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Recap and Recap and LookaheadLookahead
Covered so far:

String Matching based Recognition
Introduction to HMMs
Recognizing Isolated Words
Learning word models from continuous recordings
Building word models from phoneme models
Context-independent and context-dependent models
Building decision trees

Exercise: Training phoneme models
Exercise: Training context-dependent models
Exercise: Building decision trees

Training tied-state models
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Most triphones are never seen
58% of triphones are not seen in this corpus

Most of the rest are seen too infrequently to build good 
models for them

86% of all triphones are seen less than 10 times
Problems:

How to build models for triphones that are seen in training data
What do we do about unseen triphones

“Count of counts” histogram for the 24979 triphones
in 1.5 million words of Broadcast News

Data Insufficiency Remains a ProblemData Insufficiency Remains a Problem
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Why Unseen Why Unseen TriphonesTriphones Are a ProblemAre a Problem
Word sequences in a test utterance will often need triphones
that were not seen in the training data

Hypothetical example:
We never had a word ending with “Z” followed by a word 
beginning with “S” in our training data.
The test recording is “RECOGNIZE SPEECH”
Do not have the necessary model components to compose the 
test word sequence
It cannot be recognized
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SolutionsSolutions
Backoff

Instead of triphone “S(Z,P)” for “Recognize Speech” use model 
for context independent phoneme “S”

Replacement by perceived similarity
Use models for the closest sound unit instead
E.g. use a triphone for “S(S,P)” instead of “S(Z,P)” in “Recognize 
Speech”

Clustering and Parameter Sharing: HMMs for many different 
sound units have the same parameter

Decree (based on similarity) that different sounds have similar 
probability distributions
Permits pooling of data to get larger data sets

Prediction of units by parts
Compose HMMs based on clustering and similarity
Uses Decision Trees
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Parameter SharingParameter Sharing
An HMM for a phoneme has the following parameters:

1. A set of initial state probabilities π(phoneme)
• Sometimes denoted by transition probabilities from a generating state

2. A set of transition probabilities Tphoneme = {Tphoneme (si,sj)}
3. A set of state output distributions, one for every state in the HMM:   

Pphoneme (O| si)

Two HMMs are said to share parameters if any of these parameters 
is identical for both. E.g. if

π(phoneme1) = π(phoneme2)   OR
Tphoneme1 = Tphoneme2   OR 

• Pphoneme2 (O| si) = Pphoneme2 (O| sj)
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Parameter Sharing: Transition MatrixParameter Sharing: Transition Matrix

Sharing Transition Matrices:
T111 = T211, T112 = T212 , T113 = T213

T122 = T222 , T123 = T223 , T124 = T224

T133 = T233 , T134 = T234

Transition counts from both triphones will be combined to 
compute transition probabilities

T111 T122 T133

T113

T112

T124

T123 T134

T211 T222 T233

T213

T212

T224

T223 T234

HMM for triphone 1 HMM for triphone 2
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Parameter Sharing: State O/P PDFParameter Sharing: State O/P PDF

Sharing State Output Probabilities: The same probability 
densities are shared by states of different HMMs

Indicated by colour in the figure
To train the density data belonging to the states of all HMMs
sharing it are pooled

E.g. data from the first state of the HMM for triphone1 and the 
second state of the HMM for triphone2 would be pooled to learn the 
parameters of the shared distribution

HMM for triphone 1 HMM for triphone 2
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Parameter Sharing MechanismsParameter Sharing Mechanisms
Parameter sharing can be effectively used to train models for 
N-phones for which we have very few training instances

Common sharing mechanisms:

Phonemes: Share state output distributions across different 
phonemes

E.g., the central portions of ZH and SH may share state output 
distributions
i.e. if we model ZH and SH with 5-state HMMs, then we set 
PZH(O| s2) = PSH(O| s2)

Diphones: Share state output distributions across different diphones
E.g. PAX_D(O| s0) = PAX-T(O| s0); PAX_D(O| s4) = PEH-D(O| s4)

