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The need for a “language” scaffolding

“I’m at a meeting” or “I met a meeting” ??
The two are acoustically nearly identical
Need a means of deciding which of the two is correct

Or more likely to be correct

This is provided by a “language” model

The “language” model may take many forms
Finite state graphs
Context-free grammars
Statistical Language Models 
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What The Recognizer Recognizes

The Recoginzer ALWAYS recognizes one of a set of 
sentences

Word sequences
E.g. we may want to recognize a set of commands:

Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

The recognizer  explicitly only attempts to recognize these 
sentences
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What The Recognizer Recognizes

Simple approach: Construct HMMs for each of the 
following:

Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

HMMs may be composed using word or phoneme models

Recognize what was said, using the same technique used for 
word recognition
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A More Compact Representation

The following
Open File
Edit File
Close File
Delete File
Delete All Files
Delete Marked Files
Close All Files
Close Marked Files

.. Can all be collapsed into the following graph
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A More Compact Representation

Build an HMM for the graph below such that each edge was 
replaced by the HMM for the corresponding word
The best state sequence through the graph will automatically 
pass along only one of the valid paths from beginning to the 
end

We will show this later
So simply running Viterbi on the HMM for the graph is 
equivalent to performing best-state-sequence-probability 
based recognition from the HMMs for the individual 
commands

Full probability computation based recognition wont work
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Economical Language Repersentations

If we limit ourselves to using Viterbi based recogintion, 
simply representing the complete set of sentences as a graph 
is the most effective representation

The graph is directly transformed to an HMM that can be used for
recognition

This only works when the set of all possible sentences is expressible 
as a small graph
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A finite-state graph represents the set of all allowed 
sentences as a graph

Word sequences that do not belong to this “allowed” set will not be 
recognized

They will actually be mis-recognized as something from the set

An example FSG to recognize our computer commands
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FSG Specification

The FSG specification may use one of two equivalent ways:
Words at nodes and edges representing sequencing constraints

Words on edges;  nodes represent abstract states

The latter is more common

delete

file

all
files

open

edit

close marked

marked

all
files

file

delete

open

edit

close



18  March 2009
Language Models

FSG with Null Arcs and Loops

FSGs may have “null” arcs
No words produced on these arcs

FSGs may have loops
Allows for infinitely long word sequences
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Probabilistic FSG

By default, edges have no explicit weight associated with 
them

Effectively having a weight of 1 (multiplicatively)

The edges can have probabilities associated with them
Specifying the probability of a particular edge being taken from a 
node
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CMUSphinx FSG Specification

“Assembly language” for specifying FSGs
Low-level
Most standards should compile down to this level

Set of N states, numbered 0 .. N-1
Transitions:

Emitting or non-emitting (aka null or epsilon)
Each emitting transition emits one word
Fixed probability 0 < p <= 1.

Words are on edges (transitions)
Null transitions have no words associated with them

One start state, and one final state
Null transitions can effectively give you as many as needed
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An FSG Example

FSG_BEGIN     leg

NUM_STATES   10 
START_STATE   0 
FINAL_STATE     9

# Transitions             
T   0  1   0.5   to         
T   1  2   0.1   city1 …
T   1  2   0.1   cityN
T   2  3   1.0   from     
T   3  4   0.1   city1 …
T   3  4   0.1   cityN
T   4  9   1.0               
T   0  5   0.5   from     
T   5  6   0.1   city1 …
T   5  6   0.1   cityN
T   6  7   1.0   to         
T   7  8   0.1   city1 …
T   7  8   0.1   cityN
T   8  9   1.0 
FSG_END

to
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Context-Free Grammars

Context-free grammars specify production rules for the 
language in the following form:

RULE = Production

Rules may be specified in terms of other production rules
RULE1 = Production1
RULE2 = word1 RULE1 Production2

This is a context-free grammar since the production for any 
rule does not depend on the context that the rule occurs in

E.g. the production of RULE1 is the same regardless of whether it is 
preceded by word1 or not

A production is a pattern of words
The precise formal definition of CFGs is outside the scope 
of this talk
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Context-Free Grammars for Speech Recognition

Various forms of CFG representations have been used
BNF: Rules are of the form  <RULE> ::= PRODUCTION

Example (from wikipedia):
<postal-address> ::= <name-part> <street-address> <zip-part> 
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL> | 
<personal-part> <name-part> 
<personal-part> ::= <first-name> | <initial> "." 
<street-address> ::= <opt-apt-num> <house-num> <street-name> <EOL> 
<zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL> 
<opt-jr-part> ::= "Sr." | "Jr." | <roman-numeral> | “”

The example is incomplete. To complete it we need additional rules like:
<personal-part> ::= “Clark” | “Lana” | “Steve”
<last-name> ::=  “Kent” | “Lang” | “Olsen”

Note: Production rules include sequencing (AND) and alternatives (OR)
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CFG: EBNF

Extended BNF grammar specifications allow for various 
shorthand
Many variants of EBNF. The most commonly used one is the 
W3C definition
Some shorthand rules introduced by W3C EBNF:

X?  specifies that  X is optional
E.g.  Formal_Name =  “Mr.” “Clark”? “Kent”
“Clark” may or may not be said

Y+  specifies one or more repetitions e.g.
Digit = “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9” | “0”
Integer = Digit+

Z* specifies zero or more repetitions e.g.
Alphabet = “a” | “b” | “c” | “d” | “e” | “f” | “g”
Registration = Alphabet+ Digit*

The entire set of rules is available from W3C  
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CFG: ABNF

Augmented BNF adds a few new rule expressions

The key inclusion is the ability to specify a number of repetitions
N*MPattern says “Pattern” can occur a minimum of N and a maximum of 
M times
N*Pattern states “Pattern” must occur a minimum of N times
*MPattern specifies that “Pattern” can occur at most M times

Some changes in syntax
“/” instead of “|”
Grouping permitted with parantheses
Production rule names are often indicated by “$”
E.g.

