
DecodingDecoding

BhikshaBhiksha Raj and Rita SinghRaj and Rita Singh

19 March 2009 decoding

Recap and Recap and LookaheadLookahead
Covered so far:

String Matching based Recognition
Introduction to HMMs
Recognizing Isolated Words
Learning word models from continuous recordings
Building word models from phoneme models
Context-independent and context-dependent models
Building decision trees
Tied-state models
Language Modelling

Exercise: Training phoneme models
Exercise: Training context-dependent models
Exercise: Building decision trees
Exercise: Training tied-state models

Recognition

19 March 2009 decoding

Analogy between DTW vs. HMMAnalogy between DTW vs. HMM

DTW: Edge Score; HMM: Transition probability
The edge score of the DTW template is analogous to the log of
the transition probability for the HMM

DTW: Symbol matching cost; HMM: State probability
The matching cost of DTW is analogous to the log of the
probability of the observation computed from the probability
distribution associated with the state

The string matching algorithm for DTW actually finds the
sequence of states in the HMM that matches the observation

19 March 2009 decoding

Speech Recognition as String MatchingSpeech Recognition as String Matching

We find the distance of the data from the “model” using the
Trellis for the word
Pick the word for which this distance is lowest
Word = argmin word distance(data, model(word))
Using the DTW / HMM analogy

Word = argmax word probability(data | model(word))

M
O

D
EL

DATA

19 March 2009 decoding

Speech Recognition as Bayesian ClassificationSpeech Recognition as Bayesian Classification

Different words may occur with different frequency
E.g. a person may say “SEE” much more frequently than “ZEE”

This must be factored in
If we are not very sure they said “SEE” or “ZEE”, choose “SEE”

We are more likely to be right than if we chose ZEE

The basic DTW equation does not factor this in
Word = argmax word probability(data | model(word)) does not
account for prior bias

Cast the problem instead as a Bayesian classification problem
Word = argmax word p(word) probability(data | model(word))
“p(word)” is the a priori probability of the word
Naturally accounts for prior bias

19 March 2009 decoding

Given data X, find which of a number of classes C1,
C2,…CN it belongs to, based on known distributions of
data from C1, C2, etc.

Bayesian Classification:
Class = Ci : i = argmaxj log(P(Cj)) + log(P(X|Cj))

a priori probability of Cj Probability of X as given by
the probability distribution of Cj

Statistical pattern classification

The a priori probability accounts for the relative proportions of the
classes
– If you never saw any data, you would guess the class based on

these probabilities alone
P(X|Cj) accounts for evidence obtained from observed data X

19 March 2009 decoding

Classes are words
Data are instances of isolated spoken words
– Sequence of feature vectors derived from speech signal,

Bayesian classification:
Recognized_Word = argmaxword log(P(word)) + log(P(X| word))

P(word) is a priori probability of word
Obtained from our expectation of the relative frequency of occurrence of

the word
P(X|word) is the probability of X computed on the probability distribution

function of word

Statistical classification of isolated words

19 March 2009 decoding

• To compute P(X|word), there must be a statistical distribution for X
corresponding to word
– Each word must be represented by some statistical model.

• We represent each word by an HMM
• P(X|word) is (approximated by) the best path score for the the HMM

non-emitting absorbing
state

Useful to model the termination of the word using a non-emitting state
Simplifies many things

Computing P(X|word)

19 March 2009 decoding

Log(P(Odd))

HMM for Odd HMM for Even

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd)) Log(P(Even))+log(P(X|Even))

Classifying between two words: Odd and Even

The prior bias is factored in as the edge penalty at the entry to the trellis

19 March 2009 decoding

Classifying between two words: Odd and Even

Log(P(Odd))

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd))

Log(P(Even))
+log(P(X|Even))

19 March 2009 decoding

Score(X|Even)

Score(X|Odd)

• Compute the probability of best path
– Computations can be done in the log domain. Only additions and

comparisons are required

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))

19 March 2009 decoding

Score(X|Even)

Score(X|Odd)

• Compare scores (best state sequence probabilities) of all competing words
• Select the word sequence corresponding to the path with the best score

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))

19 March 2009 decoding

• Construct a trellis (search graph) based on
the HMM for each word
– Alternately construct a single, common trellis

• Select the word corresponding to the best
scoring path through the combined trellis

