
18 March 2009 Language Models

Language models for speech recognition

Bhiksha Raj and Rita Singh

18 March 2009
Language Models

The need for a “language” scaffolding

“I’m at a meeting” or “I met a meeting” ??
The two are acoustically nearly identical
Need a means of deciding which of the two is correct

Or more likely to be correct

This is provided by a “language” model

The “language” model may take many forms
Finite state graphs
Context-free grammars
Statistical Language Models

18 March 2009
Language Models

What The Recognizer Recognizes

The Recoginzer ALWAYS recognizes one of a set of
sentences

Word sequences
E.g. we may want to recognize a set of commands:

Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

The recognizer explicitly only attempts to recognize these
sentences

18 March 2009
Language Models

What The Recognizer Recognizes

Simple approach: Construct HMMs for each of the
following:

Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

HMMs may be composed using word or phoneme models

Recognize what was said, using the same technique used for
word recognition

18 March 2009
Language Models

A More Compact Representation

The following
Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

.. Can all be collapsed into the following graph

marked

all
files

file

delete

open

edit

close

18 March 2009
Language Models

A More Compact Representation

Build an HMM for the graph below such that each edge was
replaced by the HMM for the corresponding word
The best state sequence through the graph will automatically
pass along only one of the valid paths from beginning to the
end

We will show this later
So simply running Viterbi on the HMM for the graph is
equivalent to performing best-state-sequence-probability
based recognition from the HMMs for the individual
commands

Full probability computation based recognition wont work

marked

all
files

file

delete

open

edit

close

18 March 2009
Language Models

Economical Language Repersentations

If we limit ourselves to using Viterbi based recogintion,
simply representing the complete set of sentences as a graph
is the most effective representation

The graph is directly transformed to an HMM that can be used for
recognition

This only works when the set of all possible sentences is expressible
as a small graph

marked

all
files

file

delete

open

edit

close

18 March 2009
Language Models

marked

all
files

file

delete

Finite State Graph

A finite-state graph represents the set of all allowed
sentences as a graph

Word sequences that do not belong to this “allowed” set will not be
recognized

They will actually be mis-recognized as something from the set

An example FSG to recognize our computer commands

delete

file

all
files

open

edit

close marked

open

edit

close

18 March 2009
Language Models

FSG Specification

The FSG specification may use one of two equivalent ways:
Words at nodes and edges representing sequencing constraints

Words on edges; nodes represent abstract states

The latter is more common

delete

file

all
files

open

edit

close marked

marked

all
files

file

delete

open

edit

close

18 March 2009
Language Models

FSG with Null Arcs and Loops

FSGs may have “null” arcs
No words produced on these arcs

FSGs may have loops
Allows for infinitely long word sequences

marked

all
files

file

delete

open

edit

close

Null Arcs

HI
HO

Null Arc

Loop

18 March 2009
Language Models

Probabilistic FSG

By default, edges have no explicit weight associated with
them

Effectively having a weight of 1 (multiplicatively)

The edges can have probabilities associated with them
Specifying the probability of a particular edge being taken from a
node

0.5

0.7
0.3

0.5

11 HI
HO

Null Arc

Loop

18 March 2009
Language Models

CMUSphinx FSG Specification

“Assembly language” for specifying FSGs
Low-level
Most standards should compile down to this level

Set of N states, numbered 0 .. N-1
Transitions:

Emitting or non-emitting (aka null or epsilon)
Each emitting transition emits one word
Fixed probability 0 < p <= 1.

Words are on edges (transitions)
Null transitions have no words associated with them

One start state, and one final state
Null transitions can effectively give you as many as needed

18 March 2009
Language Models

An FSG Example

FSG_BEGIN leg

NUM_STATES 10
START_STATE 0
FINAL_STATE 9

Transitions
T 0 1 0.5 to
T 1 2 0.1 city1 …
T 1 2 0.1 cityN
T 2 3 1.0 from
T 3 4 0.1 city1 …
T 3 4 0.1 cityN
T 4 9 1.0
T 0 5 0.5 from
T 5 6 0.1 city1 …
T 5 6 0.1 cityN
T 6 7 1.0 to
T 7 8 0.1 city1 …
T 7 8 0.1 cityN
T 8 9 1.0
FSG_END

to

from

from
to

1 2 3

6 7

9

5

0

4

8

city1

cityN

city1

cityN

city1

cityN

city1

cityN

ε

ε

18 March 2009
Language Models

Context-Free Grammars

Context-free grammars specify production rules for the
language in the following form:

RULE = Production

Rules may be specified in terms of other production rules
RULE1 = Production1
RULE2 = word1 RULE1 Production2

This is a context-free grammar since the production for any
rule does not depend on the context that the rule occurs in

E.g. the production of RULE1 is the same regardless of whether it is
preceded by word1 or not

A production is a pattern of words
The precise formal definition of CFGs is outside the scope
of this talk

18 March 2009
Language Models

Context-Free Grammars for Speech Recognition

Various forms of CFG representations have been used
BNF: Rules are of the form <RULE> ::= PRODUCTION

Example (from wikipedia):
<postal-address> ::= <name-part> <street-address> <zip-part>
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL> |
<personal-part> <name-part>
<personal-part> ::= <first-name> | <initial> "."
<street-address> ::= <opt-apt-num> <house-num> <street-name> <EOL>
<zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>
<opt-jr-part> ::= "Sr." | "Jr." | <roman-numeral> | “”

The example is incomplete. To complete it we need additional rules like:
<personal-part> ::= “Clark” | “Lana” | “Steve”
<last-name> ::= “Kent” | “Lang” | “Olsen”

Note: Production rules include sequencing (AND) and alternatives (OR)

18 March 2009
Language Models

CFG: EBNF

Extended BNF grammar specifications allow for various
shorthand
Many variants of EBNF. The most commonly used one is the
W3C definition
Some shorthand rules introduced by W3C EBNF:

X? specifies that X is optional
E.g. Formal_Name = “Mr.” “Clark”? “Kent”
“Clark” may or may not be said

Y+ specifies one or more repetitions e.g.
Digit = “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9” | “0”
Integer = Digit+

Z* specifies zero or more repetitions e.g.
Alphabet = “a” | “b” | “c” | “d” | “e” | “f” | “g”
Registration = Alphabet+ Digit*

The entire set of rules is available from W3C

18 March 2009
Language Models

CFG: ABNF

Augmented BNF adds a few new rule expressions

The key inclusion is the ability to specify a number of repetitions
N*MPattern says “Pattern” can occur a minimum of N and a maximum of
M times
N*Pattern states “Pattern” must occur a minimum of N times
*MPattern specifies that “Pattern” can occur at most M times

Some changes in syntax
“/” instead of “|”
Grouping permitted with parantheses
Production rule names are often indicated by “$”
E.g.

$Digit = “0” / “1” / “2” / “3” / “4” / “5” / “6” / “7” / “8” / “9” / “0”
$Alphabet = “a” / “b” / “c” / “d” / “e” / “f” / “g”
$Registration = 3*$Alphabet *5$Digit

18 March 2009
Language Models

CFG: JSGF
JSGF is a form of ABNF designed specifically for speech applications
Example:

grammar polite;

public <startPolite> = [please | kindly | could you | oh mighty
computer];

public <endPolite> = (please | thanks | thank you) [very* much];

The grammar name specifies a namespace
“Public” rules can directly be used by a recognizer

E.g. if the grammar specified to the recognizer is <endPolite>, the set of
“sentences” being recognized are “Please”, “Thanks”, “Please much”,
“Please very much”, “Please very very much” etc.

Private rules can also be specified. These can only be used in the
composition of other rules in the grammar

Cannot be used in other grammars or by the recognizer

18 March 2009
Language Models

Context-Free Grammars

CFGs can be loopy
$RULE = [$RULE] word (Left Recursion)
$RULE = word [$RULE]

Both above specify an arbitrarily long sequence of “word”

Other more complex recursions are possible

18 March 2009
Language Models

CFGs in the Recognizer

Internally, the CFG is converted to a Finite State Graph
Most efficient approach
Alternate approach may use a “production” approach where the
grammar is used to produce word sequences that are hypothesized
The latter approach can be very inefficient

<endPolite> = (please | thanks | thank you) [very* much];

Many algorithms for conversion from the one to the other

please

thanks

thank you

much
very

18 March 2009
Language Models

Restrictions on CFG for ASR

CFGs must be representable as finite state machines
Not all CFGs are finite state
$RULE = word1N $RULE word2N | word1 word2

Represents the language word1^N word2^N
Only produces sequences of the kind:
word1 word1 word1 (N times) word2 word (N times)

CFGs that are not finite state are usually approximated to
finite state machines for ASR

$RULE = word1N $RULE word2N | word1 word2 approximated as
$RULE = (word1 word2) | (word1 word1 word2 word2) | (word1
word1 word1 word2 word2 word2)

18 March 2009
Language Models

CFGs and FSGs

CFGs and FSGs are typically used where the recognition “language” can
be prespecified

E.g. command-and-control applications, where the system may recognize
only a fixed set of things
Address entry for GPS: the precise set of addresses is known

Although the set may be very large

Typically, the application provides the grammar
Although algorithms do exist to learn them from large corpora

The problem is the rigidity of the structure: the sysem cannot recognize
any word sequence that does not conform to the grammar

For recognizing natural language we need models that represent every
possible word sequence

For this we look to the Bayesian specification of the ASR problem

18 March 2009
Language Models

Natural Language Recognition

In “natural” language of any kind, the number of sentences
that can be said is infinitely large

Cannot be enumerated
Cannot be characterized by a simple graph or grammar

Solved by realizing that recognition is a problem of
Bayesian Classification
Try to find the word sequence such that

)}|,..,({maxarg,..., 21,...,21 21
XwwPwordword ww=

,..)},(,..),|({maxarg,..., 2121,...,21 21
wwPwwXPwordword ww=

18 March 2009
Language Models

The Bayes classifier for speech recognition

The Bayes classification rule for speech recognition:

P(X | w1, w2, …) measures the likelihood that speaking the word sequence
w1, w2 … could result in the data (feature vector sequence) X

P(w1, w2 …) measures the probability that a person might actually utter
the word sequence w1, w2 ….

This will be 0 for impossible word sequences

In theory, the probability term on the right hand side of the equation must
be computed for every possible word sequence

It will be 0 for impossible word sequences

In practice this is often impossible
There are infinite word sequences

,..)},(,..),|({maxarg,..., 2121,...,21 21
wwPwwXPwordword ww=

18 March 2009
Language Models

word word word
P signal wd wd wd P wd wd wd

N

wd wd wd N NN

1 2

1 2 1 21 2

, ,...,
arg max { (| , ,...,) (, ,...,)}, ,...,

=

Acoustic model
For HMM-based systems
this is an HMM

Lanugage model

Speech recognition system solves

18 March 2009
Language Models

There will be one path for every possible word sequence
A priori probabilitiy for a word sequence can be applied anywhere along
the path representing that word sequence.
It is the structure and size of this graph that determines the feasibility of the
recognition task

Bayes’ Classification: A Graphical View

.

the term cepstrum was introduced by Bogert et al and has come to be

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper

with the unusual title

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an

echo has an additive

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power

spectrum should exhibit a peak at the echo delay

they called this function the cepstrum

interchanging letters in the word spectrum because

in general, we find ourselves operating on the frequency side in ways customary

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new

signal processing technique however only the term cepstrum has been widely used
the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker

18 March 2009
Language Models

A factored representation of the a priori probability of a word sequence

P(<s> word1 word2 word3 word4…</s>) =
P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)…

This is a left-to-right factorization of the probability of the word sequence
The probability of a word is assumed to be dependent only on the words preceding it
This probability model for word sequences is as accurate as the earlier whole-word-
sequence model, in theory

It has the advantage that the probabilities of words are applied left to right – this is
perfect for speech recognition

P(word1 word2 word3 word4 …) is incrementally obtained :

A left-to-right model for the langauge

word1
word1 word2
word1 word2 word3
word1 word2 word3 word4
…..

