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Recap and Recap and LookaheadLookahead
Covered so far:

String Matching based Recognition
Introduction to HMMs
Recognizing Isolated Words
Learning word models from continuous recordings
Building word models from phoneme models
Context-independent and context-dependent models
Building decision trees
Tied-state models
Language Modelling

Exercise: Training phoneme models
Exercise: Training context-dependent models
Exercise: Building decision trees
Exercise: Training tied-state models

Recognition
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Analogy between DTW vs. HMMAnalogy between DTW vs. HMM

DTW:  Edge Score;    HMM: Transition probability
The edge score of the DTW template is analogous to the log of 
the transition probability for the HMM

DTW: Symbol matching cost;   HMM: State probability
The matching cost of DTW is analogous to the log of the 
probability of the observation computed from the probability 
distribution associated with the state

The string matching algorithm for DTW actually finds the 
sequence of states in the HMM that matches the observation
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Speech Recognition as String MatchingSpeech Recognition as String Matching

We find the distance of the data from the “model” using the 
Trellis for the word
Pick the word for which this distance is lowest
Word = argmin word distance(data, model(word))
Using the DTW / HMM analogy

Word = argmax word probability(data | model(word))

M
O

D
EL

DATA
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Speech Recognition as Bayesian ClassificationSpeech Recognition as Bayesian Classification

Different words may occur with different frequency
E.g. a person may say “SEE” much more frequently than “ZEE”

This must be factored in
If we are not very sure they said “SEE” or “ZEE”, choose “SEE”

We are more likely to be right than if we chose ZEE

The basic DTW equation does not factor this in
Word = argmax word probability(data | model(word)) does not 
account for prior bias

Cast the problem instead as a Bayesian classification problem
Word = argmax word p(word) probability(data | model(word))
“p(word)” is the a priori probability of the word
Naturally accounts for prior bias
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Given data X, find which of a number of classes C1, 
C2,…CN it belongs to, based on known distributions of 
data from C1, C2, etc.

Bayesian Classification:
Class = Ci : i = argmaxj log(P(Cj)) + log(P(X|Cj))

a priori probability of Cj Probability of X as given by
the probability distribution of Cj

Statistical pattern classification

The a priori probability accounts for the relative proportions of the 
classes
– If you never saw any data, you would guess the class based on 

these probabilities alone
P(X|Cj) accounts for evidence obtained from observed data  X
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Classes are words
Data are instances of isolated spoken words
– Sequence of feature vectors derived from speech signal, 

Bayesian classification: 
Recognized_Word = argmaxword log(P(word)) + log(P(X| word))

P(word) is a priori probability of word
Obtained from our expectation of the relative frequency of occurrence of 

the word
P(X|word) is the probability of X computed on the probability distribution 

function of word

Statistical classification of isolated words
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• To compute  P(X|word), there must be a statistical distribution  for X
corresponding to word
– Each word must be represented by some statistical model. 

• We represent each word by an HMM
• P(X|word) is (approximated by) the best path score for the the HMM

non-emitting absorbing
state

Useful to model the termination of the word using a non-emitting state
Simplifies many things

Computing P(X|word)
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Log(P(Odd))

HMM for Odd HMM for Even

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd)) Log(P(Even))+log(P(X|Even))

Classifying between two words: Odd and Even

The prior bias is factored in as the edge penalty at the entry to the trellis
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Classifying between two words: Odd and Even

Log(P(Odd))

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd))

Log(P(Even))
+log(P(X|Even))
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Score(X|Even)

Score(X|Odd)

• Compute the probability of best path
– Computations can be done in the log domain. Only additions and 

comparisons are required

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))
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Score(X|Even)

Score(X|Odd)

• Compare scores (best state sequence probabilities) of all competing words
• Select the word sequence corresponding to the path with the best score

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))
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• Construct a trellis (search graph) based on 
the HMM for each word
– Alternately construct a single, common trellis

• Select the word corresponding to the best 
scoring path through the combined trellis

Decoding isolated words with word HMMs
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• Thus far we have been  talking about Scores, that are in 
fact Log Probabilities