$Digit = “0” / “1” / “2” / “3” / “4” / “5” / “6” / “7” / “8” / “9” / “0”
$Alphabet = “a” / “b” / “c” / “d” / “e” / “f” / “g”
$Registration = 3*$Alphabet *5$Digit
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CFG: JSGF
JSGF is a form of ABNF designed specifically for speech applications
Example:

grammar polite;

public <startPolite> = [please | kindly | could you | oh mighty 
computer];

public <endPolite> = (please | thanks | thank you) [very* much];

The grammar name specifies a namespace
“Public” rules can directly be used by a recognizer

E.g. if the grammar specified to the recognizer is <endPolite>, the set of 
“sentences” being recognized are “Please”, “Thanks”, “Please much”, 
“Please very much”, “Please very very much” etc.

Private rules can also be specified. These can only be used in the 
composition of other rules in the grammar

Cannot be used in other grammars or by the recognizer
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Context-Free Grammars

CFGs can be loopy
$RULE = [$RULE] word (Left Recursion)
$RULE = word  [$RULE]

Both above specify an arbitrarily long sequence of “word”

Other more complex recursions are possible
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CFGs in the Recognizer

Internally, the CFG is converted to a Finite State Graph
Most efficient approach
Alternate approach may use a “production” approach where the 
grammar is used to produce word sequences that are hypothesized
The latter approach can be very inefficient

<endPolite> = (please | thanks | thank you) [very* much];

Many algorithms for conversion from the one to the other

please

thanks

thank you

much
very
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Restrictions on CFG for ASR

CFGs must be representable as finite state machines
Not all CFGs are finite state
$RULE =  word1N $RULE word2N  | word1 word2

Represents the language  word1^N word2^N
Only produces sequences of the kind:
word1 word1 word1 (N times)  word2 word (N times)

CFGs that are not finite state are usually approximated to 
finite state machines for ASR

$RULE =  word1N $RULE word2N  | word1 word2   approximated as
$RULE = (word1 word2) | (word1 word1 word2 word2) | (word1 
word1 word1 word2 word2 word2)
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CFGs and FSGs

CFGs and FSGs are typically used where the recognition “language” can 
be prespecified

E.g. command-and-control applications, where the system may recognize 
only a fixed set of things
Address entry for GPS: the precise set of addresses is known

Although the set may be very large

Typically, the application provides the grammar
Although algorithms do exist to learn them from large corpora

The problem is the rigidity of the structure: the sysem cannot recognize 
any word sequence that does not conform to the grammar 

For recognizing natural language we need models that represent every 
possible word sequence

For this we look to the Bayesian specification of the ASR problem
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Natural Language Recognition

In “natural” language of any kind, the number of sentences 
that can be said is infinitely large

Cannot be enumerated
Cannot be characterized by a simple graph or grammar

Solved by realizing that recognition is a problem of 
Bayesian Classification
Try to find the word sequence such that

)}|,..,({maxarg,..., 21,...,21 21
XwwPwordword ww=

,..)},(,..),|({maxarg,..., 2121,...,21 21
wwPwwXPwordword ww=
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The Bayes classifier for speech recognition

The Bayes classification rule for speech recognition:

P(X | w1, w2, …) measures the likelihood that speaking the word sequence 
w1, w2 … could result in the data (feature vector sequence) X

P(w1, w2 … ) measures the probability that a person might actually utter 
the word sequence w1, w2 ….

This will be 0 for impossible word sequences

In theory, the probability term on the right hand side of the equation must 
be computed for every possible word sequence

It will be 0 for impossible word sequences

In practice this is often impossible
There are infinite word sequences

,..)},(,..),|({maxarg,..., 2121,...,21 21
wwPwwXPwordword ww=
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word word word
P signal wd wd wd P wd wd wd

N

wd wd wd N NN

1 2

1 2 1 21 2

, ,...,
arg max { ( | , ,..., ) ( , ,..., )}, ,...,

=

Acoustic model
For HMM-based systems
this is an HMM

Lanugage model

Speech recognition system solves
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There will be one path for every possible word sequence
A priori probabilitiy for a word sequence can be applied anywhere along 
the path representing that word sequence.
It is the structure and size of this graph that determines the feasibility of the 
recognition task 

Bayes’ Classification: A Graphical View

. . . . . . .

the term cepstrum was introduced by Bogert et al and has come to be 

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 

with the unusual title 

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an 

echo has an additive 

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power 

spectrum should exhibit a peak at the echo delay 

they called this function the cepstrum

interchanging letters in the word spectrum because 

in general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new 

signal processing technique however only the term cepstrum has been widely used
the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker
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A factored representation of the a priori probability of a word sequence

P(<s> word1 word2 word3 word4…</s>) = 
P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)…

This is a left-to-right factorization of the probability of the word sequence
The probability of a word is assumed to be dependent only on the words preceding it
This probability model for word sequences is as accurate as the earlier whole-word-
sequence model, in theory