18 March 2009
Language Models

A priori probabilities for word sequences are spread through the graph
They are applied on every edge

This is a much more compact representation of the language than the full
graph shown earlier

But is still inifinitely large in size

The left to right model: A Graphical View

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

•Assuming a two-word
vocabulary: “sing” and
“song”

18 March 2009
Language Models

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|<s>sing)
P(sing|<s>sing sing)

P(</s>|<s>sing sing)

P(song|<s>sing sing)

P(sing|<s>sing song)

P(sing|<s>song sing)

P(sing|<s> song song)

P(song|<s>sing song)

P(song|<s>song sing)

P(song|<s> song song)

P(sing|<s> song)

P(song|<s>sing)

P(song|<s> sing)

P(song|<s>)

P(sing|<s>sing sing sing)

P(song|<s>sing sing sing)

P(</s>|<s>)

P(</s>|<s>sing)

18 March 2009
Language Models

The N-gram assumption
P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1)

The probability of a word is assumed to be dependent only on
the past N-1 words

For a 4-gram model, the probability that a person will follow “two
times two is” with “four” is assumed to be identical to the probability
that they will follow “seven times two is” with “four”.

This is not such a poor assumption
Surprisingly, the words we speak (or write) at any time are largely
(but not entirely) dependent on the previous 3-4 words.

Left-to-right language probabilities and the N-gram model

18 March 2009
Language Models

An N-gram language model is a generative model
One can generate word sequences randomly from it

In a good generative model, randomly generated word sequences should
be similar to word sequences that occur naturally in the language

Word sequences that are more common in the language should be generated
more frequently

Is an N-gram language model a good model?
If randomly generated word sequences are plausible in the language, it is a
reasonable model
If more common word sequences in the language are generated more
frequently it is a good model
If the relative frequency of generated word sequences is exactly that in the
language, it is a perfect model

Thought exercise: how would you generate word sequences from an N-
gram LM ?

Clue: Remember that N-gram LMs include the probability of a sentence end
marker

The validity of the N-gram assumption

18 March 2009
Language Models

1-gram LM:
The and the figure a of interval compared and
Involved the a at if states next a a the of producing of too
In out the digits right the the to of or parameters endpoint to right
Finding likelihood with find a we see values distribution can the a is

2-gram LM:
Give an indication of figure shows the source and human
Process of most papers deal with an HMM based on the next
Eight hundred and other data show that in order for simplicity
From this paper we observe that is not a technique applies to model

3-gram LM:
Because in the next experiment shows that a statistical model
Models have recently been shown that a small amount
Finding an upper bound on the data on the other experiments have been
Exact Hessian is not used in the distribution with the sample values

Examples of sentences synthesized with N-gram LMs

18 March 2009
Language Models

N-gram models are reasonably good models for the language
at higher N

As N increases, they become better models

For lower N (N=1, N=2), they are not so good as generative
models

Nevertheless, they are quite effective for analyzing the
relative validity of word sequences

Which of a given set of word sequences is more likely to be valid
They usually assign higher probabilities to plausible word sequences
than to implausible ones

This, and the fact that they are left-to-right (Markov) models
makes them very popular in speech recognition

They have found to be the most effective language models for large
vocabulary speech recognition

N-gram LMs

18 March 2009
Language Models

N-gram probabilities must be estimated from data
Probabilities can be estimated simply by counting words in training text
E.g. the training corpus has 1000 words in 50 sentences, of which 400 are
“sing” and 600 are “song”

count(sing)=400; count(song)=600; count(</s>)=50
There are a total of 1050 tokens, including the 50 “end-of-sentence” markers

UNIGRAM MODEL:
P(sing) = 400/1050; P(song) = 600/1050; P(</s>) = 50/1050

BIGRAM MODEL: finer counting is needed. For example:
30 sentences begin with sing, 20 with song

We have 50 counts of <s>
P(sing | <s>) = 30/50; P(song|<s>) = 20/50

10 sentences end with sing, 40 with song
P(</s> | sing) = 10/400; P(</s>|song) = 40/600

300 instances of sing are followed by sing, 90 are followed by song
P(sing | sing) = 300/400; P(song | sing) = 90/400;

500 instances of song are followed by song, 60 by sing
P(song | song) = 500/600; P(sing|song) = 60/600

Estimating N-gram probabilities

18 March 2009
Language Models

Note that “</s>” is considered to be equivalent to a word. The probability
for “</s>” are counted exactly like that of other words

For N-gram probabilities, we count not only words, but also word
sequences of length N

E.g. we count word sequences of length 2 for bigram LMs, and word
sequences of length 3 for trigram LMs

For N-gram probabilities of order N>1, we also count word sequences
that include the word beginning and word end markers

E.g. counts of sequences of the kind “<s> wa wb” and “wc wd </s>”

The N-gram probability of a word wd given a context “wa wb wc” is
computed as

P(wd | wa wb wc) = Count(wa wb wc wd) / Count(wa wb wc)
For unigram probabilities the count in the denominator is simply the count of
all word tokens (except the beginning of sentence marker <s>). We do not
explicitly compute the probability of P(<s>).