• In the following slides we will talk in terms of 
Probabilities and not Log probabilities
– A matter of convenience
– This does not change the basic procedures – what used to be 

summation will not become multiplication
• Ie. We multiply the probabilities along the best path, rather than to 

add them

Bayesian classification:
Recognized_Word = argmaxword log(P(word)) + log(P(X| 
word))
Recognized_Word = argmaxword P(word) P(X| word)

A change of notation
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• Classes are word sequences
• Data are spoken recordings of word sequences
• Bayesian classification:
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Statistical classification of word sequences

• P(wd1,wd2,wd3..) is a priori probability of word sequence 
wd1,wd2,wd3..
– Obtained from a model of the language

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability 
distribution function of the word sequence wd1,wd2,wd3..
– HMMs now represent probability distributions of word sequences

Given data X, find which of a number of classes C1, C2,…CN it 
belongs to, based on known distributions of data from C1, C2, etc.
Bayesian Classification:

Class = Ci : i = argmaxj P(Cj)P(X|Cj)
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Decoding continuous speech 
First step: construct an HMM for each possible word sequence

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability 
distribution function of the word sequence wd1,wd2,wd3..
– HMMs now represent probability distributions of word sequences

HMM for word 1 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for 
each possible word sequence
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P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

P(Rock Star) P(Dog Star)

Bayesian Classification between word sequences

Classifying an utterance as either “Rock Star” or “Dog Star”
Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)
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P(Rock) P(Dog)

P(Star|Rock) P(Star|Dog) P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)
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Bayesian Classification between word sequences

Classifying an utterance as either “Rock Star” or “Dog Star”
Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)
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P(Dog,Star)P(X|Dog Star)

P(Rock,Star)P(X|Rock Star)

Bayesian Classification between word sequences
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Score(X|Rock Star)

Score(X|Dog Star)

Approximate total probability
with best path score

Decoding to classify between word sequences
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The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own 
best path

Decoding to classify between word sequences
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The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own 
best path

SET 1 and its best path

dogstar1

Decoding to classify between word sequences
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The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own 
best path

SET 2 and its best path

dogstar2

Decoding to classify between word sequences
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The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own 
best path

SET 3 and its best path

dogstar3

Decoding to classify between word sequences
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The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted
trellis, each with its own 
best path

SET 4 and its best path

dogstar4

Decoding to classify between word sequences
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The best path through
Dog Star is the best of
the four transition-specific
best paths
max(dogstar) =
max ( dogstar1, dogstar2, 

dogstar3, dogstar4 )

Decoding to classify between word sequences
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Similarly, for Rock Star
the best path through
the trellis is the best of
the four transition-specific
best paths
max(rockstar) =
max ( rockstar1, rockstar2, 

rockstar3, rockstar4 )

Decoding to classify between word sequences
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Then we’d compare 
the best paths 
through Dog Star
and Rock Star

max(dogstar) =
max ( dogstar1, dogstar2, 

dogstar3, dogstar4 )

max(rockstar) =
max ( rockstar1, rockstar2,

rockstar3,  rockstar4 )

Viterbi =
max(max(dogstar),

max(rockstar) )

Decoding to classify between word sequences
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argmax is commutative:

max(max(dogstar), 
max(rockstar) )
= 
max ( 
max(dogstar1, rockstar1),
max (dogstar2, rockstar2), 
max (dogstar3,rockstar3), 
max(dogstar4,rockstar4 )

)

Decoding to classify between word sequences
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We can choose between
Dog and Rock right here 
because the futures of these
paths are identical

For a given entry point
the best path through STAR
is the same for both trellises

t1

Decoding to classify between word sequences
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r We select the higher scoring
of the two incoming edges
here

This portion of the
trellis is now deleted

t1

Decoding to classify between word sequences
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Similar logic can be applied
at other entry points to 
Star

•t1

Decoding to classify between word sequences
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Similar logic can be applied
at other entry points to 
Star

•t1

Decoding to classify between word sequences
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Similar logic can be applied
at other entry points to 
Star

•t1

Decoding to classify between word sequences
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Similar logic can be applied
at other entry points to 
Star

This copy of the trellis
for STAR is completely
removed

Decoding to classify between word sequences



19 March 2009 decoding

R
oc

k
D

og
S

ta
r

The two instances of Star can be collapsed into one to form a smaller 
trellis

Decoding to classify between word sequences
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We will represent the
vertical axis of the 
trellis in this simplified
manner