Triphones: Share transition matrices and state output distributions
All triphones of the form AX(*,*) have the same transition matrix
PAX(B,D) (O| s0) = PAX(P,T)(O| s0) etc.
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Advantages of Parameter SharingAdvantages of Parameter Sharing
Parameter sharing can be used to alleviate data insufficiency 
problems

E.g. We have very few instances of phoneme ZH
But SH occurs very frequently
We have decided to share PZH(O| s2) = PSH(O| s2)
We train the shared output distribution from data from the central 
regions of all instances of both ZH and SH
This gives us enough data to learn the state output distribution of s2 in 
ZH properly

By appropriately sharing other states, we can learn all the 
parameters of the HMM of ZH even though ZH itself has little data

Similar sharing mechanisms can be used to learn good models for 
diphones and triphones that are poorly represented in the training 
data

All of this depends on the validity of the sharing assumptions
E.g. PZH(O| s2) = PSH(O| s2)
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Parameter Sharing CriterionParameter Sharing Criterion

How do we decide what parameters to share?

Ad-hoc reasoning is not likely to be effective
May not be supported by data

The most common approach is to base it on empirically 
determined similarity

Train a model for SH from whatever data we have
Train a model for ZH from available data
Compare the output distributions of the second state of ZH to the 
output distributions of every state of SH
“Tie” PZH(O| s2) to the closest state output distribution of SH

This may not be the second state of SH
The same mechanism may be used to “tie” the states of various 
diphones and triphones

This resolves the issue of learning HMMs for units for which we 
have only small amounts of training data

But how do we compute HMMs for units for which we have no data 
at all?
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Predictive Parameter SharingPredictive Parameter Sharing
To compose the HMM for a novel unit (phoneme, diphone or 
triphone), we must determine the following parameters for it:

Set of all transition probabilities
Initial state probabilities are transitions from a generating state

Set of all state output distributions

We will predict these through other known characteristics of the
unit

Such as the known linguistic characteristics of the 
phoneme/diphone/triphone

T111 T122 T133

T113

T112

T124

T123 T134
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Building Building HMMsHMMs for unseen Phonemes and for unseen Phonemes and TriphonesTriphones

Phonemes: Use simple linguistic similarity
E.g. ZH is known to be a voiced variant of SH. If we do not 
observe ZH in the training data, copy the entire model for SH 
into ZH
This includes transition matrices and state output distributions

Triphones:
Transition matrix: During training stipulate that all triphones of 
the same phoneme, e.g. all triphones of the kind AX(*,*) will 
share the same transition matrix
TAX(*,*) = TAX

For an unseen new triphone of AX, use this common transition 
matrix (TAX )
To determine state output distributions use decision trees
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Decision TreesDecision Trees
A decision tree is literally a tree of decisions
It is used to cluster triphone units based on “linguistic 
questions”.
For example, a decision tree might look like this:

Is left context
a vowel?

Is right context
a fricative?

Is right context
a vowel?

Is left context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no
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Decision Trees: The RationaleDecision Trees: The Rationale
Decision trees are prediction mechanisms that identify what 
any component of a triphone might look like

The tree itself is built from a combination of data and 
“expert” knowledge about the phonetics of the language

Although this expert knowledge is not essential and may also be 
derived from data

To explain the process of building decision trees, let us briefly 
revisit the training process…
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Dictionary
Eight:   ey t
Four:    f ow r
One:    w a n
Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n
Enter:   e n t e r
Two:     t uw

Training acoustic modelsTraining acoustic models

All words specified in 
terms of phonemes

Phoneme and N-phone models begin by representing all 
words in terms of phonemes, like in the dictionary above



17 March 2009 phoneme models

CI modelsCI models

Training involves grouping data 
from phonemes followed by 
parameter estimation 

Indiscriminate grouping of vectors 
of a unit from different  locations 
in the corpus results in Context-
Independent (CI) models