Estimating N-gram probabilities

18 March 2009
Language Models

Direct estimation by counting is however not possible in all cases

If we had only a 1000 words in our vocabulary, there are 1001*1001
possible bigrams (including the <s> and </s> markers)

We are unlikely to encounter all 1002001 word pairs in any given corpus
of training data

i.e. many of the corresponding bigrams will have 0 count

However, this does not mean that the bigrams will never occur during
recognition

E.g., we may never see “sing sing” in the training corpus
P(sing | sing) will be estimated as 0
If a speaker says “sing sing” as part of any word sequence, at least the “sing
sing” portion of it will never be recognized

The problem gets worse as the order (N) of the N-gram model increases
For the 1000 word vocabulary there are more than 109 possible trigrams
Most of them will never been seen in any training corpus
Yet they may actually be spoken during recognition

Estimating N-gram probabilities

18 March 2009
Language Models

We must assign a small non-zero probability to all N-grams
that were never seen in the training data
However, this means we will have to reduce the probability
of other terms, to compensate

Example: We see 100 instances of sing, 90 of which are followed by
sing, and 10 by </s> (the sentence end marker).
The bigram probabilities computed directly are P(sing|sing) = 90/100,
P(<s/>|sing) = 10/100
We never observed sing followed by song.
Let us attribute a small probability X (X > 0) to P(song|sing)
But 90/100 + 10/100 + X > 1.0
To compensate we subtract a value Y from P(sing|sing) and some
value Z from P(</s>|sing) such that

P(sing | sing) = 90 / 100 – Y
P(</s> | sing) = 10 / 100 – Z
P(sing | sing) + P(</s> | sing) + P(song | sing) = 90/100-Y+10/100-Z+X=1

Discounting

18 March 2009
Language Models

The reduction of the probability estimates for seen Ngrams, in order to
assign non-zero probabilities to unseen Ngrams is called discounting

The process of modifying probability estimates to be more generalizable is
called smoothing

Discounting and smoothing techniques:
Absolute discounting
Jelinek-Mercer smoothing
Good Turing discounting
Other methods

Kneser-Ney..

All discounting techniques follow the same basic principle: they modify
the counts of Ngrams that are seen in the training data

The modification usually reduces the counts of seen Ngrams
The withdrawn counts are reallocated to unseen Ngrams

Probabilities of seen Ngrams are computed from the modified counts
The resulting Ngram probabilities are discounted probability estimates
Non-zero probability estimates are derived for unseen Ngrams, from the
counts that are reallocated to unseen Ngrams

Discounting and smoothing

18 March 2009
Language Models

Subtract a constant from all counts
E.g., we have a vocabulary of K words, w1, w2,w3…wK

Unigram:
Count of word wi = C(i)
Count of end-of-sentence markers (</s>) = Cend

Total count Ctotal = ΣiC(i) + Cend

Discounted Unigram Counts
Cdiscount(i) = C(i) – ε
Cdiscountend = Cend – ε

Discounted probability for seen words
P(i) = Cdiscount(i) / Ctotal

Note that the denominator is the total of the undiscounted counts
If Ko words are seen in the training corpus, K – Ko words are unseen

A total count of Koxε, representing a probability Koxε / Ctotal remains
unaccounted for
This is distributed among the K – Ko words that were never seen in training

We will discuss how this distribution is performed later

Absolute Discounting

18 March 2009
Language Models

Bigrams: We now have counts of the kind
Contexts: Count(w1), Count(w2), … , Count(<s>)

Note <s> is also counted; but it is used only as a context
Context does not incoroporate </s>

Word pairs: Count (<s> w1), Count(<s>,w2),…,Count(<s> </s>),…,
Count(w1 w1), …,Count(w1 </s>) … Count(wK wK), Count(wK </s>)

Word pairs ending in </s> are also counted

Discounted counts:
DiscountedCount(wi wj) = Count(wi wj) – ε

Discounted probability:
P(wj | wi) = DiscountedCount(wi wj) / Count(wi)
Note that the discounted count is used only in the numerator

For each context wi, the probability Ko(wi)xε / Count(wi) is left over
Ko(wi) is the number of words that were seen following wi in the training corpus
Ko(wi)xε / Count(wi) will be distributed over bigrams P(wj | wi), for words wj such
that the word pair wi wj was never seen in the training data

Absolute Discounting: Higher order N-grams

18 March 2009
Language Models

Trigrams: Word triplets and word pair contexts are counted
Context Counts: Count(<s> w1), Count(<s> w2), …
Word triplets: Count (<s> w1w1),…, Count(wK wK, </s>)

DiscountedCount(wi wj wk) = Count(wi wj wk) – ε

Trigram probabilities are computed as the ratio of discounted
word triplet counts and undiscounted context counts
The same procedure can be extended to estimate higher-order
N-grams

The value of ε: The most common value for ε is 1
However, when the training text is small, this can lead to allocation of
a disproportionately large fraction of the probability to unseen events
In these cases, ε is set to be smaller than 1.0, e.g. 0.5 or 0.1

The optimal value of ε can also be derived from data
Via K-fold cross validation

Absolute Discounting

18 March 2009
Language Models

Split training data into K equal parts

Create K different groupings of the K parts by holding out one of the K
parts and merging the rest of the K-1 parts together. The held out part is a
validation set, and the merged parts form a training set

This gives us K different partitions of the training data into training and
validation sets

For several values of ε
Compute K different language models with each of the K training sets
Compute the total probability Pvalidation(i) of the ith validation set on the LM
trained from the ith training set
Compute the total probability
Pvalidationε = Pvalidation(1)*Pvalidation(2)*..*Pvalidation(K)

Select the ε for which Pvalidationε is maximum

Retrain the LM using the entire training data, using the chosen value of ε

K-fold cross validation for estimating ε

18 March 2009
Language Models

Jelinek-Mercer smoothing returns the probability of an N-gram as a weighted
combination of maximum likelihood N-gram and smoothed N-1 gram
probabilities