Rock Dog Star

Rock

Dog

Star=

Language-HMMs for fixed length word sequences
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• The actual recognition is DOG STAR vs. ROCK STAR
– i.e. the two items that form our “classes” are entire phrases

• The reduced graph to the right is merely an engineering 
reduction obtained by utilizing commonalities in the two 
phrases (STAR)

• This distinction affects the design of the recognition system

The Real “Classes”

Rock

Dog

Star

Rock Star

Dog  Star
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• The word graph represents all allowed word sequences in 
our example
– The set of all allowed word sequences represents the allowed 

“language”

• At a more detailed level, the figure represents an HMM 
composed of the HMMs for all words in the word graph
– This is the “Language HMM” – the HMM for the entire allowed 

language

• The language HMM represents the vertical axis of the 
trellis
– It is the trellis, and NOT the language HMM, that is searched for 

the best path

P(Rock)

P(Dog)

P(Star|Rock)

P(Star|Dog)

Ea
ch

 w
or

d 
is

 a
n 

H
M

M

Language-HMMs for fixed length word sequences
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• Recognizing one of four lines from “charge of the light brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

to

of

Cannon

them

right

left

frontin

behind

P(cannon)

P(to|cannon)

P(right|cannon to)

P(in|cannon)

P(behind|cannon)

P(of|cannon to right)

P(of|cannon to left)

P(them|cannon in front of)

P(them|cannon behind)
them

of

of them

them

P(them|cannon to right of)

P(front|cannon in)
P(of|cannon in front)

P(them|cannon to left of)

P(left|cannon to)

Ea
ch

 w
or

d 
is

 a
n 

H
M

M

Language-HMMs for fixed length word sequences



19 March 2009 decoding

Where does the graph come from
• The graph must be specified to the recognizer

– What we are actually doing is to specify the complete 
set of “allowed” sentences in graph form

• May be specified as an FSG or a Context-Free 
Grammar
– CFGs and FSG do not have probabilities associated 

with them
– We could factor in prior biases through probabilistic 

FSG/CFGs
– In probabilistic variants of FSGs and CFGs we 

associate probabilities with options
• E.g. in the last graph
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• Recognizing one of four lines from “charge of the light brigade”
• If the probability of a word only depends on the preceding word, the graph 

can be collapsed:
– e.g. P(them | cannon to right of) = P(them | cannon to left of) = P(cannon | 

of)

to

ofCannon them

right

left

frontin

behind

P(cannon)

P(to | cannon)

P(right | to)

P(in | cannon)

P(behind | cannon)

P(of | right)

P(of | left)

P(them | of)

P(them|behind)

Simplification of the language HMM through lower context 
language models

Ea
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n 

H
M

M
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freezy

breeze

made

these

trees

freeze

three trees

trees’ cheese

Language HMMs for fixed-length word sequences: based 
on a grammar for Dr. Seuss
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No probabilities specified – a person may utter any of these phrases at any time
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delete

file

all
files

open

edit

close
marked

Language HMMs for fixed-length word sequences: 
command and control grammar
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No probabilities specified – a person may utter any of these phrases at any time
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• Previous examples chose between a finite set of known 
word sequences

• Word sequences can be of arbitrary length
– E.g. set of all word sequences that consist of an arbitrary number 

of repetitions of the word bang
bang
bang bang
bang bang bang
bang bang bang bang
……

– Forming explicit word-sequence graphs of the type we’ve seen so 
far is not possible
• The number of possible sequences (with non-zero a-priori probability) 

is potentially infinite 
• Even if the longest sequence length is restricted, the graph will still be 

large

Language HMMs for arbitrarily long word sequences



19 March 2009 decoding

• Arbitrary word sequences can be 
modeled with loops under some 
assumptions. E.g.:

• A “bang” can be followed by 
another “bang” with probability 
P(“bang”).
– P(“bang”) = X; 

P(Termination) = 1-X;
• Bangs can occur only in pairs 

with probability X

• A more complex graph allows 
more complicated patterns

• You can extend this logic to other 
vocabularies where the speaker 
says other words in addition to 
“bang”
– e.g. “bang bang you’re 

dead”

bang

X

1-X

bang
1-X

bang

X

bang
1-X

X

bang
Y

1-Y

Ea
ch

 w
or

d 
is

 a
n 

H
M

M
Language HMMs for arbitrarily long word sequences



19 March 2009 decoding

• Constrained set of word sequences with 
constrained vocabulary are realistic
– Typically in command-and-control situations

• Example: operating TV remote

– Simple dialog systems
• When the set of permitted responses to a query is restricted

• Unconstrained word sequences : NATURAL 
LANGUAGE
– State-of-art large vocabulary decoders
– Later in the program..