Explicit boundaries 
(segmentation) of phonemes not 
available

Explicit boundaries are not 
needed

Data for individual states 
obtained through soft decisions

+
+
+

Each instance of the phoneme is
(soft) “segmented” in to Nstates
parts

All data in a k-th part are aggregated
to compute the distribution of the 
k-th state
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Dictionary
Eight:   ey t
Four:    f ow r
One:    w a n
Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n
Enter:   e n t e r
Two:     t uw

Context DependencyContext Dependency

All instances of a 
subword unit in a 
particular context can be 
treated as a single entity

Context dependent units consider the neighbors
The two “OW”s above are different if context is considered
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Context dependent (Context dependent (triphonetriphone) models) models

Context based grouping of 
observations results in finer, Context-
Dependent (CD) models

The big ball represents all instances of a phoneme
Each row represents a phoneme in a particular context

Each ball represents all data from a specific state of the context-
dependent phoneme
E.g. if the big ball were “AH”, the first row might represent the 
data for AH (B, T) (AH in the context of B and T)
The small ball in the top left corner would represent all data 
from the first state of AH(B,T)

Triphone 1
Triphone 2
Triphone 3
Triphone 4

States
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Context dependent (Context dependent (triphonetriphone) models) models

Context based grouping of 
observations results in finer, Context-
Dependent (CD) models

If a separate HMM were trained for each row, we have 
separate models for each CD phoneme

Data insufficiency problems

Triphone 1
Triphone 2
Triphone 3
Triphone 4
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Context dependent (Context dependent (triphonetriphone) models) models

If a separate HMM were trained for each row, we have separate 
models for each CD phoneme

Data insufficiency problems
If all the data in each column were aggregated to train the 
distribution for the state we would get a CI model

Sufficient data, but eliminates context information – poor models

Triphone 1
Triphone 2
Triphone 3
Triphone 4

Context Independent; all contexts added up
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Context dependent (Context dependent (triphonetriphone) models) models

A compromise: Group subsets of data in each column
Train separate distributions for each group
Not as coarse as CI models
Does not suffer the data insufficiency of CD models

Each group has sufficient data to learn a good distribution
Each group represents a “TIED” state

Triphones retain identity
In terms of the specific sequence of tied states

Triphone 1
Triphone 2
Triphone 3
Triphone 4

Groups are “tied” states because 
they “tie” data from the 
states of different 
triphones together
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Context dependent (Context dependent (triphonetriphone) models) models

Note: Grouping is within-state
E.g. we only group data from the first state of any triphone with 
data from the first state of any other triphone

There is a reason for this – the ability to predict new triphones
As we will see, this lets us select a distribution for the first state (for 
example) when building a model for a triphone that was not seen in 
training

However, the precise manner in which this grouping is 
performed is important

Triphone 1
Triphone 2
Triphone 3
Triphone 4

Groups are “tied” states because 
they “tie” data from the 
states of different 
triphones together
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Training context dependent (Training context dependent (triphonetriphone) ) 
models: Parameter Sharingmodels: Parameter Sharing

3 separate “groups” for the first state alone

How to determine this grouping?

Do it such that each group is most consistent
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Defining ConsistencyDefining Consistency

We want all the data within any group to be as similar to one 
another
We want data from different groups (in the same column) to be 
dissimilar
Having this distinction will enable us to distinguish one triphone
from another
Therefore, the objective is to identify the grouping that maximizes 
within-group similarity and minimizes cross-group similarity

A very difficult problem
For this we need an objective function that captures this notion of 
consistency

Triphone 1
Triphone 2
Triphone 3
Triphone 4
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Defining ConsistencyDefining Consistency
The consistency of a data set can be defined in terms of the 
expected log likelihood of the data on its own distribution

Typically we assume this distribution to be Gaussian
E.g.  if the mean of the data is μ and the variance is C, then the 
“consistency” score for a single vector is:

Here “E[]” is an expectation operator computed against the Gaussian 
distribution itself

For a set with N data points this can be shown to be simply:

d is the dimensionality of the vectors in the data
This is only a function of the covariance of the data and N
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Improvement of Consistency From Splitting a Improvement of Consistency From Splitting a 
data setdata set

If a set of N data points is split into two sets of size N1 and N2, 
such that N = N1 +N2, with variances C1 and C2, then each of the 
resultant data sets has its own consistency value

Original set:

Child set no. 1:

Child set no. 2:

This split results in a change in the overall consistency of the sets
Consistency of set1 + Consistency of set2 – Consistency of original set

( )( ) ( )( ) ( )( )||2log5.05.0||2log5.05.0||2log5.05.0 222111 CNNdCNdNCNdN ddd πππ −−−−−+−−

( )||2log5.05.0 111 CNdN dπ−−

( )||2log5.05.0 222 CNdN dπ−−

( ) ( ) ( )N C N C N Cd d dlog . log . log2 0 5 2 0 5 21 1 2 2π π π− −

=
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Partitioning the data in any column will 
result in an increase in consistency
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

If we partition a set of N vectors 
with mean μ and variance C into 
two sets of vectors of size N 1
and N 2 , with means μ 1 and μ 2
and variances C 1 and C 2
respectively, the total expected 
log-likelihood of the vectors after 
splitting becomes

The total log-likelihood has 
increased by

( ) ( )− − − −0 5 0 5 2 0 5 0 5 21 1 1 2 2 2. . log . . logN d N C N d N Cd dπ π

( ) ( ) ( )N C N C N Cd d dlog . log . log2 0 5 2 0 5 21 1 2 2π π π− −
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods

Evaluate partitions until we identify the 
partition that results in the most 
increase in consistency (likelihood)
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods

Evaluate partitions until we identify the 
partition that results in the most 
increase in consistency (likelihood)
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods

Evaluate partitions until we identify the 
partition that results in the most 
increase in consistency (likelihood)
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods

Evaluate partitions until we identify the 
partition that results in the most 
increase in consistency (likelihood)
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods

Evaluate partitions until we identify the 
partition that results in the most 
increase in consistency (likelihood)
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned 
into groups to maximize within 
class likelihoods

Evaluate partitions until we identify 
the partition that results in the 
most increase in consistency 
(likelihood)

Recursively partition the sets in 
the same manner
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned 
into groups to maximize within 
class likelihoods

Evaluate partitions until we identify 
the partition that results in the 
most increase in consistency 
(likelihood)

Recursively partition the sets in 
the same manner
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

Observation vectors partitioned into 
groups to maximize within class 
likelihoods
Recursively partition vectors into a 
complete tree
The leaves of this tree will represent 
families of triphones with the most 
similar data
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Partitioning the dataPartitioning the data

The data at each node must be 
partitioned so that the children of 
the node are most internally 
consistent

2n-1 possible partitions for n vector 
groups. Exhaustive evaluation too 
expensive

Exhaustive evaluation may also 
select “splits” that only capture 
vagaries of a specific training data

Instead we only evaluate a smaller 
number of splits that are based on 
known good rules for splitting

These are “linguistic questions”
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Linguistic QuestionsLinguistic Questions
Linguistic questions are pre-defined phone classes. Candidate 
partitions are based on whether a context belongs to the phone class 
or not
Linguistic questions must be meaningful in order to deal effectively 
with unseen contexts

Must represent some underlying acoustic grouping

Meaningful Linguistic Questions?
Left context: (A,E,I,Z,SH)
ML Partition: (A,E,I)  (Z,SH)
(A,E,I) vs. Not(A,E,I)
(A,E,I,O,U) vs. Not(A,E,I,O,U)

A

E

I Z

SH
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Linguistic QuestionsLinguistic Questions
Must capture known phenomena

Typically defined by linguists
Based on knowledge of sound production and perceptual 
similarity
Sounds produced with similar articulator configurations will have 
similar spectral structure