Psmooth(word | wa wb wc..) is the N-gram probability used during recognition
The higher order (N-gram) term on the right hand side, PML(word | wa wb wc..) is
simply a maximum likelihood (counting-based) estimate of P(word | wa wb wc..)
The lower order ((N-1)-gram term) Psmooth(word | wb wc..) is recursively obtained
by interpolation between the ML estimate PML(word | wb wc..) and the smoothed
estimate for the (N-2)-gram Psmooth(word | wc..)
All λ values lie between 0 and 1
Unigram probabilities are interpolated with a uniform probability distribution

The λ values must be estimated using held-out data
A combination of K-fold cross validation and the expectation maximization
algorithms must be used
We will not present the details of the learning algorithm in this talk
Often, an arbitrarily chosen value of λ, such as λ = 0.5 is also very effective

The Jelinek Mercer Smoothing Technique

+= ...) |(...) (...) |(wcwbwawordPwcwbwawcwbwawordP MLsmooth λ
() ...) |(...) (0.1 wcwbwordPwcwbwa smoothλ−

18 March 2009
Language Models

Zipf’s law: The number of events that occur often is small,
but the number of events that occur very rarely is very large.

If n represents the number of times an event occurs in a unit
interval, the number of events that occur n times per unit time
is proportional to 1/nα, where α is greater than 1

George Kingsley Zipf originally postulated that α = 1.
Later studies have shown that α is 1 + ε, where ε is slightly greater
than 0

Zipf’s law is true for words in a language: the probability of
occurrence of words starts high and tapers off. A few words
occur very often while many others occur rarely.

Good-Turing discounting: Zipf’s law

18 March 2009
Language Models

A plot of the count of counts of words in a training corpus typically looks like this:

Good-Turing discounting

In keeping with Zipf’s law, the number of words that occur n times in the
training corpus is typically more than the number of words that occur n+1
times

The total probability mass of words that occur n times falls slowly
Surprisingly, the total probability mass of rare words is greater than the total
probability mass of common words, because of the large number of rare
words

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve (Zipf’s law)
N

o.
 o

f w
or

ds

probability mass

18 March 2009
Language Models

Good-Turing discounting

Good Turing discounting reallocates probabilities
The total probability mass of all words that occurred n times is
assigned to words that occurred n-1 times
The total probability mass of words that occurred once is reallocated
to words that were never observed in training

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve (Zipf’s law)

probability mass

Reallocated probability mass

N
o.

 o
f w

or
ds

A plot of the count of counts of words in a training corpus typically looks like this:

18 March 2009
Language Models

The probability mass curve cannot simply be shifted left directly due to
two potential problems

Directly shifting the probability mass curve assigns 0 probability to the
most frequently occurring words

Let the words that occurred most frequently have occurred M times
When probability mass is reassigned, the total probability of words that
occurred M times is reassigned to words that occurred M-1 times
Words that occurred M times are reassigned the probability mass of words
that occurred M+1 times = 0.
i.e. the words that repeated most often in the training data (M times) are
assigned 0 probability!

The count of counts curve is often not continuous
We may have words that occurred L times, and words that occurred L+2
times, but none that occurred L+1 times
By simply reassigning probability masses backward, words that occurred L
times are assigned the total probability of words that occurred L+1 times = 0!

Good-Turing discounting

18 March 2009
Language Models

Good-Turing discounting

The count of counts curve is smoothed and extrapolated
Smoothing fills in “holes” – intermediate counts for which the curve went to 0
Smoothing may also vary the counts of events that were observed
Extrapolation extends the curve to one step beyond the maximum count
observed in the data

Smoothing and extrapolation can be done by linear interpolation and
extrapolation, or by fitting polynomials or splines
Probability masses are computed from the smoothed count-of-counts and
reassigned

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

18 March 2009
Language Models

Let r’(i) be the smoothed count of the number of words that occurred i times.
The total smoothed count of all words that occurred i times is r’(i) * i.

When we reassign probabilities, we assign the total counts
r’(i)*i to words that occurred i-1 times. There are r’(i-1) such words (using
smoothed counts). So effectively, every word that occurred i-1 times is
reassigned a count of

reassignedcount(i-1) = r’(i)*i / r’(i-1)

The total reassigned count of all words in the training data is
totalreassignedcount = Σi r’(i+1)*(i+1)
where the summation goes over all i such that there is at least one word that
occurs i times in the training data (this includes i = 0)

A word w with count i is assigned probability
P(w| context) = reassignedcount(i) / totalreassignedcount

A probability mass r’(1) / totalreassignedcount is left over
The left-over probability mass is reassigned to words that were not seen in the
training corpus

Good-Turing discounting

18 March 2009
Language Models

Good-Turing discounting

Discounting effectively “moves” the green line backwards
I.e. cumulative probabilities that should have been assigned to count N are
assigned to count N-1
This now assigns “counts” to events that were never seen
We can now compute probabilities for these terms

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

Cumulative prob.