Language HMMs for arbitrarily long word sequences
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QUESTIONS?

• Next up: Pruning and the Backpointer table
• Any questions on topics so far?
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• The search for the best path can become very 
expensive
– As model size or utterance length increase, the trellis 

size increases
– Number of paths to evaluate increases unmanageable

• Need to reduce computation somehow
– Eliminating parts of the trellis from consideration 

altogether
• This approach is called search pruning, or just pruning

• Basic consideration in pruning: As long as the best 
cost path is not eliminated by pruning, we obtain 
the same result

Pruning
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Pruning
• Pruning is a heuristic: typically, there is a 

threshold on some measured quantity, and 
anything above or below is eliminated

• It is all about choosing the right measure, and the 
right threshold

• Let us see two different pruning methods:
– Fixed-width pruning
– Relative-score pruning
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Fixed-width Pruning

• At each time find the highest scoring node 
and retain only the N closest nodes

• The rest of the nodes are not considered for 
further propagation
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Pruning by Limiting Path Cost
• Observation: Partial paths with “very high” costs will 

rarely recover to win
• Hence, poor partial paths can be eliminated from the 

search:
– For each frame j, after computing all the trellis nodes path costs, 

determine which nodes have too high costs
– Eliminate them from further exploration
– (Assumption: In any frame, the best partial path has low cost)

jorigin

partial 
best paths

High cost partial paths (red);
Do not explore further
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Pruning: Beam Search
• Solution: In each frame j, set the pruning threshold by a 

fixed amount T relative to the best cost in that frame
– I.e. if the best partial path cost achieved in the frame is X, prune 

away all nodes with partial path cost > X+T
– Note that time synchronous search is very efficient for 

implementing the above

• Advantages:
– Unreliability of absolute path costs is eliminated
– Monotonic growth of path costs with time is also irrelevant

• Search that uses such pruning is called beam search
– This is the most widely used search optimization strategy

• The relative threshold T is usually called beam width or 
just beam
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Beam Search Visualization
• The set of trellis nodes actually evaluated is the active set
• Here is a typical “map” of the active region, aka beam (confusingly)

• Presumably, the best path lies somewhere in the active region

active 
region

(beam)
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Beam Search Efficiency
• Unlike the fixed width approach, the computation 

reduction with beam search is unpredictable
– The set of active nodes at frames j and k is shown by the black 

lines
• However, since the active region can follow any warping, 

it is likely to be relatively more efficient than the fixed 
width approach

active 
region

j k
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Determining the Optimal Beam Width
• Determining the optimal beam width to use is crucial

– Using too narrow or tight a beam (too low T) can prune the best path and result in 
too high a match cost, and errors

– Using too large a beam results in unnecessary computation in searching unlikely 
paths

– One may also wish to set the beam to limit the computation (e.g. for real-time 
operation), regardless of recognition errors

• Unfortunately, there is no mathematical solution to determining an optimal 
beam width

• Common method: Try a wide range of beams on some test data until the desired 
operating point is found
– Need to ensure that the test data are somehow representative of actual speech that 

will be encountered by the application
– The operating point may be determined by some combination of recognition 

accuracy and computational efficiency
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Determining the Optimal Beam Width

• Any value around the point marked T is a reasonable 
beam for minimizing word error rate (WER)

• A similar analysis may be performed based on average 
CPU usage (instead of WER)

Beam width

W
or

d 
er

ro
r 

ra
te

T
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Backpointer Table
• The Viterbi decoding process stores backpointers

from every state to its best predecessor at every 
time.

