitting state are now in word2
States in word1 are still active
These represent paths that have not crossed over to word2

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

The non-emitting state will now be arrived at after every 
observation instant

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

“Enterable” states in word2 may have incoming paths either 
from the “cross-over” at the non-emitting state or from within 
the word

Paths from non-emitting states may compete with paths from 
emitting states

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

Regardless of whether the competing incoming paths are 
from emitting or non-emitting states, the best overall path is 
selected

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

The non-emitting state can be visited after every observation

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State
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t

W
ord2

W
ord1

Feature vectors
(time)

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

At all times paths from non-emitting states may compete 
with paths from emitting states
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W
ord2

W
ord1

Feature vectors
(time)

ViterbiViterbi through a Nonthrough a Non--Emitting StateEmitting State

At all times paths from non-emitting states may compete 
with paths from emitting states

The best will be selected
This may be from either an emitting or non-emitting state
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ViterbiViterbi with NULL stateswith NULL states
Competition between incoming paths from emitting and non-
emitting states may occur at both emitting and non-emitting 
states

The best path logic stays the same. The only difference is 
that the current observation probability is factored into 
emitting states

Score for emitting state

Score for non-emitting state
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Learning with NULL statesLearning with NULL states
All probability computation, state segmentation and Model 
learning procedures remain the same, with the previous 
changes to formulae

The forward-backward algorithm remains unchanged
The computation of gammas remains unchanged
The estimation of the parameters of state output distributions 
remains unchanged

Transition probability computations also remain unchanged
Self-transition probability Tii = 0 for Null states and this doesn’t 
change

NULL states have no observations associated with them; 
hence no state output densities need be learned for them
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Learning From Word SequencesLearning From Word Sequences
In the explanation so far we have seen how to deal with a 
single string of words

But when we’re learning from a set of word sequences, words 
may occur in any order

E.g. Training recording no. 1 may be “word1 word2” and 
recording 2 may be “word2 word1”

Words may occur multiple times within a single recording
E.g “word1 word2 word3 word1 word2 word3”

All instances of any word, regardless of its position in the 
sentence, must contribute towards learning the HMM for it

E.g. from recordings such as “word1 word2 word3 word2 word1”
and “word3 word1 word3”, we should learn models for word1, 
word2, word3 etc.
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Learning Word Models from Connected Learning Word Models from Connected 
RecordingsRecordings

Best explained using an illustration

HMM for word1

HMM for word 2

Note states are labelled
E.g. state s11 is the 1st state of the HMM for word no. 1

s21 s22 s23 s24

s12 s13 s14s11
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Model for “Word1 Word2 Word1 Word2”

State indices are “sijk” referring to the k-th state of the j-th word 
in its i-th repetition
E.g. “s123” represents the third state of the 1st instance of word2

If this were a single HMM we would have 16 states, a 16x16 
transition matrix

Learning Word Models from Connected Learning Word Models from Connected 
RecordingsRecordings

s121 s122 s123 s124s112 s113 s114s111 s221 s222 s223 s224s212 s213 s14s211
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Model for “Word1 Word2 Word1 Word2

The update formula would be as below
Only state output distribution parameter formulae are shown. It is 
assumed that the distributions are Gaussian. But the 
generalization to other formuale is straight-forward

Learning Word Models from Connected Learning Word Models from Connected 
RecordingsRecordings

s121 s122 s123 s124s112 s113 s114s111 s221 s222 s223 s224s212 s213 s14s211
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Model for “Word1 Word2 Word1 Word2

However, these states are the same!
Data at either of these states are from the first state of word 1
This leads to the following modification for the parameters of s11 
(first state of word1)

Combining Word InstancesCombining Word Instances

s121 s122 s123 s124s112 s113 s114s111 s221 s222 s223 s224s212 s213 s14s211
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Model for “Word1 Word2 Word1 Word2

However, these states are the same!
Data at either of these states are from the first state of word 1
This leads to the following modification for the parameters of s11 
(first state of word1)

Combining Word InstancesCombining Word Instances

s121 s122 s123 s124s112 s113 s114s111 s221 s222 s223 s224s212 s213 s14s211
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Model for “Word1 Word2 Word1 Word2

However, these states are the same!
Data at either of these states are from the first state of word 1
This leads to the following modification for the parameters of s11 
(first state of word1)

Combining Word InstancesCombining Word Instances

s121 s122 s123 s124s112 s113 s114s111 s221 s222 s223 s224s212 s213 s14s211
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Combining Word InstancesCombining Word Instances
The parameters of all states of all words are similarly computed