It has the advantage that the probabilities of words are applied left to right – this is 
perfect for speech recognition

P(word1 word2 word3 word4 … ) is incrementally obtained :

A left-to-right model for the langauge

word1
word1 word2
word1 word2 word3
word1 word2 word3 word4
…..
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A priori probabilities for word sequences are spread through the graph
They are applied on every edge

This is a much more compact representation of the language than the full 
graph shown earlier

But is still inifinitely large in size

The left to right model: A Graphical View

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

•Assuming a two-word
vocabulary: “sing” and
“song”
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The N-gram assumption
P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1)

The probability of a word is assumed to be dependent only on 
the past N-1 words

For a 4-gram model, the probability that  a person will follow “two 
times two is” with “four” is assumed to be identical to the probability 
that  they will follow “seven times two is” with “four”.

This is not such a poor assumption
Surprisingly, the words we speak (or write) at any time are largely 
(but not entirely) dependent on the previous 3-4 words.

Left-to-right language probabilities and the N-gram model
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An N-gram language model is a generative model
One can generate word sequences randomly from it

In a good generative model, randomly generated word sequences should 
be similar to word sequences that occur naturally in the language

Word sequences that are more common in the language should be generated 
more frequently

Is an N-gram language model a good model?
If randomly generated word sequences are plausible in the language, it is a 
reasonable model
If more common word sequences in the language are generated more
frequently it is a good model
If the relative frequency of generated word sequences is exactly that in the 
language, it is a perfect model

Thought exercise: how would you generate word sequences from an N-
gram LM ?

Clue: Remember that N-gram LMs include the probability of a sentence end 
marker 

The validity of the N-gram assumption
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1-gram LM:
The and the figure a of interval compared and 
Involved the a at if states next a a the of producing of too
In out the digits right the the to of or parameters endpoint to right
Finding likelihood with find a we see values distribution can the a is

2-gram LM:
Give an indication of figure shows the source and human
Process of most papers deal with an HMM based on the next
Eight hundred and other data show that in order for simplicity
From this paper we observe that is not a technique applies to model

3-gram LM:
Because in the next experiment shows that a statistical model
Models have recently been shown that a small amount
Finding an upper bound on the data on the other experiments have been
Exact Hessian is not used in the distribution with the sample values  

Examples of sentences synthesized with N-gram LMs
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N-gram models are reasonably good models for the language 
at higher N

As N increases, they become better models

For lower N (N=1, N=2), they are not so good as generative 
models

Nevertheless, they are quite effective for analyzing the 
relative validity of word sequences

Which of a given set of word sequences is more likely to be valid
They usually assign higher probabilities to plausible word sequences 
than to implausible ones

This, and the fact that they are left-to-right (Markov) models 
makes them very popular in speech recognition

They have found to be the most effective language models for large 
vocabulary speech recognition

N-gram LMs
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N-gram probabilities must be estimated from data
Probabilities can be estimated simply by counting words in training text
E.g. the training corpus has 1000 words in 50 sentences, of which 400 are 
“sing” and 600 are “song”

count(sing)=400; count(song)=600; count(</s>)=50
There are a total of 1050 tokens, including the 50 “end-of-sentence” markers

UNIGRAM MODEL: 
P(sing) = 400/1050;  P(song) = 600/1050;  P(</s>) = 50/1050

BIGRAM MODEL: finer counting is needed. For example:
30 sentences begin with sing, 20 with song

We have 50 counts of <s>
P(sing | <s>) = 30/50;   P(song|<s>) = 20/50

10 sentences end with sing, 40 with song
P(</s> | sing) = 10/400;  P(</s>|song) = 40/600

300 instances of sing are followed by sing, 90 are followed by song
P(sing | sing) = 300/400; P(song | sing) = 90/400;

500 instances of song are followed by song, 60 by sing
P(song | song) = 500/600;  P(sing|song) = 60/600

Estimating N-gram probabilities
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Note that “</s>” is considered to be equivalent to a word. The probability 
for “</s>” are counted exactly like that of other words

For N-gram probabilities, we count not only words, but also word 
sequences of length N

E.g. we count word sequences of length 2 for bigram LMs, and word 
sequences of length 3 for trigram LMs

For N-gram probabilities of order N>1, we also count word sequences 
that include the word beginning and word end markers

E.g. counts of sequences of the kind “<s> wa wb” and “wc wd </s>”

The N-gram probability of a word wd given a context “wa wb wc” is 
computed as

P(wd | wa wb wc)  =  Count(wa wb wc wd) / Count(wa wb wc)
For unigram probabilities the count in the denominator is simply the count of 
all word tokens (except the beginning of sentence marker <s>). We do not 
explicitly compute the probability of P(<s>).

