
Training TiedTraining Tied--State ModelsState Models

Rita Singh and Rita Singh and BhikshaBhiksha RajRaj



19 March 2009 phoneme models

Recap and Recap and LookaheadLookahead
Covered so far:

String Matching based Recognition
Introduction to HMMs
Recognizing Isolated Words
Learning word models from continuous recordings
Building word models from phoneme models
Context-independent and context-dependent models
Building decision trees

Exercise: Training phoneme models
Exercise: Training context-dependent models
Exercise: Building decision trees

Training tied-state acoustic models
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Training Acoustic ModelsTraining Acoustic Models
The goal of training is to train HMMs for all sound units

Models for triphones to represent spoken sounds
Models for other types of sounds

What we really train is an acoustic model

An acoustic model is a collection of component parts from 
which we can compose models that we require

What follows:
Modelling spoken sounds: How triphone models are built

Including a quick recap of parameter sharing and state tying
Issues relating to triphone models
Modelling non-speech sounds
Forced alignment
And an exercise
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Recap: What is Parameter TyingRecap: What is Parameter Tying

HMMs have many parameters
Transition matrices
HMM state-output distribution parameters

A parameter is said to be tied in the HMMs of two sound units if it is 
identical for both of them

E.g. if transition probabilities are assumed to be identical for both, the 
transition probabilities for both are “tied”
Tying affects training
The data from both sounds are pooled for computing the tied 
parameters

HMM for triphone 1 HMM for triphone 2
α

β δ

α

β δ

Transition matrices 
are tied

State output densities
are tied
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More on Parameter TyingMore on Parameter Tying
Parameter tying can occur 
at any level

Entire state output 
distributions for two units 
may be tied

Only the variances of the 
Gaussians for the two may 
be tied

Means stay different

Individual Gaussians in state 
output distributions may be 
tied

Etc.

HMM for triphone 1 HMM for triphone 2

same

Gaussian mixture
state o/p dist

Gaussian mixture
state o/p dist

Gaussian mixture
state o/p dist

Gaussian mixture
state o/p dist

same
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Still more on Parameter TyingStill more on Parameter Tying

Parameter tying may be different for different components
E.g.  the state output distributions for the first state of HMMs for 
sound1 and sound2 are tied
But the state output distribution of the second state of the HMMs
for sound1 and sound3 are tied

This too affects the training accordingly
Data from the first states of sound1 and sound2 are pooled to 
compute state output distributions
Data from the second states of sound1 and sound3 are pooled

sound1 sound2 sound3
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And yet more on parameter tyingAnd yet more on parameter tying
Parameters may even be tied 
within a single HMM

E.g. the variances of all 
Gaussians in the state output 
distributions of all states may 
be tied

The variances of all Gaussians 
within a state may be tied

But different states have 
different variances

The variances of some 
Gaussians within a state may 
be tied

All of these are not unusual.

same

Gaussian mixture
state o/p dist

Gaussian mixture
state o/p dist

same

samediffer

same differs
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State TyingState Tying

State-tying is a form of parameter sharing where the state 
output distributions of different HMMs are the same

All state-of-art speech recognition systems employ state-
tying at some level or the other

The most common technique uses decision trees

HMM for triphone 1 HMM for triphone 2

Is right context
an affricate?

Is left context
a vowel?

Is left context
a glide?

Is right context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no

Tree for
State 2
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Decision TreesDecision Trees

Decision trees categorize triphone states into a tree based on 
linguistic questions

Optimal questions at any level of the tree are determined from 
data
All triphones that end up at the same leaf of the tree for a 
particular state have their states tied
Decision trees are phoneme and state specific

Is right context
an affricate?

Is left context
a vowel?

Is left context
a glide?

Is right context
a glide?

Group 1 Group 2 Group 3

Group 4 Group 5

yes no

yes no

yes no

yes no

Tree for
State 2 of  OW
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Building Decision TreesBuilding Decision Trees
For each phoneme (AX, AH, AY, … IY,.., S, .. ZH)
For each state (0,1,2..)

Gather all the data for that state for all triphones of that 
phoneme together
Build a decision tree
The distributions of that state for each of the triphones will be 
tied according to the composed decision tree

Assumption: All triphones of a phoneme have the same 
number of states and topology
If the HMM for all triphones of a phoneme has K states, we 
have K decision trees for the phoneme
For N phonemes, we will learn N*K decision trees
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The The TriphoneTriphone ModelsModels
We never actually train triphone HMMs!