The principle extends easily to large corpora with many word recordings

The HMM training formulae may be generally rewritten as:
Formlae are for parameters of Gaussian state output distributions
Transition probability updates rules are not shown, but are similar
Extensions to GMMs are straight forward
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Concatenating Word Models: SilencesConcatenating Word Models: Silences
People do not speak words continuously
Often they pause between words
If the recording was <word1> <pause> <word2> the 
following model would be inappropriate

The above structure does not model the pause between the 
words

It only permits direct transition from word1 to word2
The <pause> must be incorporated somehow

HMM for word2HMM for word1

1.0
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Pauses are SilencesPauses are Silences
Silences have spectral characteristics too

A sequence of low-energy data
Usually represents the background signal in the recording 
conditions

We build an HMM to represent silences
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Incorporating PausesIncorporating Pauses
The HMM for <word1> <pause> <word2> is easy to build 
now

HMM for word2HMM for word1 HMM for silence
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Incorporating PausesIncorporating Pauses
If we have a long pause:  Insert multiple pause models

HMM for word2HMM for word1 HMM for silence HMM for silence
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Incorporating PausesIncorporating Pauses
What if we do not know how long the pause is

We allow the pause to be optional
There is a transition from word1 to word2
There is also a transition from word1 to silence
Silence loops back to the junction of word1 and word2
This allows for an arbitrary number of silences to be inserted

HMM for word2HMM for word1

HMM for silence
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Another Another ImplementationalImplementational Issue: ComplexityIssue: Complexity

Long utterances with many words will have many states
The size of the trellis grows as NT, where N is the no. of 
states in the HMM and T is the length of the observation 
sequence
N in turn increases with T and is roughly proportional to T

Longer utterances have more words
The computational complexity for computing alphas, betas, or 
the best state sequence is O(N2T)
Since N is proportional to T, this becomes O(T3)
This number can be very large

The computation of the forward algorithm could take forever
So also for the forward algorithm
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Pruning: Forward PassPruning: Forward Pass

t

W
ord2

W
ord1

Feature vectors
(time)

In the forward pass, at each time find the best scoring state
Retain all states with a score > k*bestscore

k is known as the beam
States with scores less than this beam are not considered in the
next time instant
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t
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Feature vectors
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In the forward pass, at each time find the best scoring state
Retain all states with a score > k*bestscore

k is known as the beam
States with scores less than this beam are not considered in the
next time instant

Pruning: Forward PassPruning: Forward Pass
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t

W
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Feature vectors
(time)

The rest of the states are assumed to have zero probability
I.e. they are pruned

Only the selected states carry forward
First to NON EMITTING states

Pruning: Forward PassPruning: Forward Pass
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t

W
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Feature vectors
(time)

The rest of the states are assumed to have zero probability
I.e. they are pruned

Only the selected states carry forward
First to NON EMITTING states – which may also be pruned out after 
comparison to other non-emitting states in the same column

Pruning: Forward PassPruning: Forward Pass
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t
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Feature vectors
(time)

The rest are carried forward to the next time

Pruning: Forward PassPruning: Forward Pass
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Pruning In the Backward PassPruning In the Backward Pass

t

W
ord2

W
ord1

Feature vectors
(time)

A similar Heuristic may be applied in the backward pass for 
speedup

But this can be inefficient
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Pruning In the Backward PassPruning In the Backward Pass

t

W
ord2

W
ord1

Feature vectors
(time)

The forward pass has already pruned out much of the trellis
This region of the trellis has 0 probability and need not be 
considered
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Pruning In the Backward PassPruning In the Backward Pass

t

W
ord2

W
ord1

Feature vectors
(time)

The forward pass has already pruned out much of the trellis
This region of the trellis has 0 probability and need not be 
considered
The backward pass only needs to evaluate paths within this 
portion
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Pruning In the Backward PassPruning In the Backward Pass

t

W
ord2

W
ord1

Feature vectors
(time)

The forward pass has already pruned out much of the trellis
This region of the trellis has 0 probability and need not be considered
The backward pass only needs to evaluate paths within this portion

Pruning may still be performed going backwards
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Words are not good units for recognitionWords are not good units for recognition
For all but the smallest tasks words are not good units

For example, to recognize speech of the kind that is used in 
broadcast news, we would need models for all words that 
may be used

This could exceed 100000 words

As we will see, this quickly leads to problems
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The problem with word modelsThe problem with word models

Word model based recognition:
Obtain a “template” or “model” for every word you want to 
recognize

And maybe for garbage
Recognize any given input data as being one of the known
words

Problem: We need to train models for every word we wish 
to recognize

E.g., if we have trained models for words “zero, one, .. nine”, 
and wish to add “oh” to the set, we must now learn a model 
for “oh”
Inflexible

Training needs data
We can only learn models for words for which we have training 
data available
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Zipf’s law: The number of events that occur often is small, 
but the number of events that occur very rarely is very 
large.