Estimating N-gram probabilities
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Direct estimation by counting is however not possible in all cases

If we had only a 1000 words in our vocabulary, there are 1001*1001 
possible bigrams (including the <s> and </s> markers)

We are unlikely to encounter all 1002001 word pairs in any given corpus 
of training data

i.e. many of the corresponding bigrams will have 0 count

However, this does not mean that the bigrams will never occur during 
recognition

E.g., we may never see “sing sing” in the training corpus
P(sing | sing) will be estimated as 0
If a speaker says “sing sing” as part of any word sequence, at least the “sing 
sing” portion of it will never be recognized

The problem gets worse as the order (N) of the N-gram model increases
For the 1000 word vocabulary there are more than 109 possible trigrams
Most of them will never been seen in any training corpus
Yet they may actually be spoken during recognition

Estimating N-gram probabilities
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We must assign a small non-zero probability to all N-grams 
that were never seen in the training data
However, this means we will have to reduce the probability 
of other terms, to compensate

Example:   We see 100 instances of sing, 90 of which are followed by 
sing, and 10 by </s> (the sentence end marker).
The bigram probabilities computed directly are P(sing|sing) = 90/100, 
P(<s/>|sing) = 10/100
We never observed sing followed by song.
Let us attribute a small probability X (X > 0) to P(song|sing)
But 90/100 + 10/100 + X > 1.0
To compensate we subtract a value Y from P(sing|sing) and some 
value Z from P(</s>|sing) such that

P(sing | sing) = 90 / 100 – Y
P(</s> | sing) = 10 / 100 – Z
P(sing | sing) + P(</s> | sing) + P(song | sing) = 90/100-Y+10/100-Z+X=1

Discounting
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The reduction of the probability estimates for seen Ngrams, in order to 
assign non-zero probabilities to unseen Ngrams is called discounting

The process of modifying probability estimates to be more generalizable is 
called smoothing

Discounting and smoothing techniques:
Absolute discounting
Jelinek-Mercer smoothing
Good Turing discounting
Other methods

Kneser-Ney..

All discounting techniques follow the same basic principle: they modify 
the counts of Ngrams that are seen in the training data

The modification usually reduces the counts of seen Ngrams
The withdrawn counts are reallocated to unseen Ngrams

Probabilities of seen Ngrams are computed from the modified counts
The resulting Ngram probabilities are discounted probability estimates
Non-zero probability estimates are derived for unseen Ngrams, from the 
counts that are reallocated to unseen Ngrams

Discounting and smoothing
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Subtract a constant from all counts
E.g., we have a vocabulary of K words, w1, w2,w3…wK

Unigram:
Count of word wi = C(i)
Count of end-of-sentence markers (</s>) = Cend

Total count Ctotal = ΣiC(i) + Cend

Discounted Unigram Counts
Cdiscount(i) = C(i) – ε
Cdiscountend = Cend – ε

Discounted probability for seen words
P(i) = Cdiscount(i) / Ctotal

Note that the denominator is the total of the undiscounted counts
If Ko words are seen in the training corpus, K – Ko words are unseen

A total count of Koxε, representing a probability Koxε / Ctotal remains 
unaccounted for
This is distributed among the K – Ko words that were never seen in training

We will discuss how this distribution is performed later

Absolute Discounting
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Bigrams:  We now have counts of the kind
Contexts: Count(w1), Count(w2), … , Count(<s>)

Note <s> is also counted; but it is used only as a context
Context does not incoroporate </s>

Word pairs:  Count (<s> w1), Count(<s>,w2),…,Count(<s> </s>),…,
Count(w1 w1), …,Count(w1 </s>) … Count(wK wK), Count(wK </s>)

Word pairs ending in </s> are also counted

Discounted counts:
DiscountedCount(wi wj) = Count(wi wj) – ε

Discounted probability:  
P(wj | wi) = DiscountedCount(wi wj) / Count(wi)
Note that the discounted count is used only in the numerator

For each context wi, the probability Ko(wi)xε / Count(wi) is left over
Ko(wi) is the number of words that were seen following wi in the training corpus
Ko(wi)xε / Count(wi) will be distributed over bigrams P(wj | wi), for words wj such 
that the word pair wi wj was never seen in the training data

Absolute Discounting: Higher order N-grams
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Trigrams:  Word triplets and word pair contexts are counted
Context Counts: Count(<s> w1), Count(<s> w2), …
Word triplets:  Count (<s> w1w1),…, Count(wK wK, </s>)

DiscountedCount(wi wj wk) = Count(wi wj wk) – ε

Trigram probabilities are computed as the ratio of discounted 
word triplet counts and undiscounted context counts
The same procedure can be extended to estimate higher-order 
N-grams

The value of ε: The most common value for ε is 1
However, when the training text is small, this can lead to allocation of 
a disproportionately large fraction of the probability to unseen events
In these cases, ε is set to be smaller than 1.0, e.g. 0.5 or 0.1

The optimal value of ε can also be derived from data
Via K-fold cross validation

Absolute Discounting
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Split training data into K equal parts

Create K different groupings of the K parts by holding out one of the K 
parts and merging the rest of the K-1 parts together. The held out part is a 
validation set, and the merged parts form a training set

This gives us K different partitions of the training data into training and 
validation sets

For several values of ε
Compute K different language models with each of the K training sets
Compute the total probability Pvalidation(i) of the ith validation set on the LM 
trained from the ith training set
Compute the total probability 
Pvalidationε = Pvalidation(1)*Pvalidation(2)*..*Pvalidation(K)

Select the ε for which Pvalidationε is maximum

Retrain the LM using the entire training data, using the chosen value of ε

K-fold cross validation for estimating ε
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Jelinek-Mercer smoothing returns the probability of an N-gram as a weighted 
combination of maximum likelihood N-gram and smoothed N-1 gram 
probabilities