Decoding isolated words with word HMMs

19 March 2009 decoding

• Thus far we have been talking about Scores, that are in
fact Log Probabilities

• In the following slides we will talk in terms of
Probabilities and not Log probabilities
– A matter of convenience
– This does not change the basic procedures – what used to be

summation will not become multiplication
• Ie. We multiply the probabilities along the best path, rather than to

add them

Bayesian classification:
Recognized_Word = argmaxword log(P(word)) + log(P(X|
word))
Recognized_Word = argmaxword P(word) P(X| word)

A change of notation

19 March 2009 decoding

• Classes are word sequences
• Data are spoken recordings of word sequences
• Bayesian classification:

)},...,,(),...,,|({maxarg
,...,,

2121,...,,

21

21 NNwdwdwd

N

wdwdwdPwdwdwdXP
wordwordword

N

=

Statistical classification of word sequences

• P(wd1,wd2,wd3..) is a priori probability of word sequence
wd1,wd2,wd3..
– Obtained from a model of the language

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability
distribution function of the word sequence wd1,wd2,wd3..
– HMMs now represent probability distributions of word sequences

Given data X, find which of a number of classes C1, C2,…CN it
belongs to, based on known distributions of data from C1, C2, etc.
Bayesian Classification:

Class = Ci : i = argmaxj P(Cj)P(X|Cj)

19 March 2009 decoding

Decoding continuous speech
First step: construct an HMM for each possible word sequence

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability
distribution function of the word sequence wd1,wd2,wd3..
– HMMs now represent probability distributions of word sequences

HMM for word 1 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for
each possible word sequence

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

P(Rock Star) P(Dog Star)

Bayesian Classification between word sequences

Classifying an utterance as either “Rock Star” or “Dog Star”
Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)

19 March 2009 decoding

R
oc

k

D
og

S
ta

r

P(Rock) P(Dog)

P(Star|Rock) P(Star|Dog) P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

S
ta

r

Bayesian Classification between word sequences

Classifying an utterance as either “Rock Star” or “Dog Star”
Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

P(Dog,Star)P(X|Dog Star)

P(Rock,Star)P(X|Rock Star)

Bayesian Classification between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

Score(X|Rock Star)

Score(X|Dog Star)

Approximate total probability
with best path score

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own
best path

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own
best path

SET 1 and its best path

dogstar1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own
best path

SET 2 and its best path

dogstar2

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own
best path

SET 3 and its best path

dogstar3

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own
best path

SET 4 and its best path

dogstar4

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

The best path through
Dog Star is the best of
the four transition-specific
best paths
max(dogstar) =
max (dogstar1, dogstar2,

dogstar3, dogstar4)

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

Similarly, for Rock Star
the best path through
the trellis is the best of
the four transition-specific
best paths
max(rockstar) =
max (rockstar1, rockstar2,

rockstar3, rockstar4)

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

Then we’d compare
the best paths
through Dog Star
and Rock Star

max(dogstar) =
max (dogstar1, dogstar2,

dogstar3, dogstar4)

max(rockstar) =
max (rockstar1, rockstar2,

rockstar3, rockstar4)

Viterbi =
max(max(dogstar),

max(rockstar))

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

argmax is commutative:

max(max(dogstar),
max(rockstar))
=
max (
max(dogstar1, rockstar1),
max (dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)

)

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

We can choose between
Dog and Rock right here
because the futures of these
paths are identical

For a given entry point
the best path through STAR
is the same for both trellises

t1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r We select the higher scoring
of the two incoming edges
here

This portion of the
trellis is now deleted

t1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

Similar logic can be applied
at other entry points to
Star

•t1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
S

ta
r

D
og

S
ta

r

Similar logic can be applied
at other entry points to
Star

•t1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
D

og
S

ta
r

Similar logic can be applied
at other entry points to
Star

•t1

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
D

og
S

ta
r

Similar logic can be applied
at other entry points to
Star

This copy of the trellis
for STAR is completely
removed

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
D

og
S

ta
r

The two instances of Star can be collapsed into one to form a smaller
trellis

Decoding to classify between word sequences

19 March 2009 decoding

R
oc

k
D

og
S

ta
r

We will represent the
vertical axis of the
trellis in this simplified
manner

Rock Dog Star

Rock

Dog

Star=

Language-HMMs for fixed length word sequences

19 March 2009 decoding

• The actual recognition is DOG STAR vs. ROCK STAR
– i.e. the two items that form our “classes” are entire phrases

• The reduced graph to the right is merely an engineering
reduction obtained by utilizing commonalities in the two
phrases (STAR)