E.g. you see a lot of dogs every day. There is one species of 
animal you see very often.
There are thousands of species of other animals you don’t 
see except in a zoo. i.e. there are a very large number of 
species which you don’t see often.

If n represents the number of times an event occurs in a 
unit interval, the number of events that occur n times per 
unit time is proportional to 1/nα, where α is greater than 1

George Kingsley Zipf originally postulated that α = 1.
Later studies have shown that α is 1 + ε, where ε is slightly 
greater than 0

ZipfZipf’’ss LawLaw



17 March 2009 phoneme models

ZipfZipf’’ss LawLaw

No. of terms K:                            axis value = K 
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The following are examples of the most frequent and the 
least frequent words in 1.5 million words of broadcast news 
representing 70 of hours of speech

THE:  81900
AND: 38000
A: 34200
TO: 31900
..
ADVIL: 1
ZOOLOGY: 1

Some words occur more than 10000 times (very frequent)
There are only a few such words: 16 in all

Others occur only once or twice – 14900 words in all
Almost 50% of the vocabulary of this corpus

The variation in number follows Zipf’s law: there are a small 
number of frequent words, and a very large number of rare 
words

Unfortunately, the rare words are often the most important ones 
– the ones that carry the most information

ZipfZipf’’ss Law also applies to Speech and TextLaw also applies to Speech and Text
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If we trained HMMs for individual words, most words 
would be trained on a small number (1-2) of instances 
(Zipf’s law strikes again)

The HMMs for these words would be poorly trained
The problem becomes more serious as the vocabulary 
size increases

No HMMs can be trained for words that are never seen 
in the training corpus

Direct training of word models is not an effective 
approach for large vocabulary speech recognition

Word models for Large VocabulariesWord models for Large Vocabularies
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Observation: Words in any language are formed by 
sequentially uttering a set of sounds

The set of these sounds is small for any language

Any word in the language can be defined in terms of these 
units

The most common sub-word units are “phonemes”
The technical definition of “phoneme” is obscure
For purposes of speech recognition, it is a small, repeatable unit 
with consistent internal structure.

Although usually defined with linguistic motivation

SubSub--word Unitsword Units
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Examples of PhonemesExamples of Phonemes
AA:   As in F AA ST
AE:   As in B AE T M AE N
AH:   As in H AH M (HUM)
B:     As in  B EAST

Etc.

Words in the language are expressible (in their spoken form) 
in terms of these phonemes
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To use Phonemes as sound units, the mapping from words to 
phoneme sequences must be specified

Usually specified through a mapping table called a dictionary

Eight ey t
Four f    ow r
One w    ax   n
Zero z    iy r   ow
Five f    ay    v
Seven s   eh   v   ax  n

Every word in the training corpus is converted to a sequence of 
phonemes

The transcripts for the training data effectively become sequences of 
phonemes

HMMs are trained for the phonemes

Mapping table (dictionary)

Phonemes and Pronunciation DictionariesPhonemes and Pronunciation Dictionaries
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Distribution of phonemes in the BN corpus

Histogram of the number of occurrences of the 39 phonemes in 
1.5 million words of Broadcast News

There are far fewer “rare” phonemes, than words
This happens because the probability mass is distributed among fewer 
unique events

If we train HMMs for phonemes instead of words, we will have 
enough data to train all HMMs

Beating Beating ZipfZipf’’ss LawLaw
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Recognition will still be performed over words

The HMMs for words are constructed by concatenating 
the HMMs for the individual phonemes within the word

In order provided by the dictionary
Since the component phoneme HMMs are well trained, 
the constructed word HMMs will also be well trained, 
even if the words are very rare in the training data

This procedure has the advantage that we can now 
create word HMMs for words that were never seen in 
the acoustic model training data

We only need to know their pronunciation
Even the HMMs for these unseen (new) words will be well 
trained

But we want to recognize But we want to recognize WordsWords



17 March 2009 phoneme models

Decoder
Identifies sound units based 

on learned characteristics

Eight      Eight        Four            One          Zero       Five     Seven

Trainer
Learns characteristics

of sound units

Enter              Four  Five    Eight  Two One Spoken

Recognized

Insufficient data to train 
every word. Words not 
seen in training not 
recognized