Psmooth(word | wa wb wc..) is the N-gram probability used during recognition
The higher order (N-gram) term on the right hand side, PML(word | wa wb wc..) is 
simply a maximum likelihood (counting-based) estimate of P(word | wa wb wc..)
The lower order ((N-1)-gram term ) Psmooth(word | wb wc..) is recursively obtained 
by interpolation between the ML estimate PML(word | wb wc..) and the smoothed 
estimate for the (N-2)-gram Psmooth(word | wc..)
All λ values lie between 0 and 1
Unigram probabilities are interpolated with a uniform probability distribution

The λ values must be estimated using held-out data
A combination of K-fold cross validation and the expectation maximization 
algorithms must be used
We will not present the details of the learning algorithm in this talk
Often, an arbitrarily chosen value of λ, such as λ = 0.5 is also very effective

The Jelinek Mercer Smoothing Technique

+= ...)  |(...)  (...)  |( wcwbwawordPwcwbwawcwbwawordP MLsmooth λ
( ) ...)  |(...)  (0.1 wcwbwordPwcwbwa smoothλ−
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Zipf’s law: The number of events that occur often is small, 
but the number of events that occur very rarely is very large.

If n represents the number of times an event occurs in a unit 
interval, the number of events that occur n times per unit time 
is proportional to 1/nα, where α is greater than 1

George Kingsley Zipf originally postulated that α = 1. 
Later studies have shown that α is 1 + ε, where ε is slightly greater 
than 0

Zipf’s law is true for words in a language: the probability of 
occurrence of words starts high and tapers off. A few words 
occur very often while many others occur rarely.

Good-Turing discounting: Zipf’s law
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A plot of the count of counts of words in a training corpus typically looks like this:

Good-Turing discounting

In keeping with Zipf’s law, the number of words that occur n times in the 
training corpus is typically more than the number of words that occur n+1 
times

The total probability mass of words that occur n times falls slowly
Surprisingly, the total probability mass of rare words is greater than the total 
probability mass of common words, because of the large number of rare 
words

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve (Zipf’s law)
N

o.
 o

f w
or

ds

probability mass
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Good-Turing discounting

Good Turing discounting reallocates probabilities
The total probability mass of all words that occurred n times is
assigned to words that occurred n-1 times
The total probability mass of words that occurred once is reallocated 
to words that were never observed in training

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve (Zipf’s law)

probability mass

Reallocated probability mass

N
o.

 o
f w

or
ds

A plot of the count of counts of words in a training corpus typically looks like this:
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The probability mass curve cannot simply be shifted left directly due to 
two potential problems

Directly shifting the probability mass curve assigns 0 probability to the 
most frequently occurring words

Let the words that occurred most frequently have occurred M times
When probability mass is reassigned, the total probability of words that 
occurred M times is reassigned to words that occurred M-1 times
Words that occurred M times are reassigned the probability mass of words 
that occurred M+1 times = 0.
i.e. the words that repeated most often in the training data (M times) are 
assigned 0 probability!

The count of counts curve is often not continuous
We may have words that occurred L times, and words that occurred L+2 
times, but none that occurred L+1 times
By simply reassigning probability masses backward, words that occurred L 
times are assigned the total probability of words that occurred L+1 times = 0!

Good-Turing discounting
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Good-Turing discounting

The count of counts curve is smoothed and extrapolated
Smoothing fills in “holes” – intermediate counts for which the curve went to 0
Smoothing may also vary the counts of events that were observed
Extrapolation extends the curve to one step beyond the maximum count 
observed in the data

Smoothing and extrapolation can be done by linear interpolation and 
extrapolation, or by fitting polynomials or splines
Probability masses are computed from the smoothed count-of-counts and 
reassigned

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve
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Let r’(i) be the smoothed count of the number of words that occurred i times. 
The total smoothed count of all words that occurred i times is r’(i) * i. 

When we reassign probabilities, we assign the total counts 
r’(i)*i to words that occurred i-1 times. There are r’(i-1) such words (using 
smoothed counts). So effectively, every word that occurred i-1 times is 
reassigned a count of

reassignedcount(i-1) = r’(i)*i / r’(i-1)

The total reassigned count of all words in the training data is
totalreassignedcount = Σi r’(i+1)*(i+1) 
where the summation goes over all i such that there is at least one word that 
occurs i times in the training data (this includes i = 0)

A word w with count i is assigned probability
P(w| context) = reassignedcount(i) / totalreassignedcount

A probability mass r’(1) / totalreassignedcount is left over
The left-over probability mass is reassigned to words that were not seen in the 
training corpus

Good-Turing discounting
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Good-Turing discounting

Discounting effectively “moves” the green line backwards
I.e. cumulative probabilities that should have been assigned to count N are 
assigned to count N-1
This now assigns “counts” to events that were never seen
We can now compute probabilities for these terms

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve

Cumulative prob.
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UNIGRAMS:
The count-of-counts curve is derived by counting the words (including </s>) 
in the training corpus
The count-of-counts curve is smoothed and extrapolated
Word probabilities are computed for observed words are computed from the 
smoothed, reassigned counts
The left-over probability is reassigned to unseen words

BIGRAMS:
For each word context W, (where W can also be <s>), the same procedure 
given above is followed: the count-of-counts for all words that occur 
immediately after W is obtained, smoothed and extrapolated, and bigram 
probabilities for words seen after W are computed.
The left-over probability is reassigned to the bigram probabilities of words 
that were never seen following W in the training corpus

Higher order N-grams: The same procedure is followed for every word 
context W1 W2… WN-1

Good-Turing estimation of LM probabilities
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All discounting techniques result in a some left-over 
probability to reassign to unseen words and N-grams