• This distinction affects the design of the recognition system

The Real “Classes”

Rock

Dog

Star

Rock Star

Dog Star

19 March 2009 decoding

• The word graph represents all allowed word sequences in
our example
– The set of all allowed word sequences represents the allowed

“language”

• At a more detailed level, the figure represents an HMM
composed of the HMMs for all words in the word graph
– This is the “Language HMM” – the HMM for the entire allowed

language

• The language HMM represents the vertical axis of the
trellis
– It is the trellis, and NOT the language HMM, that is searched for

the best path

P(Rock)

P(Dog)

P(Star|Rock)

P(Star|Dog)

Ea
ch

 w
or

d
is

 a
n

H
M

M

Language-HMMs for fixed length word sequences

19 March 2009 decoding

• Recognizing one of four lines from “charge of the light brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

to

of

Cannon

them

right

left

frontin

behind

P(cannon)

P(to|cannon)

P(right|cannon to)

P(in|cannon)

P(behind|cannon)

P(of|cannon to right)

P(of|cannon to left)

P(them|cannon in front of)

P(them|cannon behind)
them

of

of them

them

P(them|cannon to right of)

P(front|cannon in)
P(of|cannon in front)

P(them|cannon to left of)

P(left|cannon to)

Ea
ch

 w
or

d
is

 a
n

H
M

M

Language-HMMs for fixed length word sequences

19 March 2009 decoding

Where does the graph come from
• The graph must be specified to the recognizer

– What we are actually doing is to specify the complete
set of “allowed” sentences in graph form

• May be specified as an FSG or a Context-Free
Grammar
– CFGs and FSG do not have probabilities associated

with them
– We could factor in prior biases through probabilistic

FSG/CFGs
– In probabilistic variants of FSGs and CFGs we

associate probabilities with options
• E.g. in the last graph

19 March 2009 decoding

• Recognizing one of four lines from “charge of the light brigade”
• If the probability of a word only depends on the preceding word, the graph

can be collapsed:
– e.g. P(them | cannon to right of) = P(them | cannon to left of) = P(cannon |

of)

to

ofCannon them

right

left

frontin

behind

P(cannon)

P(to | cannon)

P(right | to)

P(in | cannon)

P(behind | cannon)

P(of | right)

P(of | left)

P(them | of)

P(them|behind)

Simplification of the language HMM through lower context
language models

Ea
ch

 w
or

d
is

 a
n

H
M

M

19 March 2009 decoding

freezy

breeze

made

these

trees

freeze

three trees

trees’ cheese

Language HMMs for fixed-length word sequences: based
on a grammar for Dr. Seuss

Ea
ch

 w
or

d
is

 a
n

H
M

M

No probabilities specified – a person may utter any of these phrases at any time

19 March 2009 decoding

delete

file

all
files

open

edit

close
marked

Language HMMs for fixed-length word sequences:
command and control grammar

Ea
ch

 w
or

d
is

 a
n

H
M

M

No probabilities specified – a person may utter any of these phrases at any time

19 March 2009 decoding

• Previous examples chose between a finite set of known
word sequences

• Word sequences can be of arbitrary length
– E.g. set of all word sequences that consist of an arbitrary number

of repetitions of the word bang
bang
bang bang
bang bang bang
bang bang bang bang
……

– Forming explicit word-sequence graphs of the type we’ve seen so
far is not possible
• The number of possible sequences (with non-zero a-priori probability)

is potentially infinite
• Even if the longest sequence length is restricted, the graph will still be

large

Language HMMs for arbitrarily long word sequences

19 March 2009 decoding

• Arbitrary word sequences can be
modeled with loops under some
assumptions. E.g.:

• A “bang” can be followed by
another “bang” with probability
P(“bang”).
– P(“bang”) = X;

P(Termination) = 1-X;
• Bangs can occur only in pairs

with probability X

• A more complex graph allows
more complicated patterns

• You can extend this logic to other
vocabularies where the speaker
says other words in addition to
“bang”
– e.g. “bang bang you’re

dead”

bang

X

1-X

bang
1-X

bang

X

bang
1-X

X

bang
Y

1-Y

Ea
ch

 w
or

d
is

 a
n

H
M

M
Language HMMs for arbitrarily long word sequences

19 March 2009 decoding

• Constrained set of word sequences with
constrained vocabulary are realistic
– Typically in command-and-control situations

• Example: operating TV remote

– Simple dialog systems
• When the set of permitted responses to a query is restricted

• Unconstrained word sequences : NATURAL
LANGUAGE
– State-of-art large vocabulary decoders
– Later in the program..