18 March 2009
Language Models

UNIGRAMS:
The count-of-counts curve is derived by counting the words (including </s>)
in the training corpus
The count-of-counts curve is smoothed and extrapolated
Word probabilities are computed for observed words are computed from the
smoothed, reassigned counts
The left-over probability is reassigned to unseen words

BIGRAMS:
For each word context W, (where W can also be <s>), the same procedure
given above is followed: the count-of-counts for all words that occur
immediately after W is obtained, smoothed and extrapolated, and bigram
probabilities for words seen after W are computed.
The left-over probability is reassigned to the bigram probabilities of words
that were never seen following W in the training corpus

Higher order N-grams: The same procedure is followed for every word
context W1 W2… WN-1

Good-Turing estimation of LM probabilities

18 March 2009
Language Models

All discounting techniques result in a some left-over
probability to reassign to unseen words and N-grams

For unigrams, this probability is uniformly distributed over
all unseen words

The vocabulary for the LM must be prespecified
The probability will be reassigned uniformly to words from this
vocabulary that were not seen in the training corpus

For higher-order N-grams, the reassignment is done
differently

Based on lower-order N-gram, i.e. (N-1)-gram probabilities
The process by which probabilities for unseen N-grams is computed
from (N-1)-gram probabilities is referred to as “backoff”

Reassigning left-over probability to unseen words

18 March 2009
Language Models

Explanation with a bigram example

N-gram LM: Backoff

Unigram probabilities are computed and known before bigram probabilities
are computed
Bigrams for P(w1 | w3), P(w2 | w3) and P(w3 | w3) were computed from
discounted counts. w4, w5, w6 and </s> were never seen after w3 in the
training corpus

w1 w2 w3 w4 w5 w6 </s>

U
ni

gr
am

w1 w2 w3 w4 w5 w6 </s>

B
ig

ra
m

(w
3)

18 March 2009
Language Models

Explanation with a bigram example

N-gram LM: Backoff

The probabilities P(w4|w3), P(w5|w3), P(w6|w3) and P(</s>|w3) are assumed to
follow the same pattern as the unigram probabilities P(w4), P(w5), P(w6) and
P(</s>)
They must, however be scaled such that
P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0
The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4)

w1 w2 w3 w4 w5 w6 </s>

U
ni

gr
am

w1 w2 w3 w4 w5 w6 </s>

B
ig

ra
m

(w
3)

18 March 2009
Language Models

Assumption: When estimating N-gram probabilities, we already have access
to all N-1 gram probabilities

Let w1 … wK be the words in the vocabulary (includes </s>)

Let “wa wb wc…” be the context for which we are trying to estimate
N-gram probabilities

i.e we wish to compute all probabilities P(word | wa wb wc ..)

Let w1… wL be the words that were seen in the context “wa wb wc..” in the
training data. We compute the N-gram probabilities for these words after
discounting. We are left over with an unaccounted for probability mass

N-gram LM (Katz Models): Backoff from N-gram to (N-1)-gram

We must assign the left over probability mass Pleftover(wa wb wc ...) to
the words wL+1, wL+2,... wK, in the context “wa wb wc ...”

i.e. we want to assign them to P(wL+1 | wa wb wc ..), P(wL+2 | wa wb wc …),
etc.

∑
=

−=
L

i
ileftover wcwbwawPwcwbwaP

1

...) |(0.1...) (

18 March 2009
Language Models

The backoff assumption for unseen N-grams:
P(wi | wa wb wc ..) = β(wa wb wc …) * P(wi | wb wc …)

The scaling constant β(wa wb wc …) is specific to the context of the Ngram
i.e. the N-gram probability is proportional to the N-1 gram probability
In the backoff LM estimation procedure, N-1 gram probabilities are assumed to
be already known, when we estimate Ngram probabilities, so P(wi | wb wc …)
is available for all wi

β(wa wb wc …) must be set such that

N-gram LM: Learning the Backoff scaling term

Note that β(wa wb wc …) is specific to the context “wa wb wc …”
β(wa wb wc …) is known as the backoff weight of the context “wa wb wc…”

Once β(wa wb wc …) has been computed, we can derive Ngram
probabilities for unseen Ngram from the corresponding N-1 grams

∑

∑

∈

∈

=

=

}{

}{

...) |(
...) (

...) (

...) (...) |(...) (

unseeni
i

leftover

leftover
unseeni

i

wcwbwP
wcwbwaP

wcwbwa

wcwbwaPwcwbwPwcwbwa

β

β

18 March 2009
Language Models

In order to estimate the backoff weight needed to compute
N-gram probabilities for unseen N-grams, the corresponding
N-1 grams are required

The corresponding N-1 grams might also not have been seen in the
training data

If the backoff N-1 grams are also unseen, they must in turn be
computed by backing off to N-2 grams

The backoff weight for the unseen N-1 gram must also be known
i.e. it must also have been computed already

The procedure is recursive – unseen N-2 grams are computed
by backing off to N-3 grams, and so on

All lower order N-gram parameters (including probabilities and
backoff weights) must be computed before higher-order N-
gram parameters can be estimated

Backoff is recursive

18 March 2009
Language Models

First compute Unigrams
Count words, perform discounting, estimate discounted probabilities for all seen
words
Uniformly distribute the left-over probability over unseen unigrams

Next, compute bigrams. For each word W seen in the training data:
Count words that follow that W. Estimate discounted probabilities P(word | W) for
all words that were seen after W.
Compute the backoff weight β(W) for the context W.
The set of explicity estimated P(word | W) terms, and the backoff weight β(W)
together permit us to compute all bigram probabilities of the kind: P(word | W)

Next, compute trigrams: For each word pair “wa wb” seen in the training data:
Count words that follow that “wa wb”. Estimate discounted probabilities
P(word | wa wb) for all words that were seen after “wa wb”.
Compute the backoff weight β(wa wb) for the context “wa wb”.

The process can be continued to compute higher order N-gram probabilities.