For unigrams, this probability is uniformly distributed over 
all unseen words

The vocabulary for the LM must be prespecified
The probability will be reassigned uniformly to words from this 
vocabulary that were not seen in the training corpus

For higher-order N-grams, the reassignment is done 
differently

Based on lower-order N-gram, i.e. (N-1)-gram probabilities
The process by which probabilities for unseen N-grams is computed 
from (N-1)-gram probabilities is referred to as “backoff”

Reassigning left-over probability to unseen words
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Explanation with a bigram example

N-gram LM: Backoff

Unigram probabilities are computed and known before bigram probabilities 
are computed
Bigrams for P(w1 | w3), P(w2 | w3) and P(w3 | w3) were computed from 
discounted counts. w4, w5, w6 and </s> were never seen after w3 in the 
training corpus

w1 w2 w3 w4 w5 w6 </s>

U
ni
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am

w1 w2 w3 w4 w5 w6 </s>
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Explanation with a bigram example

N-gram LM: Backoff

The probabilities P(w4|w3),  P(w5|w3), P(w6|w3) and P(</s>|w3) are assumed to 
follow the same pattern as the unigram probabilities P(w4), P(w5), P(w6) and 
P(</s>)
They must, however be scaled such that 
P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0
The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4)

w1 w2 w3 w4 w5 w6 </s>
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ni

gr
am

w1 w2 w3 w4 w5 w6 </s>
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Assumption: When estimating N-gram probabilities, we already have access 
to all N-1 gram probabilities

Let w1 … wK be the words in the vocabulary (includes </s>)

Let “wa wb wc…” be the context for which we are trying to estimate 
N-gram probabilities

i.e we wish to compute all probabilities P(word | wa wb wc ..)

Let w1… wL be the words that were seen in the context “wa wb wc..” in the 
training data. We compute the N-gram probabilities for these words after 
discounting. We are left over with an unaccounted for probability mass

N-gram LM (Katz  Models): Backoff from N-gram to (N-1)-gram

We must assign the left over probability mass Pleftover(wa wb wc ...) to 
the words wL+1, wL+2,... wK, in the context “wa wb wc ...”

i.e. we want to assign them to P(wL+1 | wa wb wc ..), P(wL+2 | wa wb wc …), 
etc.

∑
=

−=
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i
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The backoff assumption for unseen N-grams:
P(wi | wa wb wc ..) = β(wa wb wc …) * P(wi | wb wc …)

The scaling constant β(wa wb wc …) is specific to the context of the Ngram
i.e. the N-gram probability is proportional to the N-1 gram probability
In the backoff LM estimation procedure, N-1 gram probabilities are assumed to 
be already known, when we estimate Ngram probabilities, so P(wi | wb wc …) 
is available for all wi

β(wa wb wc …) must be set such that 

N-gram LM: Learning the Backoff scaling term

Note that β(wa wb wc …) is specific to the context “wa wb wc …”
β(wa wb wc …) is known as the backoff weight of the context “wa wb wc…”

Once β(wa wb wc …) has been computed, we can derive Ngram
probabilities for unseen Ngram from the corresponding N-1 grams

∑

∑
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In order to estimate the backoff weight needed to compute
N-gram probabilities for unseen N-grams, the corresponding 
N-1 grams are required

The corresponding N-1 grams might also not have been seen in the 
training data

If  the backoff N-1 grams are also unseen, they must in turn be 
computed by backing off to N-2 grams

The backoff weight for the unseen N-1 gram must also be known
i.e. it must also have been computed already

The procedure is recursive – unseen N-2 grams are computed 
by backing off to N-3 grams, and so on

All lower order N-gram parameters (including probabilities and 
backoff weights) must be computed before higher-order N-
gram parameters can be estimated

Backoff is recursive
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First compute Unigrams
Count words, perform discounting, estimate discounted probabilities for all seen 
words
Uniformly distribute the left-over probability over unseen unigrams

Next, compute bigrams. For each word W seen in the training data:
Count words that follow that W. Estimate discounted probabilities P(word | W) for 
all words that were seen after W. 
Compute the backoff weight β(W) for the context W.
The set of explicity estimated P(word | W) terms, and the backoff weight β(W) 
together permit us to compute all bigram probabilities of the kind: P(word | W)

Next, compute trigrams: For each word pair “wa wb” seen in the training data:
Count words that follow that “wa wb”. Estimate discounted probabilities
P(word | wa wb) for all words that were seen after “wa wb”. 
Compute the backoff weight β(wa wb) for the context “wa wb”.

The process can be continued to compute higher order N-gram probabilities.

Learning Backoff Ngram models
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An N-gram backoff language model contains
Unigram probabilities for all words in the vocabulary
Backoff weights for all words in the vocabulary
Bigram probabilities for some, but not all bigrams

i.e. for all bigrams that were seen in the training data
If N>2, then: backoff weights for all seen word pairs

If the word pair was never seen in the training corpus, it will not have a backoff
weight. The backoff weight for all word pairs that were not seen in the training 
corpus is implicitly set to 1

…
N-gram probabilities for some, but not all N-grams

N-grams seen in training data
Note that backoff weights are not required for N-length word sequences in 
an N-gram LM

Since backoff weights for N-length word sequences are only useful to compute 
backed off N+1 gram probabilities

The contents of a completely trained N-gram language model
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An Example Backoff Trigram LM
\1-grams:
-1.2041 <UNK> 0.0000
-1.2041 </s> 0.0000
-1.2041 <s> -0.2730
-0.4260 one -0.5283
-1.2041 three -0.2730
-0.4260 two -0.5283
\2-grams:
-0.1761 <s> one      0.0000
-0.4771 one three    0.1761
-0.3010 one two      0.3010
-0.1761 three two    0.0000
-0.3010 two one      0.3010
-0.4771 two three    0.1761
\3-grams:
-0.3010 <s> one two 
-0.3010 one three two 
-0.4771 one two one 
-0.4771 one two three 
-0.3010 three two one 
-0.4771 two one three 
-0.4771 two one two 
-0.3010 two three two
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To retrieve a probability P(word | wa wb wc …)
How would a function written for returning N-gram probabilities work?