Laws of physics
Linguistic questions attempt to identify groupings that will 
predict similarity in spectral structure

E.g. “[VOWELS]”,  or “[SH ZH]” or “[L W R]”
Groupings with similar production mechanisms and spectral 
similarities 

Linguistic questions can also be automatically deduced if 
required

Since the goal is to identify spectral similarity
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Automatic Generation of Automatic Generation of ““LinguisticLinguistic”” QuestionsQuestions

Attempt to deduce various groupings of phonemes that are 
spectrally similar

We need multiple such groupings

Techinque:
Train CI models for all phonemes
Group phonemes based on the similarity of the state output distributions 
of their CI models

Grouping method that produces multiple groupings: Any clustering
method would work

However, an optimal clustering technique results in better 
“questions”

For this we can use the hybrid bottom-up-top-down technique 
described next
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Hybrid Procedure - I
1. Begin by maintaining 

all CI phone states as 
separate entities 
(labelled bottom-up 
in figure)
• Simutaneously group 

all of them together 
(labelled top-down)

• Note, we only use one 
of the states from each 
CI phone

top
down

bottom
up

72
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Hybrid Procedure - II
2. Cluster the two closest 

groups in bottom up 
layer

top
down

bottom
up

73
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Hybrid Procedure - II
2. Cluster the two closest 

groups in bottom up 
layer

top
down

bottom
up

73
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Hybrid Procedure - II
2. Cluster the two closest 

groups in bottom up 
layer

3. Repeat this process until 
only a small number K
(K between 4 and 16) 
groups remain
• This number is small 

enough that we can now 
exhaustively evaluate all 
partitions

top
down

bottom
up

73
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Hybrid Procedure - II
2. Cluster the two closest 

groups in bottom up 
layer

3. Repeat this process until 
only a small number K
(K between 4 and 16) 
groups remain
• This number is small 

enough that we can now 
exhaustively evaluate all 
partitions

4. Exhaustively evaluate all 
2K-1 partitions of the 
remaining K groups

top
down

bottom
up

73
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Hybrid Procedure -III
5. The best partition of the 

K bottom-up generated 
sets into two groups 
represents our guess for 
the best partition of the 
overall training set into 
two clusters

top
down

bottom
up

74
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Hybrid Procedure -III
5. The best partition of the 

K bottom-up generated 
sets into two groups 
represents our guess for 
the best partition of the 
overall training set into 
two clusters

6. Set the two clusters as 
the second level of the 
top down tree

top
down

bottom
up

74
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Hybrid Procedure - IV
7. Each of the two clusters 

is in fact a group of states

top
down

bottom
up

75
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Hybrid Procedure - IV
7. Each of the two clusters 

is in fact a group of states

8. They can each similarly 
be clustered bottom up 
until K groups remain, 
and then partitioned 
exhaustively to give two 
clusters

top
down

bottom
up

75
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Hybrid Procedure - IV
7. Each of the two clusters 

is in fact a group of 
instances

8. They can each similarly 
be clustered bottom up 
until K groups remain, 
and then partitioned 
exhaustively to give two 
clusters

9. These new clusters would 
form the third level of the 
top-down tree

top
down

bottom
up

75
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Hybrid Procedure - IV
7. Each of the two clusters 

is in fact a group of 
instances

8. They can each similarly 
be clustered bottom up 
until K groups remain, 
and then partitioned 
exhaustively to give two 
clusters

9. These new clusters would 
form the third level of the 
top-down tree

10. The process can be 
recursed to complete the 
top-down tree

top
down

bottom
up

75
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Algorithm for generating phone classes Algorithm for generating phone classes 

The resulting groups in the top-
down tree represent linguistic 
questions

Why the procedure is optimal:
Top-down clustering is known to 
be optimal but expensive

Bottom up clustering is tractable, 
but suboptimal

This procedure strikes a balance

PermutationPermutation
(global optimum)