Learning Backoff Ngram models

18 March 2009
Language Models

An N-gram backoff language model contains
Unigram probabilities for all words in the vocabulary
Backoff weights for all words in the vocabulary
Bigram probabilities for some, but not all bigrams

i.e. for all bigrams that were seen in the training data
If N>2, then: backoff weights for all seen word pairs

If the word pair was never seen in the training corpus, it will not have a backoff
weight. The backoff weight for all word pairs that were not seen in the training
corpus is implicitly set to 1

…
N-gram probabilities for some, but not all N-grams

N-grams seen in training data
Note that backoff weights are not required for N-length word sequences in
an N-gram LM

Since backoff weights for N-length word sequences are only useful to compute
backed off N+1 gram probabilities

The contents of a completely trained N-gram language model

18 March 2009
Language Models

An Example Backoff Trigram LM
\1-grams:
-1.2041 <UNK> 0.0000
-1.2041 </s> 0.0000
-1.2041 <s> -0.2730
-0.4260 one -0.5283
-1.2041 three -0.2730
-0.4260 two -0.5283
\2-grams:
-0.1761 <s> one 0.0000
-0.4771 one three 0.1761
-0.3010 one two 0.3010
-0.1761 three two 0.0000
-0.3010 two one 0.3010
-0.4771 two three 0.1761
\3-grams:
-0.3010 <s> one two
-0.3010 one three two
-0.4771 one two one
-0.4771 one two three
-0.3010 three two one
-0.4771 two one three
-0.4771 two one two
-0.3010 two three two

18 March 2009
Language Models

To retrieve a probability P(word | wa wb wc …)
How would a function written for returning N-gram probabilities work?

Look for the probability P(word | wa wb wc …) in the LM
If it is explicitly stored, return it

If P(word | wa wb wc …) is not explicitly stored in the LM
retrive it by backoff to lower order probabilities:

Retrieve backoff weight β(wa wb wc..) for word sequence wa wb wc …
If it is stored in the LM, return it
Otherwise return 1

Retrieve P(word | wb wc …) from the LM
If P(word | wb wc ..) is not explicitly stored in the LM, derive it backing off
This will be a recursive procedure

Return P(word | wb wc …) * β(wa wb wc..)

Obtaining an N-gram probability from a backoff N-gram LM

18 March 2009
Language Models

http://mi.eng.cam.ac.uk/~prc14/toolkit.html
http://www.speech.cs.cmu.edu/SLM_info.html

Contents of textfile
<s> the term cepstrum was introduced by Bogert et al and has come to be
accepted terminology for the
inverse Fourier transform of the logarithm of the power spectrum
of a signal in nineteen sixty three Bogert Healy and Tukey published a paper
with the unusual title
The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance
Cross Cepstrum and Saphe Cracking
they observed that the logarithm of the power spectrum of a signal containing an
echo has an additive
periodic component due to the echo and thus the Fourier transform of the
logarithm of the power
spectrum should exhibit a peak at the echo delay
they called this function the cepstrum
interchanging letters in the word spectrum because
in general, we find ourselves operating on the frequency side in ways customary
on the time side and vice versa
Bogert et al went on to define an extensive vocabulary to describe this new
signal processing technique however only the term cepstrum has been widely used
The transformation of a signal into its cepstrum is a homomorphic transformation
and the concept of the cepstrum is a fundamental part of the theory of homomorphic
systems for processing signals that have been combined by convolution
</s>

vocabulary
<s>
</s>
the
term
cepstrum
was
introduced
by
Bogert
et
al
and
has
come
to
be
accepted
terminology
for
inverse
Fourier
transform
of
logarithm
Power
. . .

Contents of contextfile
<s>

Training a language model using CMU-Cambridge LM toolkit

18 March 2009
Language Models

To train a bigram LM (n=2):
$bin/text2idngram -vocab vocabulary -n 2 -write_ascii < textfile > idngm.tempfile

$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM -context
contextfile -absolute -ascii_input -n 2 (optional: -cutoffs 0 0 or –cutoffs 1 1 ….)
OR
$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM -context
contextfile -good_turing -ascii_input -n 2
….

SRILM uses a single command called “ngram” (I believe)

Training a language model using CMU-Cambridge LM toolkit

18 March 2009
Language Models

Key Observation

The vocabulary of the LM is specified at training time
Either as an external list of words or as the set of all words in the training
data

The number of words in this vocabulary is used to compute the
probability of zero-count terms

Divide the total probability mass in the yellow region by the total number of
words that were not seen in the training data

Words that are not explicitly listed in the vocabulary will not be
assigned any probability

Effectively have zero probability

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

18 March 2009
Language Models

Changing the Format

The SRILM format must be changed to match the sphinx
format.

18 March 2009
Language Models

The UNK word

The vocabulary to be recognized must be specified to the language
modelling toolkit

The training data may contain many words that are not part of this
vocabulary

These words are “unknown” as far as the recognizer is concerned

To indicate this, they are usually just mapped onto “UNK” by the toolkit

Leads to the introduction of probabilities such as P(WORD | UNK) and
P(UNK | WORD) in the language model

These are never used for recognition

18 March 2009
Language Models

<s> and </s>

The probability that a word can begin a sentence also varies
with the word

Few sentences begin with “ELEPHANT”, but many begin with
“THE”
It is important to capture this distinction

The <s> symbol is a “start of sentence” symbol.
It is appended to the start of every sentence in the training
data

E.g. “It was a sunny day” “<s> It was a sunny day”
This enables computation of probabilities such as P(it | <s>)

The probability that a sentence begins with “it”.
Higher order N-gram probabilities can be computed: P(was | <s> it)

Probability that the second word in a sentence will be “was” given that
the first word was “it”

18 March 2009
Language Models

<s> and </s>

Ends of sentences are similarly distinctive
Many sentences end with “It”. Few end with “An”.

The </s> symbol is an “end of sentence” symbol.
It is appended to the end of every sentence in the training data
E.g. “It was a sunny day” “<s> It was a sunny day </s>”

This enables computation of probabilities such as P(| it)
The probability that a sentence ends with “it”.
Higher order N-gram probabilities can be computed: P(</s> | good day)

Probability that the sentence ended with the word pair “good day”.