Language HMMs for arbitrarily long word sequences

19 March 2009 decoding

QUESTIONS?

• Next up: Pruning and the Backpointer table
• Any questions on topics so far?

19 March 2009 decoding

• The search for the best path can become very
expensive
– As model size or utterance length increase, the trellis

size increases
– Number of paths to evaluate increases unmanageable

• Need to reduce computation somehow
– Eliminating parts of the trellis from consideration

altogether
• This approach is called search pruning, or just pruning

• Basic consideration in pruning: As long as the best
cost path is not eliminated by pruning, we obtain
the same result

Pruning

19 March 2009 decoding

Pruning
• Pruning is a heuristic: typically, there is a

threshold on some measured quantity, and
anything above or below is eliminated

• It is all about choosing the right measure, and the
right threshold

• Let us see two different pruning methods:
– Fixed-width pruning
– Relative-score pruning

19 March 2009 decoding

Fixed-width Pruning

• At each time find the highest scoring node
and retain only the N closest nodes

• The rest of the nodes are not considered for
further propagation

19 March 2009 decoding

Pruning by Limiting Path Cost
• Observation: Partial paths with “very high” costs will

rarely recover to win
• Hence, poor partial paths can be eliminated from the

search:
– For each frame j, after computing all the trellis nodes path costs,

determine which nodes have too high costs
– Eliminate them from further exploration
– (Assumption: In any frame, the best partial path has low cost)

jorigin

partial
best paths

High cost partial paths (red);
Do not explore further

19 March 2009 decoding

Pruning: Beam Search
• Solution: In each frame j, set the pruning threshold by a

fixed amount T relative to the best cost in that frame
– I.e. if the best partial path cost achieved in the frame is X, prune

away all nodes with partial path cost > X+T
– Note that time synchronous search is very efficient for

implementing the above

• Advantages:
– Unreliability of absolute path costs is eliminated
– Monotonic growth of path costs with time is also irrelevant

• Search that uses such pruning is called beam search
– This is the most widely used search optimization strategy

• The relative threshold T is usually called beam width or
just beam

19 March 2009 decoding

Beam Search Visualization
• The set of trellis nodes actually evaluated is the active set
• Here is a typical “map” of the active region, aka beam (confusingly)

• Presumably, the best path lies somewhere in the active region

active
region

(beam)

19 March 2009 decoding

Beam Search Efficiency
• Unlike the fixed width approach, the computation

reduction with beam search is unpredictable
– The set of active nodes at frames j and k is shown by the black

lines
• However, since the active region can follow any warping,

it is likely to be relatively more efficient than the fixed
width approach

active
region

j k

19 March 2009 decoding

Determining the Optimal Beam Width
• Determining the optimal beam width to use is crucial

– Using too narrow or tight a beam (too low T) can prune the best path and result in
too high a match cost, and errors

– Using too large a beam results in unnecessary computation in searching unlikely
paths

– One may also wish to set the beam to limit the computation (e.g. for real-time
operation), regardless of recognition errors

• Unfortunately, there is no mathematical solution to determining an optimal
beam width

• Common method: Try a wide range of beams on some test data until the desired
operating point is found
– Need to ensure that the test data are somehow representative of actual speech that

will be encountered by the application
– The operating point may be determined by some combination of recognition

accuracy and computational efficiency

19 March 2009 decoding

Determining the Optimal Beam Width

• Any value around the point marked T is a reasonable
beam for minimizing word error rate (WER)

• A similar analysis may be performed based on average
CPU usage (instead of WER)

Beam width

W
or

d
er

ro
r

ra
te

T

19 March 2009 decoding

Backpointer Table
• The Viterbi decoding process stores backpointers

from every state to its best predecessor at every
time.