• For HMMs of large word graphs, this set of 
backpointers can quickly become very large

• Better to store “backpointers” efficiently, so that 
only necessary information is stored

• We use a “BackPointer Table”
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

red
green
blue



19 March 2009 decoding 60

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue
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Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
blue
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

red
green
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6
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green
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6
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green
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6
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green
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6



19 March 2009 decoding 92

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7
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t=1 t=2 t=3 t=4 t=5 t=6 t=7
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7



19 March 2009 decoding 95

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5 t=6 t=7
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8



19 March 2009 decoding 100

Haikya

Using a Using a BackpointerBackpointer TableTable
Only retain back pointers to the entry into words
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

1

red
green
blue

1, t=0, scr1,p=0,…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers

1

red
green
blue

1, t=0, scr1,p=0,…



19 March 2009 decoding 103

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

1

red
green
blue

1, t=0, scr1,p=0,…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1

1

red
green
blue

1, t=0, scr1,p=0,…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2 t=3

1

red
green
blue

1, t=0, scr1,p=0,…
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t=1 t=2 t=3

1

red
green
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1, t=0, scr1,p=0,…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

2
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

Retain backpointers (and add the to the table)
if deleting them will result in loss of word

history

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3

1
t=4

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
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2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…



19 March 2009 decoding 121

Haikya

Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

red
green
blue

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2

1
t=3 t=4

Retain backpointers (and add 
the to the table)

if deleting them will result in 
loss of word

history

3, t=4, scr3,p=1, gr

2

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…

3
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1
t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4

1

2

t=5

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

2

red
green
blue

2 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

22 3

3, t=4, scr3,p=1, br

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Trellis with Complete Set of Trellis with Complete Set of BackpointersBackpointers
t=1 t=2 t=3 t=4 t=5

1

2

Retain backpointers (and add 
the to the table)

if deleting them will result in 
loss of word

history

4, t=5, scr4,p=1,bl

2 3 4

3, t=4, scr3,p=1, gr

1, t=0, scr1,p=0,<s>…

2, t=3, scr2,p=1,bl…
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Using Using BackpointersBackpointers
The Backpointer table in the previous figure only retains 
sufficient history to obtain the best hypothesis
Sometimes we would like to retain additional information in 
the backpointer table that tells us what other words were 
considered (not pruned out) during recognition

e.g. when we want to create lattices for finding N-best 
hypotheses or to compute confidence

In this case the backpointer table is expanded to include all
trellis nodes at the final states of words

Additionally, all trellis nodes corresponding to non-emitting 
nodes may also be stored



19 March 2009 decoding 138

Haikya

WordWord--entry Pruningentry Pruning
Word-entry points behave differently from the rest of the 
trellis
Typically the identity of a word is most clear in the initial 
frames
Language probabilities also get introduced at this point

Additional computational benefits may be drawn from this 
observation by pruning word entries differently from other 
points in the lattice
Two forms of pruning

Absolute:  Only allow the best N word entries at any time to 
survive
Relative:  Only allow word entries within a small beam of the 
best word entry score to survive
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Word EntriesWord Entries
t=1 t=2 t=3

1
t=4

red
green
blue

2



19 March 2009 decoding 140

Haikya

Word EntriesWord Entries
t=1 t=2 t=3

1
t=4

red
green
blue

2

Entry into generating states heralds
the possible beginning of a new word

Pick the “generating” state
(In this example there is only one:
This is a very simple graph)

Retain all generating states with a 
score within a small beam of this

Alternately retain the best N 
generating states
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QUESTIONS?

• Next up: Natural language
• Any questions on topics so far?
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• In a natural language task, we try to recognize from among all 
possible word sequences
– A very large number
– Implicitly, we have an infinitely large graph, where each path is a 

single word sequence 

Bayesian Natural Language Recognition

. . . . . . .

the term cepstrum was introduced by Bogert et al and has come to be 

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 

with the unusual title 

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an 

echo has an additive 

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power 

spectrum should exhibit a peak at the echo delay 

they called this function the cepstrum

interchanging letters in the word spectrum because 

in general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new 

signal processing technique however only the term cepstrum has been widely used
the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker
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• A factored representation of the a priori probability of a word 
sequence

P(<s> word1 word2 word3 word4…</s>) = 
P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)…

• P(word1 word2 word3 word4 … ) is incrementally obtained :

Compacting Natural Language: Factored Representations

word1
word1 word2
word1 word2 word3
word1 word2 word3 word4
…..