18 March 2009
Language Models

<s> and </s>
Training probabilities for <s> and </s> may give rise to spurious probability
entries

Adding <s> and </s> to “It was a dark knight. It was a stormy night” makes it
“<s> It was a dark knight </s> <s> It was a stormy night </s>”

Training probabilities from this results in the computation of probability terms
such as P(<s> | </s>)

The probabilitiy that a sentence will begin after a sentence ended
And other terms such as P(<s> | knight </s>)

The probability that a sentence will begin when the previous sentence ended with night
It is often advisable to avoid computing such terms

Which may be meaningless
Hard to enforce however

The SRI LM toolkit deals with it corrrectly if every sentence is put on a separate
line
<s> It was a dark knight </s>
<s> It was a story knight </s>
There are no words before <s> and after </s> in this format

18 March 2009
Language Models

Adding Words

Adding words to an existing LM can be difficult
The vocabulary of the LM is already specified when it is trained
Words that are not in this list will have zero probability

Simply extending the size of a dictionary won’t automatically introduce
the word into the LM

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

18 March 2009
Language Models

Adding Words

New words that are being added have not been seen in training data
Or will be treated as such anyway
They are zerotons!

In order to properly add a word to the LM and assign it a probability, the
probability of other zeroton words in the LM must reduced

So that all probabilities sum to 1.0
Reassign the probability mass in the yellow region of the plot to actually
account for the new word too

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

18 March 2009
Language Models

Adding Words

Procedure to adjust Unigram probabilities
First identify all words in the LM that represent zeroton words in the
training data

This information is not explicitly stored
Let there be N such words
Let P be the backed-off UG probability

Modify the unigram probabilities of all zeroton words to P*N/(N+1)
Basically reduce their probabilities so that after they are all summed up,
a little is left out

Assign the probability P*N/(N+1) to the new word being introduced

Mercifully, Bigram and Trigram probabilities do not have to
be adjusted

The new word was never seen in any context

18 March 2009
Language Models

Identifying Zeroton Words

The first step is to identify the current zeroton words
Characteristics

Zeroton words have only unigram probabilities
Any word that occurs in training data also produces bigrams

E.g. if “HELLO” is seen in the training data, it must have been followed
either by a word or by an </s>
We will at least have a bigram P(</s> | word)

For every word
Look for the existence of at least one bigram with the word as
context
If such a bigram does not exist, treat it as a zeroton

18 March 2009
Language Models

Adding Ngrams

Ngrams cannot be arbitrarily introduced into the language
model

A zeroton Ngram is also a zeroton unigram
So its probabilities will be obtained by backing off to unigrams

18 March 2009
Language Models

Domain specificity in LMs

An N-gram LM will represent linguistic patterns for the specific domain
from which the training text is derived

E.g. training on “broadcast news” corpus of text will train an LM that
represents news broadcasts

For good recognition it is important to have an LM that represents the
data
Often we find ourselves in a situation where we do not have an LM for
the exact domain, but one or more LMs from close domains

E.g. We have a large LM trained from lots of newspaper text that represents
typical news data, but its very grammatical
We have a smaller LM trained from a small amount of broadcast news text

But the training data are small and the LM is not well estimated

We would like to combine them somehow to get a good LM for our
domain

18 March 2009
Language Models

Interpolating LMs

The probability that word2 will follow word1, as specified by
LM1 is P(word2 | word1, LM1)

LM1 is well estimated but too generic

The probability that word2 will follow word1, as specified by
LM2 is P(word2 | word1, LM2)

LM2 is related to our domain but poorly estimated

Compute P(word2 | word1) for the domain by interpolating
the values from LM1 and LM2

P(word2 | word1) = α P(word2 | word1, LM1) + (1- α)P(word2 | word1,LM2)

The value α must be tuned to represent the domain of our test
data

Can be done using automated methods
More commonly, just hand tuned (or set to 0.5)

18 March 2009
Language Models

Interpolating LMs

However, the LM probabilities cannot just be interpolated
directly

The vocabularies for the two LMs may be different
So the probabilities for some words found in one LM may not be
computable from the other

Normalize the vocabularies of the two LMs
Add all words in LM1 that are not in LM2 to LM2
Add all words in LM2 that are not in LM1 to LM1

Interpolation of probabilities is performed with the
normalized-vocabulary LMs

This means that the recognizer actually loads up two LMs
during recognition

Alternately, all interpolated bigram and trigram probabilities may be
computed offline and written out

18 March 2009
Language Models

Adapting LMs
The topic that is being spoken about may change
continuously as a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously

BASE LM
LM from

Recognized
text

To recognizer

18 March 2009
Language Models

Adapting LMs
The topic that is being spoken about may change
continuously as a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously

BASE LM
LM from

Recognized
text

To recognizer

18 March 2009
Language Models

Adapting LMs
The topic that is being spoken about may change
continuously as a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously

BASE LM
LM from

Recognized
text

To recognizer

18 March 2009
Language Models

Adapting LMs
The topic that is being spoken about may change
continuously as a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously

BASE LM
LM from

Recognized
text

To recognizer

18 March 2009
Language Models

Adapting LMs
The topic that is being spoken about may change
continuously as a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously

BASE LM
LM from

Recognized
text

To recognizer

18 March 2009
Language Models

Identifying a domain

If we have LMs from different domains, we can use them to
recognize the domain of the current speech

Recognize the data using each of the LMs

Select the domain whose LM results in the recognition with
the highest probability

18 March 2009
Language Models

More Features of the SRI LM toolkit

Functions

18 March 2009
Language Models

Train HMMs for the acoustic model
Train N-gram LM with backoff from training data
Construct the Language graph, and from it the language HMM

Represent the Ngram language model structure as a compacted N-gram
graph, as shown earlier
The graph must be dynamically constructed during recognition – it is
usually too large to build statically
Probabilities on demand: Cannot explicitly store all K^N probabilities
in the graph, and must be computed on the fly

K is the vocabulary size
Other, more compact structures, such as FSAs can also be used to
represent the lanauge graph

later in the course

Recognize

Overall procedure for recognition with an Ngram language model