• For HMMs of large word graphs, this set of
backpointers can quickly become very large

• Better to store “backpointers” efficiently, so that
only necessary information is stored

• We use a “BackPointer Table”

19 March 2009 decoding 59

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

red
green
blue

19 March 2009 decoding 60

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue

19 March 2009 decoding 61

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue

19 March 2009 decoding 62

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue

19 March 2009 decoding 63

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue

19 March 2009 decoding 64

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue

19 March 2009 decoding 65

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue

19 March 2009 decoding 66

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue

19 March 2009 decoding 67

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue

19 March 2009 decoding 68

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 69

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 70

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 71

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 72

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 73

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue

19 March 2009 decoding 74

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 75

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 76

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 77

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 78

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 79

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue

19 March 2009 decoding 80

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 81

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 82

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 83

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 84

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 85

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue

19 March 2009 decoding 86

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

red
green
blue

19 March 2009 decoding 87

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

red
green
blue

19 March 2009 decoding 88

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

red
green
blue

19 March 2009 decoding 89

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

19 March 2009 decoding 90

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

19 March 2009 decoding 91

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6

19 March 2009 decoding 92

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 93

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 94

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 95

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 96

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 97

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 98

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7

19 March 2009 decoding 99

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

19 March 2009 decoding 100

Haikya

Using a Using a BackpointerBackpointer TableTable
Only retain back pointers to the entry into words

19 March 2009 decoding 101

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 102

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 103

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 104

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 105

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 106

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 107

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 108

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 109

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 110

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 111

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 112

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…

19 March 2009 decoding 113

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

2

19 March 2009 decoding 114

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 115

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 116

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 117

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1
t=4

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 118

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 119

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 120

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 121

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 122

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 123

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1
t=3 t=4

Retain backpointers (and add
the to the table)

if deleting them will result in
loss of word

history

3, t=4, scr3,p=1, gr

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

3

19 March 2009 decoding 124

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 125

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 126

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 127

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 128

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 129

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 130

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 131

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 132

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 133

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 134

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

2

red
green
blue

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 135

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

22 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 136

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

2

Retain backpointers (and add
the to the table)

if deleting them will result in
loss of word

history

4, t=5, scr4,p=1,bl

2 3 4

3, t=4, scr3,p=1, gr

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

19 March 2009 decoding 137

Haikya

Using Using BackpointersBackpointers
The Backpointer table in the previous figure only retains
sufficient history to obtain the best hypothesis
Sometimes we would like to retain additional information in
the backpointer table that tells us what other words were
considered (not pruned out) during recognition

e.g. when we want to create lattices for finding N-best
hypotheses or to compute confidence

In this case the backpointer table is expanded to include all
trellis nodes at the final states of words

Additionally, all trellis nodes corresponding to non-emitting
nodes may also be stored

19 March 2009 decoding 138

Haikya

WordWord--entry Pruningentry Pruning
Word-entry points behave differently from the rest of the
trellis
Typically the identity of a word is most clear in the initial
frames
Language probabilities also get introduced at this point

Additional computational benefits may be drawn from this
observation by pruning word entries differently from other
points in the lattice
Two forms of pruning

Absolute: Only allow the best N word entries at any time to
survive
Relative: Only allow word entries within a small beam of the
best word entry score to survive

19 March 2009 decoding 139

Haikya

Word EntriesWord Entries
t=1 t=2 t=3

1
t=4

red
green
blue

2

19 March 2009 decoding 140

Haikya

Word EntriesWord Entries
t=1 t=2 t=3

1
t=4

red
green
blue

2

Entry into generating states heralds
the possible beginning of a new word

Pick the “generating” state
(In this example there is only one:
This is a very simple graph)

Retain all generating states with a
score within a small beam of this

Alternately retain the best N
generating states

19 March 2009 decoding

QUESTIONS?

• Next up: Natural language
• Any questions on topics so far?

19 March 2009 decoding

• In a natural language task, we try to recognize from among all
possible word sequences
– A very large number
– Implicitly, we have an infinitely large graph, where each path is a

single word sequence

Bayesian Natural Language Recognition

.

the term cepstrum was introduced by Bogert et al and has come to be

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper

with the unusual title

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an

echo has an additive

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power

spectrum should exhibit a peak at the echo delay

they called this function the cepstrum

interchanging letters in the word spectrum because

in general, we find ourselves operating on the frequency side in ways customary

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new

signal processing technique however only the term cepstrum has been widely used
the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker

19 March 2009 decoding

• A factored representation of the a priori probability of a word
sequence

P(<s> word1 word2 word3 word4…</s>) =
P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)…

• P(word1 word2 word3 word4 …) is incrementally obtained :

Compacting Natural Language: Factored Representations

word1
word1 word2
word1 word2 word3
word1 word2 word3 word4
…..