Quest. 3

agglomerative

a b c d e f g h i j k

Quest. 1

Quest. 5

Quest. 2

Quest. 4 Quest. 6

merge
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

When expert-given linguistic 
questions are not available, 
the procedure just described 
can be used to compute 
linguistic questions
In this case the procedure for 
building the decision tree is 
entirely data-driven

No human input
Useful when experts are not 
available
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Grouping of contextGrouping of context--dependent units for dependent units for 
parameter estimationparameter estimation

The resultant decision tree will 
have many leaves

Eventually one leaf per 
triphone

To obtain groupings we must 
prune the tree so that leaves 
represent sets of triphones
Pruning leaves behind a 
shallower tree
The degree of pruning 
determines how shallow the 
tree is

Leaves of shallower trees 
have triphones with more 
variations among theselves

Not good
However leaves of shallower 
trees will also have more data 
associated with them

Good 
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There are several ways of pruning a tree 
to obtain a given number of leaves
(6 in this example)
Only one of these is optimal to represent 
the data

Pruning Decision TreesPruning Decision Trees
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Identify the pair of leaves that resulted in 
the smallest increase in likelihood with 
respect to the parent

Pruning Decision TreesPruning Decision Trees

( ) ( ) ( )N C N C N Cd d dlog . log . log2 0 5 2 0 5 21 1 2 2π π π− − was lowest for this pair
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Identify the pair of leaves that resulted in 
the smallest increase in likelihood with 
respect to the parent

Prune the leaves. This makes the parent 
a leaf

Pruning Decision TreesPruning Decision Trees
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Identify the pair of leaves that resulted in 
the smallest increase in likelihood with 
respect to the parent

Prune the leaves. This makes the parent 
a leaf

Recursively repeat the process until the 
desired number of leaves is obtained

Pruning Decision TreesPruning Decision Trees
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Training Procedure for Decision Trees: 1Training Procedure for Decision Trees: 1
Train HMMs for all triphones in training data with no sharing 
of parameters

This stage of training is the “context-dependent untied 
training”

Use these “untied” HMM parameters to build decision trees
A separate decision tree is built for each state of each phoneme
The decision tree for any state of a phoneme describes the 
grouping of that state for the triphones of that phoneme

E.g. A decision tree for state 1 of AX represents the clustering of the 
1st state of all triphones of AX
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Training Procedure for Decision Trees: 2Training Procedure for Decision Trees: 2
The set of all decision trees for all states of all phonemes is 
then pruned
When selecting a specific pair of leaves to prune, we choose 
the best pair to prune from among all the decision trees

The best pair will result in least decrease of consistency as 
specified by

The final number of leaves required in the set of all decision 
trees must be specified

This is the number of tied-states the system will have

Decision trees are pruned until this number of leaves is 
achieved

Always selecting the best pair of leaves to prune from among all
trees 

( ) ( ) ( )N C N C N Cd d dlog . log . log2 0 5 2 0 5 21 1 2 2π π π− −
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Context dependent (Context dependent (triphonetriphone) tied state) tied state
modelsmodels

Pruned trees are used to determine how states must be grouped for 
tying

E.g. leaves 1 2 and 3 in the illustration determine the three groups for 
the first state of the triphones of this phoneme

All triphones whose 1st state are grouped together share the state 
output distribution for their first states
In general, the purpose of the decision trees is to determine how 
triphones share state output distributions

Is right context
an affricate?

Is left context
a vowel?

Is left context
a glide?

Is right context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no

Tree for
State 1



State-level tying

• To find the state output density of any state of 
the HMM for a triphone, pass it down the 
decision tree for that state

Is left context
a vowel?

Is right context
a fricative?

Is right context
a vowel?

Is left context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no

Triphone1,
Triphone3

Triphone2

Triphone1 Triphone2 Triphone3

Is right context
an affricate?

Is left context
a vowel?

Is left context
a glide?