• This factored representation allows graph compaction
– But the graphs will still be impossibly large
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• A priori probabilities for word sequences are spread through the graph
– They are applied on every edge

• This is a much more compact representation of the language than the full 
graph shown earlier

• But is still infinitely large in size

The left to right model: A Graphical View

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

•Assuming a two-word
vocabulary: “sing” and
“song”
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sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|<s>sing)
P(sing|<s>sing sing)

P(</s>|<s>sing sing)

P(song|<s>sing sing)

P(sing|<s>sing song)

P(sing|<s>song sing)

P(sing|<s> song song)

P(song|<s>sing song)

P(song|<s>song sing)

P(song|<s> song song)

P(sing|<s> song)

P(song|<s>sing)

P(song|<s> sing)

P(song|<s>)

P(sing|<s>sing sing sing)

P(song|<s>sing sing sing)

P(</s>|<s>)

P(</s>|<s>sing)

This graph is infinite in size
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• The N-gram assumption
P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1)

• The probability of a word is assumed to be dependent only 
on the past N-1 words
– For a 4-gram model, the probability that  a person will follow “two 

times two is” with “four” is assumed to be identical to the 
probability that  they will follow “seven times two is” with “four”.

• This is not such a poor assumption
– Surprisingly, the words we speak (or write) at any time are largely 

(but not entirely) dependent on the previous 3-4 words.
• Speech recognition systems typically use 3-gram or 

TRIGRAM models

Left-to-right language probabilities and the N-gram model
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• The graphical representation of language can be reduced by 
making assumptions about langauge generation
– The N-gram assumption!

• By restricting the order of an N-gram LM, the inifinitely
sized tree-shaped graph representing the language can be 
collapsed into finite-sized graphs.

• In our example possible word sequences are
– Sing
– Sing sing
– Sing song sing
– Sing sing song
– Song
– Song sing sing sing  sing sing song
– ….
– …

• There are  infinite possible sequences
• Lets see how we can collapse this::

N-gram LMs and compact graphs
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Unigram Representation
• A bag of words model:

– Any word is possible after any word. 
– The probability of a word is independent of the words preceding or succeeding 

it.

• P(<s> word1 word2 word3..</s>) = P(word1)P(word2)P(word3)…P(</s>)
– The “P(</s>)” is critical – it is the probability that the sequence terminates
– If we didn’t have it, every sequence must be infinitely long according to this 

model
– The total probability of all possible word sequences must sum to 1.0
– Only if P(</s>) is explicitly defined will the total probability = 1.0

P(Star) = P(Star | Dog) = P(Star | Rock) = P(Star | When you wish upon a)

P(When you wish upon a star) = 
P(When) P(you) P(wish) P(upon) P(a) P(star) P(</s>)
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sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)

P(sing song sing song.. </s>) = P(sing)P(song)P(sing)P(song)…P(</s>)
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sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)
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sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
)

P(si
ng)

P(sing)

P(</s>)

P(song)

P(sing)

P(sing)

P(sing)

P(song)

P(song)

P(song)

P(si
ng)

P(song)

P(song)

P(song)

<s>
P(</s>)
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sing

song

</s>

P(
si

ng
)

P(song)

<s> P(</s>)
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• Vocabulary:  “fox”, “sox”, “knox”, “box”
• Arbitrary length sequences of arbitrary arrangements of 

these fours words are possible.
• Actual probabilities:

– P(fox), P(sox), P(knox), P(box), P(END)
– P(fox) + P(sox) + P(knox) + P(box) + P(END) = 1.0

begin end

Fox
Sox

Knox
Box

P(Fox)

P(Sox)

P(Knox)

P(Box)

P(END)

P(END)

The black dots are non-emitting states that are not associated with observations

Language HMMs for Natural language: example of a graph 
that uses unigram representations
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• A unigram model is only useful when no statistical 
dependency between adjacent words can be assumed
– Or, alternately, when the data used to learn these dependencies 

are too small to learn them reliably
• Learning word dependencies: Later in the program

• In natural language, the probability of a word occurring 
depends on past words.