• This factored representation allows graph compaction
– But the graphs will still be impossibly large

19 March 2009 decoding

• A priori probabilities for word sequences are spread through the graph
– They are applied on every edge

• This is a much more compact representation of the language than the full
graph shown earlier

• But is still infinitely large in size

The left to right model: A Graphical View

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

•Assuming a two-word
vocabulary: “sing” and
“song”

19 March 2009 decoding

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|<s>sing)
P(sing|<s>sing sing)

P(</s>|<s>sing sing)

P(song|<s>sing sing)

P(sing|<s>sing song)

P(sing|<s>song sing)

P(sing|<s> song song)

P(song|<s>sing song)

P(song|<s>song sing)

P(song|<s> song song)

P(sing|<s> song)

P(song|<s>sing)

P(song|<s> sing)

P(song|<s>)

P(sing|<s>sing sing sing)

P(song|<s>sing sing sing)

P(</s>|<s>)

P(</s>|<s>sing)

This graph is infinite in size

19 March 2009 decoding

• The N-gram assumption
P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1)

• The probability of a word is assumed to be dependent only
on the past N-1 words
– For a 4-gram model, the probability that a person will follow “two

times two is” with “four” is assumed to be identical to the
probability that they will follow “seven times two is” with “four”.

• This is not such a poor assumption
– Surprisingly, the words we speak (or write) at any time are largely

(but not entirely) dependent on the previous 3-4 words.
• Speech recognition systems typically use 3-gram or

TRIGRAM models

Left-to-right language probabilities and the N-gram model

19 March 2009 decoding

• The graphical representation of language can be reduced by
making assumptions about langauge generation
– The N-gram assumption!

• By restricting the order of an N-gram LM, the inifinitely
sized tree-shaped graph representing the language can be
collapsed into finite-sized graphs.

• In our example possible word sequences are
– Sing
– Sing sing
– Sing song sing
– Sing sing song
– Song
– Song sing sing sing sing sing song
– ….
– …

• There are infinite possible sequences
• Lets see how we can collapse this::

N-gram LMs and compact graphs

19 March 2009 decoding

Unigram Representation
• A bag of words model:

– Any word is possible after any word.
– The probability of a word is independent of the words preceding or succeeding

it.

• P(<s> word1 word2 word3..</s>) = P(word1)P(word2)P(word3)…P(</s>)
– The “P(</s>)” is critical – it is the probability that the sequence terminates
– If we didn’t have it, every sequence must be infinitely long according to this

model
– The total probability of all possible word sequences must sum to 1.0
– Only if P(</s>) is explicitly defined will the total probability = 1.0

P(Star) = P(Star | Dog) = P(Star | Rock) = P(Star | When you wish upon a)

P(When you wish upon a star) =
P(When) P(you) P(wish) P(upon) P(a) P(star) P(</s>)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)

P(sing song sing song.. </s>) = P(sing)P(song)P(sing)P(song)…P(</s>)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)

19 March 2009 decoding

sing

song

</s>

P(
si

ng
)

P(song)

<s> P(</s>)

19 March 2009 decoding

• Vocabulary: “fox”, “sox”, “knox”, “box”
• Arbitrary length sequences of arbitrary arrangements of

these fours words are possible.
• Actual probabilities:

– P(fox), P(sox), P(knox), P(box), P(END)
– P(fox) + P(sox) + P(knox) + P(box) + P(END) = 1.0

begin end

Fox
Sox

Knox
Box

P(Fox)

P(Sox)

P(Knox)

P(Box)

P(END)

P(END)

The black dots are non-emitting states that are not associated with observations

Language HMMs for Natural language: example of a graph
that uses unigram representations

19 March 2009 decoding

• A unigram model is only useful when no statistical
dependency between adjacent words can be assumed
– Or, alternately, when the data used to learn these dependencies

are too small to learn them reliably
• Learning word dependencies: Later in the program

• In natural language, the probability of a word occurring
depends on past words.

• Bigram language model: the probability of a word
depends on the previous word

• P(Star | A Rock) = P(Star | The Rock) = P(Star | Rock)
• P(Star | Rock) is not required to be equal to P(Star | Dog)

– In fact the two terms are assumed to be unrelated.