Word as unit 

Eight             Four   Five     Eight       One

WordWord--based Recognitionbased Recognition
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Decoder
Identifies sound units based 

on learned characteristics

Eight      Eight        Four            One          Zero       Five     Seven

Trainer
Learns characteristics

of sound units

Map words into 
phoneme sequences

Phoneme based recognitionPhoneme based recognition

Dictionary
Eight:   ey t
Four:    f ow r
One:    w a n
Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n

ey t       ey t     f ow r           w  a n z iy r   o  f ay v   s ev e n

Eight      Eight        Four            One Zero        Five     Seven

Enter              Four  Five    Eight  Two One
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Decoder
Identifies sound units based 

on learned characteristics

Eight      Eight        Four            One          Zero       Five     Seven

Trainer
Learns characteristics

of sound units

Map words into 
phoneme sequences
and learn models for
phonemes
New words can be 
added to the dictionary

Dictionary
Eight:   ey t
Four:    f ow r
One:    w a n
Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n
Enter: e n t e r
two:    t uw

ey t       ey t     f ow r           w  a n z iy r   o  f ay v   s ev e n

Eight      Eight        Four            One Zero        Five     Seven

Enter              Four  Five    Eight  Two One

Phoneme based recognitionPhoneme based recognition
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Enter              Four  Five    Eight  Two One

Decoder
Identifies sound units based 

on learned characteristics

Eight      Eight        Four            One          Zero       Five     Seven

Trainer
Learns characteristics

of sound units

Map words into 
phoneme sequences
and learn models for
phonemes
New words can be 
added to the dictionary
AND RECOGNIZED

Dictionary
Eight:   ey t
Four:    f ow r
One:    w a n
Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n
Enter: e n t e r
two:    t uw

ey t       ey t     f ow r           w  a n z iy r   o  f ay v   s ev e n

Eight      Eight        Four            One Zero        Five     Seven

Enter              Four  Five    Eight  Two One

Phoneme based recognitionPhoneme based recognition
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Words vs. PhonemesWords vs. Phonemes

ey t ey t f ow r w a n z iy r ow f ay v s e v e n

More training examples = better statistical estimates of model (HMM) parameters

The difference between training instances/unit for phonemes and words increases
dramatically as the training data and vocabulary increase

Unit = whole word 
Average training examples per unit = 7/6 =~ 1.17 

Unit = sub-word
Average training examples per unit = 22/14 =~ 1.57 

Eight      Eight        Four            One          Zero       Five     Seven
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How do we define phonemes?How do we define phonemes?

The choice of phoneme set is not obvious
Many different variants even for English

Phonemes should be different from one another, otherwise 
training data can get diluted

Consider the following (hypothetical) example:
Two phonemes “AX” and “AH” that sound nearly the same

If during training we observed 5 instances of “AX” and 5 of “AH”
There might be insufficient data to train either of them properly
However, if both sounds were represented by a common symbol 
“A”, we would have 10 training instances!



17 March 2009 phoneme models

Defining PhonemesDefining Phonemes
They should be significantly different from one another to 
avoid inconsistent labelling

E.g. “AX” and “AH” are similar but not identical

ONE:   W AH N
AH is clearly spoken

BUTTER:  B AH T AX R
The AH in BUTTER is sometimes spoken as AH (clearly 
enunciated), and at other times it is very short “B AX T AX R”
The entire range of pronunciations from “AX” to “AH” may 
be observed

Not possible to make clear distinctions between instances of B 
AX T and B AH T

Training on many instances of BUTTER can result in AH 
models that are very close to that of AX!

Corrupting the model for ONE!
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Defining a PhonemeDefining a Phoneme
Other inconsistencies are possible

Diphthongs are sounds that begin as one vowel and end as another, e.g. 
the sound “AY” in “MY”
Must diphthongs be treated as pairs of vowels or as a single unit?
An example

“AAEE” “MISER”

“AH” “IY” “AY”
Is the sound in Miser the sequence of sounds “AH IY”, or is it the diphthong 
“AY”



17 March 2009 phoneme models

Defining a PhonemeDefining a Phoneme
Other inconsistencies are possible

Diphthongs are sounds that begin as one vowel and end as another, e.g. 
the sound “AY” in “MY”
Must diphthongs be treated as p of vowels or as a single unit?
An example

“AAEE” “MISER”

“AH” “IY” “AY”
Is the sound in Miser the sequence of sounds “AH IY”, or is it the diphthong 
“AY”

Some differences in transition structure
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A Rule of ThumbA Rule of Thumb
If compound sounds occur frequently and have smooth 
transitions from one phoneme to the other, the compound 
sound can be single sound

Diphthongs have a smooth transition from one phoneme to the 
next

Some languages like Spanish have no diphthongs – they are always 
sequences of phonemes occurring across syllable boundaries with no 
guaranteed smooth transitions between the two