Is right context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no

Triphone1,
Triphone2

Triphone3

Tree for
State 1

Tree for
State 2



Components of Triphone HMMs
• The HMM for any triphone has two sets of 

components
o The transition matrix
o The set of state output distributions

For Bakis topology HMMs with a fixed start state, initial state 
probabilities are not a factor

• To build the HMM, both components must be 
determined

• The state tying procedure only specifies how state 
output distributions are obtained

• Transition matrices are also required
• Ineffective to train separate transition matrix for each 

triphone
o Data insufficiency bites!
o Transition matrices are also shared



Overall Process for Building a 
Triphone Model

• Transition Matrix:
o All triphones of a given phoneme use the same transition 

matrix
This is the transition matrix of the context-independent 
phoneme itself

• State output densities: For each state
o Use the triphone identity (including all features used to build 

a decision tree) to identify a leaf of the decision tree
o Use a state output distribution associated with that leaf

• The same procedure is used to build HMMs for all 
triphones regardless of whether they are seen in 
training data or not

o The procedure can be used to compose an HMM for any 
triphone
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The outcome of parameter sharing: TiedThe outcome of parameter sharing: Tied--state state HMMsHMMs

The HMMs for various triphones will share parameters 
including transition matrices and state output densities

Typically all triphones of the same phoneme (e.g. all triphones
of the kind AX(*,*)) will share the same transition matrix
State output densities will be shared according to state-
dependent decision trees

We will have HMMs for all triphones
Including ones that were not seen in training
There will be NO triphones for which a model cannot be 
constructed

Even if it was not seen in the training data
Every triphone has a base phoneme whose transition matrix is 
shared
Every triphone will arrive at some leaf of the decision trees, and 
share the state output densities associated with those leaves
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RecapRecap
For each phoneme (AX, AH, AY, … IY,.., S, .. ZH)
For each state (0,1,2..)

Gather all the data for that state for all triphones of that 
phoneme together
Build a decision tree
The distributions of that state for each of the triphones will be 
tied according to the composed decision tree

Aggregate transition information for all triphones
Compute a common transition matrix for all triphones of the 
phoneme

Assumption: All triphones of a phoneme have the same 
number of states and topology
If the HMM for all triphones of a phoneme has K states, we 
have K decision trees for the phoneme
For N phonemes, we will learn N*K decision trees
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#base        left  right  position attribute HMM id             …HMM state id's ...
AX                DX      R        i              n/a           1                   1001      1221    1487      N
AX                DX      R        b             n/a            1                   1001      1222    1487      N
AX                  B       M       i              n/a          1                   1001      1223    1493      N
AX                  K       N        e             n/a          1                   1002      1222    1493      N

State tying information in the SphinxState tying information in the Sphinx

The rows represent triphones
The HMMid represents the id of the shared transition matrix

All shown triphones share transition matrix no. 1

The numbers to the right show ids of shared state densities
The first state of AX(DX,R,i), AX(DX,R,b) and AX(DX,B,i) share the 
same density
The second state of AX(D,R,b) and AX(K,N,e) share the same density
Etc.

Entries from a model definition file
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Parameter Sharing helps HMM size ReductionParameter Sharing helps HMM size Reduction

In addition to reducing data-insufficiency and enabling 
composition of models for triphones that were not seen in 
training

The total number of parameters in the system is greatly 
reduced

The size of models and the computation required, both for 
training and recognition is reduced 

The size of HMMs can also be reduced by taking advantage 
of state tying



17 March 2009 phoneme models

Parameter Sharing helps HMM ReductionParameter Sharing helps HMM Reduction

Without state tying. By taking advantage of state tying, this could 
reduce to (only showing effect on models for “K”):

Composed HMM for ROCK
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Building and Pruning Decision Trees with Building and Pruning Decision Trees with 
SphinxTrainSphinxTrain

A simple exercise: 
Train “untied” triphone models using a small corpus
Build decision trees from the corpus
Prune it