Look for the probability P(word | wa wb wc …) in the LM
If it is explicitly stored, return it

If P(word | wa wb wc …)  is not explicitly stored in the LM 
retrive it by backoff to lower order probabilities:

Retrieve backoff weight β(wa wb wc..) for word sequence wa wb wc …
If it is stored in the LM, return it
Otherwise return 1

Retrieve P(word | wb wc …) from the LM
If P(word | wb wc .. ) is not explicitly stored in the LM, derive it backing off
This will be a recursive procedure

Return P(word | wb wc …)  * β(wa wb wc..)

Obtaining an N-gram probability from a backoff N-gram LM
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http://mi.eng.cam.ac.uk/~prc14/toolkit.html
http://www.speech.cs.cmu.edu/SLM_info.html

Contents of textfile
<s>  the term cepstrum was introduced by Bogert et al and has come to be 
accepted terminology for the
inverse Fourier transform of the logarithm of the power spectrum
of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 
with the unusual title 
The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance
Cross Cepstrum and Saphe Cracking
they observed that the logarithm of the power spectrum of a signal containing an 
echo has an additive 
periodic component due to the echo and thus the Fourier transform of the
logarithm of the power 
spectrum should exhibit a peak at the echo delay 
they called this function the cepstrum
interchanging letters in the word spectrum because 
in general, we find ourselves operating on the frequency side in ways customary 
on the time side and vice versa
Bogert et al went on to define an extensive vocabulary to describe this new 
signal processing technique however only the term cepstrum has been widely used
The transformation of a signal into its cepstrum is a homomorphic transformation
and the concept of the cepstrum is a fundamental part of the theory of homomorphic
systems for processing signals that have been combined by convolution
</s>

vocabulary
<s>  
</s>
the 
term 
cepstrum
was 
introduced 
by 
Bogert
et 
al 
and 
has 
come 
to 
be 
accepted 
terminology 
for
inverse 
Fourier 
transform 
of 
logarithm 
Power
. . .

Contents of contextfile
<s>

Training a language model using CMU-Cambridge LM toolkit
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To train a bigram LM (n=2):
$bin/text2idngram -vocab vocabulary -n 2 -write_ascii < textfile > idngm.tempfile

$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM -context 
contextfile -absolute -ascii_input -n 2 (optional: -cutoffs 0 0 or –cutoffs 1 1 ….)
OR
$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM -context 
contextfile -good_turing -ascii_input -n 2
….

SRILM uses a single command called “ngram” (I believe)

Training a language model using CMU-Cambridge LM toolkit



18  March 2009
Language Models

Key Observation

The vocabulary of the LM is specified at training time
Either as an external list of words or as the set of all words in the training 
data

The number of words in this vocabulary is used to compute the 
probability of zero-count terms

Divide the total probability mass in the yellow region by the total number of 
words that were not seen in the training data

Words that are not explicitly listed in the vocabulary will not be 
assigned any probability

Effectively have zero probability

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve



18  March 2009
Language Models

Changing the Format

The SRILM format must be changed to match the sphinx 
format.
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The UNK word

The vocabulary to be recognized must be specified to the language 
modelling toolkit

The training data may contain many words that are not part of this 
vocabulary

These words are “unknown” as far as the recognizer is concerned

To indicate this, they are usually just mapped onto “UNK” by the toolkit

Leads to the introduction of probabilities such as P(WORD | UNK) and 
P(UNK | WORD) in the language model

These are never used for recognition
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<s> and </s>

The probability that a word can begin a sentence also varies 
with the word

Few sentences begin with “ELEPHANT”, but many begin with 
“THE”
It is important to capture this distinction

The <s> symbol is a “start of sentence” symbol. 
It is appended to the start of every sentence in the training 
data

E.g. “It was a sunny day” “<s> It was a sunny day”
This enables computation of probabilities such as P(it | <s>)

The probability that a sentence begins with “it”.
Higher order N-gram probabilities can be computed:  P(was | <s> it)

Probability that the second word in a sentence will be “was” given that 
the first word was “it”
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<s> and </s>

Ends of sentences are similarly distinctive
Many sentences end with “It”.  Few end with “An”.