We only learn all constituent parts
The transition matrix, which is common to all triphones of a 
phoneme
The distributions for all tied states

Triphones models are composed as necessary
If a specific triphone is required for a word or word sequence, 
we identify the necessary tied states

Either directly from the decision trees or a pre-computed lookup 
table

We identify the necessary transition matrix
We combine the two to compose the triphone HMM

Triphone HMMs by themselves are not explicitly stored
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Composing Composing TriphoneTriphone HMMHMM

Select all decision trees associated with the primary 
phoneme for the triphone

E.g. for AX (B, T), select decision trees for AX
There will be one decision tree for each state of the triphone
Each leaf represents a tied state and is associated with the 
corresponding state output distribution

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX

AX(B,T)
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AX(B,T)

Composing Composing TriphoneTriphone HMMHMM

Pass each state of the triphone down its corresponding tree
Select the state output distribution associated with the leaf 
it ends up at

Finally select the transition matrix of the underlying base 
(context independent) phoneme

E.g. AX(B,T) uses the transition matrix of AX

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX



19 March 2009 phoneme models

AX(B,T)

Composing Composing TriphoneTriphone HMMHMM

Pass each state of the triphone down its corresponding tree
Select the state output distribution associated with the leaf 
it ends up at

Finally select the transition matrix of the underlying base 
(context independent) phoneme

E.g. AX(B,T) uses the transition matrix of AX

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX
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AX(B,T)

Composing Composing TriphoneTriphone HMMHMM

Pass each state of the triphone down its corresponding tree
Select the state output distribution associated with the leaf 
it ends up at

Finally select the transition matrix of the underlying base 
(context independent) phoneme

E.g. AX(B,T) uses the transition matrix of AX

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX
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δα

β γ ε
φ

AX(B,T)

Composing Composing TriphoneTriphone HMMHMM

Pass each state of the triphone down its corresponding tree
Select the state output distribution associated with the leaf 
it ends up at

Finally select the transition matrix of the underlying base 
(context independent) phoneme

E.g. AX(B,T) uses the transition matrix of AX

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX

AXδα

β γ ε

φ

Transition probs.
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Storing StateStoring State--Tying InformationTying Information

It is not necessary to identify the correct tied state using decision 
trees every time
Decision tree leaves can be indexed
The index of the leaves for each state of a triphone can be 
precomputed and stored in a table
In the sphinx this table is called the “Model Definition File” (Mdef)
The state output distribution to use with any state is identified by 
the index

AX(B,T)

Tree for
State 1 of  AX

Tree for
State 2 of  AX

Tree for
State 3 of  AX

0 1 2

3 4 5 6

7 8 9 10 11 12 13

AX (B,T) 0 8 11

AX (B,D) 0 9 13

Etc…
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How many tied statesHow many tied states
The total number of tied states is fixed

I.e the total number of leaves on all the decision trees must 
be prespecified

Tradeoff: More tied states result in better models
But only if they all have sufficient data

The actual no. of tied states depends on the amount of 
training data

~100 hours: 4000,  ~2000 hours: 10000-20000

Definition: the “tied” state output distributions are referred to 
as “senones” in the sphinx

There are as many senones as the total no. of leaves in all 
pruned decision trees
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How many Gaussians per tied stateHow many Gaussians per tied state
The number of Gaussians per tied state also depends on the 
amount of training data

More Gaussians is better, but only if we have enough data.
200 hours of training: 4000-6000 tied states with 16-32 
Gaussians/state
2000 hours: 10000-20000 tied states with 32-64 Gaussians per 
state

More Gaussians or more tied states?
Both increasing the number of Gaussians and increasing the no. 
of tied states needs more data
Tradeoff: for a given amount of data we could have either more 
Gaussians or more tied states
Having fewer tied states and more Gaussians per tied state has 
its advantages
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How training happensHow training happens

When training models, we directly compute tied-state 
(senone) distributions from the data

Senone distributions and context-independent phoneme 
transition matrices are used to compose the HMM for the 
utterance
Contributions of data from the HMM states go directly to 
updating senone distributions without referring to an 
intermediate triphone model

HMM for EIEIO IY AY IY AY O
Assuming triphones AY(IY,IY) and AY(IY,OW) have 

common tied states for all states

IY(?,AY) AY(IY,IY) IY(AY,AY) AY(IY,OW) OW(AY,?)