Language HMMs for Natural language: bigram
representations

19 March 2009 decoding

• Simple bigram example:
– Vocabulary: <s>, “sing”, “song”, </s>
– P(sing | </s>) = a, P(song | </s>) = b, P(</s> | <s>) = c

• a+b+c = 1.0
– P(sing| sing) = d, P(song | sing) = e, P(</s> | sing) = f

• d+e+f = 1.0
– P(sing | song) = g, P(song | song) = h, P(</s> | song) = i

• g+h+i = 1.0

• <s> is a special symbol, indicating the beginning of the
utterance
– P(word | <s>) is the probability that the utterance begins with word
– Prob(“sing song sing song”) =

P(sing | <s>) P(song | sing) P(sing | song) P (song | sing) P(</s> | song)

• Can be shown that the total probability of all word sequences of
all lengths is 1.0
– Again, the definition of <s> and </s> symbols, and all bigrams involving

the two, is crucial

Language HMMs for Natural language: bigram
representations

19 March 2009 decoding
• The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|sing)

P(sing|sing)

P(</s>|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

P(sing|song)

P(song|sing)

P(song|song)

P(song|<s>)

P(</s>)

P(
</

s>
|s

on
g)

P(</s>|sing)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(si
ng

|si
ng

)

P(sing|sing)

P(</s>|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

P(si
ng|so

ng)

P(song|sing)

P(song|song)

P(song|<s>)

<s>

• The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(si
ng

|si
ng

)

P(sing|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

P(si
ng|so

ng)

P(song|sing)

P(song|song)

P(song|<s>)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(sing|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)

P(
si

ng
| <

s>
)

P(
so

ng
| s

in
g)

P(song
| <s>)

P(sing | sing)

P(si
ng|so

ng)

P(song|song)

19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(sing|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)

P(
si

ng
| <

s>
)

P(sing
| song)

P(
so

ng
| s

in
g)

P(song | song)

P(song
| <s>)

P(sing | sing)

19 March 2009 decoding

sing

song

</s>

P(
si

ng
| <

s>
)

P(sing
| song)

P(
so

ng
| s

in
g)

P(song | song)

P(song
| <s>)

<s>

P(sing | sing)

P(</s> | sing)

P(</s> | <s>)

P(</s> | song)

19 March 2009 decoding

• Edges from “START” contain START dependent word probabilities

• Edges from “Even” contain “Even” dependent word probabilities

• Edges from “Odd” contain “Odd” dependent word probabilities

<s> </s>

SING

SONG

P(sing | <s>)

P(sing | sing)

P(song|sing)

P(</s>|sing)

Ea
ch

 w
or

d
is

 a
n

H
M

M
Language HMMs for Natural language: building graphs to

incorporate bigram representations

P(sing|song)

P(song | song)

P(</s>|song)P(song | <s>)

P(</s> | <s>)

19 March 2009 decoding

bigram initialization
Wa

Wb

Wc

Wd

bigram loop

termination

P(Wd|Wa)

P(Wc|Wa)

P(Wb|Wa)

P(Wa|Wa)

P(Wa|<s>)
P(</s>|Wa)

Language HMMs for Natural language: building graphs to
incorporate bigram representations

• The edges going out of any word “Word” have probabilities of the
form P(Word2 | Word)

19 March 2009 decoding

• The probability of a word depends on the previous two
words

• P(when you wish upon a star) =
P(when|<s>)P(you | <s>when)
P(wish|when you)P(upon|you wish)P(a|wish upon)
P(star| upon a)P(</s>|a star)

• Note that the very first word only has a bigram
probability
– P(when | <s>)

• The first word only has the “start of sentence” marker as history

– The second word actually is modelled by a trigram:
P(you|<s>when)

Language HMMs for Natural language: trigram
representations

19 March 2009 decoding

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|<s>sing)
P(sing|<s>sing sing)

P(</s>|<s>sing sing)

P(song|<s>sing sing)

P(sing|<s>sing song)

P(sing|<s>song sing)

P(sing|<s> song song)

P(song|<s>sing song)

P(song|<s>song sing)

P(song|<s> song song)

P(sing|<s> song)

P(song|<s>sing)

P(song|<s> sing)

P(song|<s>)

P(sing|<s>sing sing sing)

P(song|<s>sing sing sing)

P(</s>|<s>)

P(</s>|<s>sing)

19 March 2009 decoding

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
| <

s>
)

P(sing | <s> sing)
P(sing|sing sing)

P(</s>|sing sing)

P(song|sing sing)

P(sing|sing song)

P(sing|song sing)

P(sing|song song)

P(song|sing song)

P(song|song sing)

P(song|song song)

P(sing| <s> song)

P(song | <s> sing)

P(song | <s> sing)

P(song
| <s>)

• The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM

19 March 2009 decoding

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
| <

s>
)

P(sing | <s> sing)

P(</s>|sing sing)