The </s> symbol is an “end of sentence” symbol. 
It is appended to the end of every sentence in the training data
E.g. “It was a sunny day” “<s> It was a sunny day </s>”

This enables computation of probabilities such as P(</a> | it)
The probability that a sentence ends with “it”.
Higher order N-gram probabilities can be computed:  P(</s> | good day)

Probability that the sentence ended with the word pair “good day”.
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<s> and </s>
Training probabilities for <s> and </s> may give rise to spurious probability 
entries

Adding <s> and </s> to “It was a dark knight. It was a stormy night” makes it 
“<s> It was a dark knight </s> <s> It was a stormy night </s>”

Training probabilities from this results in the computation of probability terms 
such as  P(<s> | </s>)

The probabilitiy that a sentence will begin after a sentence ended
And other terms such as P(<s> | knight </s>)

The probability that a sentence will begin when the previous sentence ended with night
It is often advisable to avoid computing such terms

Which may be meaningless
Hard to enforce however

The SRI LM toolkit deals with it corrrectly if every sentence is put on a separate 
line
<s> It was a dark knight </s>
<s> It was a story knight </s>
There are no words before <s> and after </s> in this format
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Adding Words

Adding words to an existing LM can be difficult
The vocabulary of the LM is already specified when it is trained
Words that are not in this list will have zero probability

Simply extending the size of a dictionary won’t automatically introduce 
the word into the LM

True count of counts curve
N

o.
 o

f w
or

ds

Smoothed and extrapolated count of counts curve
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Adding Words

New words that are being added have not been seen in training data
Or will be treated as such anyway
They are zerotons!

In order to properly add a word to the LM and assign it a probability, the 
probability of other zeroton words in the LM must reduced

So that all probabilities sum to 1.0
Reassign the probability mass in the yellow region of the plot to actually 
account for the new word too

True count of counts curve
N

o.
 o
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or

ds

Smoothed and extrapolated count of counts curve
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Adding Words

Procedure to adjust Unigram probabilities
First identify all words in the LM that represent zeroton words in the 
training data

This information is not explicitly stored
Let there be N such words
Let P be the backed-off UG probability

Modify the unigram probabilities of all zeroton words to P*N/(N+1)
Basically reduce their probabilities so that after they are all summed up, 
a little is left out

Assign the probability P*N/(N+1) to the new word being introduced

Mercifully, Bigram and Trigram probabilities do not have to 
be adjusted

The new word was never seen in any context
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Identifying Zeroton Words

The first step is to identify the current zeroton words
Characteristics

Zeroton words have only unigram probabilities
Any word that occurs in training data also produces bigrams

E.g. if “HELLO” is seen in the training data, it must have been followed 
either by a word or by an </s>
We will at least have a bigram P(</s> | word)

For every word
Look for the existence of  at least one bigram with the word as 
context
If such a bigram does not exist, treat it as a zeroton
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Adding Ngrams

Ngrams cannot be arbitrarily introduced into the language 
model

A zeroton Ngram is also a zeroton unigram
So its probabilities will be obtained by backing off to unigrams
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Domain specificity in LMs

An N-gram LM will represent linguistic patterns for the specific domain 
from which the training text is derived

E.g. training on “broadcast news” corpus of text will train an LM that 
represents news broadcasts

For good recognition it is important to have an LM that represents the 
data
Often we find ourselves in a situation where we do not have an LM for 
the exact domain, but one or more LMs from close domains

E.g. We have a large LM trained from lots of newspaper text that represents 
typical news data, but its very grammatical
We have a smaller LM trained from a small amount of broadcast news text

But the training data are small and the LM is not well estimated

We would like to combine them somehow to get a good LM for our 
domain
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Interpolating LMs

The probability that word2 will follow word1, as specified by 
LM1 is P(word2 | word1, LM1)

LM1 is well estimated but too generic

The probability that word2 will follow word1, as specified by 
LM2 is P(word2 | word1, LM2)

LM2 is related to our domain but poorly estimated

Compute P(word2 | word1) for the domain by interpolating 
the values from LM1 and LM2

P(word2 | word1) = α P(word2 | word1, LM1) + (1- α)P(word2 | word1,LM2)

The value α must be tuned to represent the domain of our test 
data

Can be done using automated methods
More commonly, just hand tuned (or set to 0.5)
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Interpolating LMs

However, the LM probabilities cannot just be interpolated 
directly

The vocabularies for the two LMs may be different
So the probabilities for some words found in one LM may not be 
computable from the other

Normalize the vocabularies of the two LMs
Add all words in LM1 that are not in LM2 to LM2
Add all words in LM2 that are not in LM1 to LM1

Interpolation of probabilities is performed with the 
normalized-vocabulary LMs

This means that the recognizer actually loads up two LMs
during recognition

Alternately, all interpolated bigram and trigram probabilities may be 
computed offline and written out
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Adapting LMs
The topic that is being spoken about may change 
continuously as  a person speaks

This can be done by “adapting” the LM
After recognition, train an LM from the recognized word sequences 
from the past few minutes of speech
Interpolate this LM with the larger “base” LM

This is done continuously 

BASE LM
LM from

Recognized
text

To recognizer
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Identifying a domain

If we have LMs from different domains, we can use them to 
recognize the domain of the current speech

Recognize the data using each of the LMs

Select the domain whose LM results in the recognition with 
the highest probability
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More Features of the SRI LM toolkit

Functions
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Train HMMs for the acoustic model
Train N-gram LM with backoff from training data
Construct the Language graph, and from it the language HMM

Represent the Ngram language model structure as a compacted N-gram 
graph, as shown earlier
The graph must be dynamically constructed during recognition – it is 
usually too large to build statically
Probabilities on demand: Cannot explicitly store all K^N probabilities 
in the graph, and must be computed on the fly

K is the vocabulary size
Other, more compact structures, such as FSAs can also be used to 
represent the lanauge graph

later in the course

Recognize

Overall procedure for recognition with an Ngram language model