Senone
Buffer
State 1

Senone
Buffer
State 2

Senone
Buffer
State 3
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Overall Process of Training Overall Process of Training SenoneSenone ModelsModels

The overall process is required to go through a sequence of 
steps:

1. Train CI models

2. Train “untied” CD models

Initialized by CI models

3. Train and prune decision trees

Build State-tying Tables

4. Train Senone Distributions

Initialized by the corresponding state output distributions of the 

CI phoneme
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Initialization and Gaussian SplittingInitialization and Gaussian Splitting
All senone distributions begin as Gaussians

These are initialized with the Gaussian state output distributions of 
the corresponding state of the corresponding phoneme
E.g. The distributions of all tied states from the decision tree for 
the first state of “AA” are initialized with the distribution of the first 
state of “AA”

Training is performed over all training data until all senone
distributions (and transition matrices) have convereged

If the senone distributions do not have the desired number of 
Gaussians yet, split one or more Gaussian and return to 
previous step

At splitting we are effectively re-initializing the training for models 
with N+K Gaussians

N = no. of Gaussians in senone distribution before splitting; K = no. of 
Gaussians split
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Not all models share statesNot all models share states
All triphones utilize tied-state distributions

The trainer also simultaneously trains context-independent 
phonemes

These do not use tied-states – each state of each phoneme has 
its own unique distribution

The speech recognizer also includes models for silences and 
other noises that may be transcribed in the training data

The spectra for these do not vary with context
Silence looks like silence regardless of what precedes or follows 
it

For these sounds, only context-independent models are 
trained

States are not tied
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Silence as a contextSilence as a context
Although silence itself does not change with the adjacent sounds
(i.e. it is not “context-dependent”), it can affect adjacent sounds

A phoneme that begins after a silence has initial spectral trajectories 
that are different from trajectories observed in other contexts

As a result silences form valid triphonetic contexts
E.g. Triphones such as DH(SIL, AX) are distinctly marked

E.g. the word “THE” at the beginning of a sentence following a pause

It is not silence per-se that is the context; it is the fact that the 
sound was the first one uttered

And the “SIL” context represents the effect of the articulatory effort in 
starting off with that sound

As a result, any time speech begins, the first phoneme is marked as 
having SIL as a left context

Regardless of whether the background is really silent or not

SIL also similarly forms the right context of the final triphone before 
a pause
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Pauses, Silences, Pronunciation MarkersPauses, Silences, Pronunciation Markers
Pauses and silences are usually not marked on transcriptions

Especially short pauses
Pauses must be introduced automatically.

Words may be pronounced in different ways
Read:  R IY D or R EH D?

The specific pronunciation is usually not indicated on the 
transcripts

Must be deduced automatically

Pauses and identity of pronunciation variants can be 
discovered through “forced alignment”
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Forced AlignmentForced Alignment

For each sentence in the training data, compose an HMM as 
shown

“Optional” silences between words
All pronunciations for a word are included as parallel paths

PARK(1)

YOUR

PARK(2)

CAR(1)

CAR(2)
SILENCE SILENCE SILENCE

HMM  for “Park Your Car” with optional silences between words
Rectangles actually represent entire HMMs (simplified illustration)
Note:  “Park” and “Car” are pronounced differently in Boston than elsewhere

SILENCE
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A A short(ershort(er) hand illustration) hand illustration

PARK(1)

YOUR

PARK(2)

CAR(1)

CAR(2)
SILENCE SILENCE SILENCE SILENCE

<sil> P(1) P(2) <sil> Y <sil> C(1) C(2) <sil>

<sil> =  SILENCE

P(1) = PARK(1)

P(2) = PARK(2)

Y = YOUR

C(1) = CAR(1)

C(2) = CAR(2)
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Forced AlignmentForced Alignment
A viterbi algorithm can then 
be used to obtain a state 
segmentation

This also identifies the 
locations of pauses and 
specific pronunciation 
variant

E.g the state sequence 
may identify, for <sil> 
PARK(2) YOUR <sil> 
CAR(2) <sil>

Clearly a Bostonian

<s
il>

P
(1

)
P

(2
)

<s
il>

Y
<s

il>
C

(1
)

C
(2

)
<s

il> silence

car(2)

silence

your

park(2)

silence
Trellis is actually at state level
Vertical lines indicate that a “skip” transition has been followed



19 March 2009 phoneme models

Forced Alignment Requires Existing ModelsForced Alignment Requires Existing Models

In order to perform forced alignment to identify pauses and 
pronunciation tags, we need existing acoustic models

Which we will not have at the outset

Solution:
Train a preliminary set of models with no pauses or pronunciation tags 
marked in the transcript
We will however need some initial guess to the location of silences

Or we will not be able to train models for them

A good guess: There is typically silence at the beginning and end of 
utterances
Mark silences at the beginning and end of utterances when training 
preliminary models

E.g.  <SIL> A GOOD CIGAR IS A SMOKE <SIL>

Forced align with preliminary models for updated tagged transcripts
Retrain acoustic models with modified transcripts
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Building tiedBuilding tied--state Modelsstate Models

Sphinxtrain exercise

Note Sphinx restriction: No. of Gaussians per state same for 
all states