P(sing|sing song)

P(sing|song sing)

P(sing|song song)

P(song|sing song)

P(song|song sing)

P(song|song song)

P(sing| <s> song)

P(song | <s> sing)

P(song | <s> sing)

P(song
| <s>)

• The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM
P(sing|sing sing)

P(
so

ng
|s

in
g

si
ng

)

19 March 2009 decoding

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
| <

s>
)

P(sing|<s> sing)

P(sing|sing sing)

P</s>|sing sing)

P(
so

ng
|s

in
g

si
ng

)

P(sing|sing song)

P(
si

ng
|s

on
g

si
ng

)

P(
si

ng
|s

on
g

so
ng

)

P(so
ng|si

ng so
ng)

P(
so

ng
|s

on
g

si
ng

)

P(song|song song)

P(sing|<s> song)

P(song|<s> sing)

P(song|<s> sing)

P(song
| <s>)

19 March 2009 decoding

sing

song

sing

song

sing

song

<s> </s>

P(sing|sing sing)

P(</s>|sing sing)

P(
so

ng
|s

in
g

si
ng

)

P(sing|sing song)

P(
si

ng
|s

on
g

si
ng

)

P(
si

ng
|s

on
g

so
ng

)

P(so
ng|si

ng so
ng)

P(
so

ng
|s

on
g

si
ng

)

P(song|song song)

P(
si

ng
| <

s>
)

P(sing|<s> sing)

P(sing|<s> song)

P(song|<s> sing)

P(song|<s> sing)

P(song
| <s>)

P(</s>|sing song)

19 March 2009 decoding

the

<s> </s>
rock

star

P(</s> | <s>)

P(star | </s>)

P(the | <s> the)
This is wrong! This would apply the probability
P(the | <s> the) to instances of “the the the”
(for which the correct probability value is
P(the | the the)

• Three word vocabulary “the”, “rock”, “star”
– The graph initially begins with bigrams of <s>
– There are edges from every node to “</s>”, that

are not shown
– Trigrams of “<s> the”..

Ea
ch

 w
or

d
is

 a
n

H
M

M
Trigram representations

P(the | </s>)

P(rock | </s>)

19 March 2009 decoding

the

– Trigrams for all “<s> word” sequences
• A new instance of every word is required to ensure that the

two preceding symbols are “<s> word”

<s>
rock

star

the

rock

star

P(the | <s> the)

P(rock | <s> the)

the

rock

star

the

rock

star

P(the | <s> star)

P(rock | <s> star)

Trigram representations

</s>

P(star | <s> the)

P(star | <s> star)

19 March 2009 decoding

the

<s>
rock

star

the

rock

star

the

rock

star

the

rock

star

This always represents a partial
sequence ending with “rock star”
Any edge coming out of this
instance of STAR will have the
word pair context “ROCK STAR”

– Each word in the second level represents a specific set of
two terminal words in a partial word sequence

P(star | star rock)

P(star | rock rock)

P(star | the rock)

Trigram representations
Ea

ch
 w

or
d

is
 a

n
H

M
M

19 March 2009 decoding

the

<s>
rock

star

the

rock

star

the

rock

star

the

rock

star

Edges coming out of this wrongly
connected STAR could have word
pair contexts that are either
“THE STAR” or “ROCK STAR”.
This is amibiguous. A word cannot have
incoming edges from two or more
different words

Trigram representations

19 March 2009 decoding

• The logic can be extended:
• A trigram decoding structure for a vocabulary of

D words needs D word instances at the first level
and D2 word instances at the second level
– Total of D(D+1) word models must be instantiated
– Other, more expensive structures are also possible

• An N-gram decoding structure will need
– D + D2 +D3… DN-1 word instances
– Arcs must be incorporated such that the exit from a

word instance in the (N-1)th level always represents a
word sequence with the same trailing sequence of N-1
words

Generic N-gram representations

19 March 2009 decoding

To Build a Speech Recognizer
• Train word HMMs from many training instances

– Typically one trains HMMs for individual phonemes, then
concatenates them to make HMMs for words

– Recognition, however is almost always done with WORD HMMs
(and not phonemes as is often misunderstood)

• Train or decide a language model for the task
– Either a simple grammar or an N-gram model

• Represent the language model as a compact graph
• Introduce the appropriate HMM for each word in the graph

to build a giant HMM

• Use the Viterbi algorithm to find the best state sequence
(and thereby the best word sequence) through the graph!