Diphthongs: AI, EY, OY (English), UA (French) etc.
Different languages have different sets of diphthongs

Stop sounds have multiple components that go together
A closure, followed by burst, followed by frication (in most 
cases)

Some languages have triphthongs
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Phoneme SetsPhoneme Sets
Conventional Phoneme Set for English:

Vowels:  AH, AX, AO, IH, IY, UH, UW etc.
Diphthongs:  AI, EY, AW, OY, UA etc.
Nasals:  N, M, NG
Stops:    K, G, T, D, TH, DH, P, B
Fricatives and Affricates:  F, HH, CH, JH, S, Z, ZH etc.

Different groups tend to use a different set of phonemes
Varying in sizes between 39 and 50!

For some languages, the set of sounds represented by alphabets 
in the script are a good set of phonemes
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Consistency is importantConsistency is important

The phonemes must be used consistently in the dictionary
E.g.  You distinguish between two phonemes “AX” and “IX”. 
The two are distinct sounds
When composing the dictionary the two are not used 
consistently

“AX” is sometimes used in place of “IX” and vice versa
You would be better off using a single phoneme (e.g. “IH”) 
instead of the two distinct, but inconsistently used ones

Consistency of usage is key!
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Recognition with PhonemesRecognition with Phonemes
The phonemes are only meant to enable better learning of 
templates

HMM or DTW models

We still recognize words
The models for words are composed from the models for the 
subword units
The HMMs for individual words are connected to form the 
Grammar HMM
The best word sequence is found by Viterbi decoding

As we will see in a later lecture
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Each phoneme is modeled by an HMM
Word HMMs are constructed by concatenating HMMs of phonemes
Composing word HMMs with phoneme units does not increase the 
complexity the grammar/language HMM

HMM for /R/ HMM for /AO/

Composed HMM for ROCK

Example:

Word                       Phones                  
Rock                        R  AO  K                

HMM for /K/

Recognition with phonemesRecognition with phonemes



17 March 2009 phoneme models

HMM Topology for PhonemesHMM Topology for Phonemes
Most systems model Phonemes using a 3-state topology

All phonemes have the same topology

Some older systems use a 5-state topology
Which permits states to be skipped entirely
This is not demonstrably superior to the 3-state topology
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Composing a Word HMMComposing a Word HMM
Words are linear sequences of phonemes

To form the HMM for a word, the HMMs for the phonemes 
must be linked into a larger HMM

Two mechanisms:
Explicitly maintain a non-emitting state between the HMMs for 
the phonemes

Computationally efficient, but complicates time-synchronous search
Expand the links out to form a sequence of emitting-only states
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Generating and Absorbing StatesGenerating and Absorbing States

Phoneme HMMs are commonly defined with two non-emitting states

One is a generating state that occurs at the beginning
All initial observations are assumed to be the outcome of transitions 
from this generating state
The initial state probability of any state is simply the transition 
probability from the generating state

The absorbing state is a conventional non-emitting final state

When phonemes are chained the absorbing state of one phoneme 
gets merged with the generating state of the next one

Phoneme 2
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Linking Phonemes via NonLinking Phonemes via Non--emitting Stateemitting State

To link two phonemes, we create a new “non-emitting” state that 
represents both the absorbing state of the first phoneme and the
generating state of the second phoneme

Phoneme 1 Phoneme 2

Phoneme 1 Phoneme 1

Non-emitting state

merged
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The problem of pronunciationThe problem of pronunciation
There are often multiple ways of pronouncing a word.

Sometimes these pronunciation differences are semantically 
meaningful:

READ   :    R IY D            (Did you read the book)
READ   :    R EH D          (Yes I read the book)

At other times they are not
AN  :     AX N                  (That’s an apple)
AN  :     AE N                  (An apple)

These are typically identified in a dictionary through markers
READ(1)   :  R IY D
READ(2)   :  R EH D
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Multiple PronunciationsMultiple Pronunciations
Multiple pronunciations can be expressed compactly as a 
graph

However, graph based representations can get very complex
often need introduction of non-emitting states

N
AH

AE
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Multiple PronunciationsMultiple Pronunciations

Typically, each of the pronunciations is simply represented by 
an independent HMM

This implies, of course, that it is best to keep the number of 
alternate pronunciations of a word to be small

Do not include very rare pronunciations; they only confuse

AH N

AE N
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Training Phoneme Models with Training Phoneme Models with SphinxTrainSphinxTrain

A simple exercise: 
Train phoneme models using a small corpus
Recognize a small test set using these models