• Bigram language model: the probability of a word 
depends on the previous word

• P(Star | A Rock) = P(Star | The Rock) = P(Star | Rock)
• P(Star | Rock) is not required to be equal to P(Star | Dog)

– In fact the two terms are assumed to be unrelated.

Language HMMs for Natural language: bigram 
representations
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• Simple bigram example:
– Vocabulary:  <s>, “sing”, “song”, </s>
– P(sing | </s>) = a, P(song | </s>) = b, P(</s> | <s>) = c

• a+b+c = 1.0
– P(sing| sing) = d, P(song | sing) = e, P(</s> | sing) = f

• d+e+f = 1.0
– P(sing | song) = g, P(song | song) = h, P(</s> | song) = i

• g+h+i = 1.0

• <s> is a special symbol, indicating the beginning of the 
utterance
– P(word | <s>) is the probability that the utterance begins with word
– Prob(“sing song sing song”) = 

P(sing | <s>) P(song | sing) P(sing | song) P (song | sing) P(</s> | song)

• Can be shown that the total probability of all word sequences of
all lengths is 1.0
– Again, the definition of <s> and </s> symbols, and all bigrams involving 

the two, is crucial

Language HMMs for Natural language: bigram 
representations
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• The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|sing)

P(sing|sing)

P(</s>|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

P(sing|song)

P(song|sing)

P(song|song)

P(song|<s>)

P(</s>)

P(
</

s>
|s

on
g)

P(</s>|sing)
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sing

song
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song
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song
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song

sing

song

sing

song

sing
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</s>

P(
si

ng
|<

s>
)

P(si
ng
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ng

)

P(sing|sing)

P(</s>|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

P(si
ng|so

ng)

P(song|sing)

P(song|song)

P(song|<s>)

<s>

• The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)
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P(sing|sing)

P(sing|song)
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P(song|sing)

P(song|song)

P(song|<s>)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)



19 March 2009 decoding

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s>

P(sing|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)
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)

P(
so

ng
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P(song
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P(sing | sing)

P(si
ng|so

ng)

P(song|song)
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</s>

P(sing|sing)

P(song|sing)

P(sing|song)

P(sing|sing)

P(sing|song)

P(song|song)

P(song|sing)

P(song|song)

<s>

P(</s>|sing)

P(</s>|<s>)

P(</s>|sing)

P(</s>|song)
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)

P(sing
| song)
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P(song | song)

P(song
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P(sing | sing)
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sing

song

</s>

P(
si

ng
| <

s>
)

P(sing
| song)

P(
so

ng
| s

in
g)

P(song | song)

P(song
| <s>)

<s>

P(sing | sing)

P(</s> | sing)

P(</s> | <s>)

P(</s> | song)
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• Edges from “START” contain START dependent word probabilities

• Edges from “Even” contain “Even” dependent word probabilities

• Edges from “Odd” contain “Odd” dependent word probabilities

<s> </s>

SING

SONG

P(sing | <s>)

P(sing | sing)

P(song|sing)

P(</s>|sing)

Ea
ch

 w
or

d 
is

 a
n 

H
M

M
Language HMMs for Natural language: building graphs to 

incorporate bigram representations

P(sing|song)

P(song | song)

P(</s>|song)P(song | <s>)

P(</s> | <s>)
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bigram initialization
Wa

Wb

Wc

Wd

bigram loop

termination

P(Wd|Wa)

P(Wc|Wa)

P(Wb|Wa)

P(Wa|Wa)

P(Wa|<s>)
P(</s>|Wa)

Language HMMs for Natural language: building graphs to 
incorporate bigram representations

• The edges going out of any word “Word” have probabilities of the 
form P(Word2 | Word)
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• The probability of a word depends on the previous two 
words

• P( when you wish upon a star) = 
P(when|<s>)P(you | <s>when) 
P(wish|when you)P(upon|you wish)P(a|wish upon)
P(star| upon a)P(</s>|a star)

• Note that the very first word only has a bigram 
probability
– P(when | <s>)

• The first word only has the “start of sentence” marker as history

– The second word actually is modelled by a trigram: 
P(you|<s>when)

Language HMMs for Natural language: trigram 
representations
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sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
|<

s>
)

P(sing|<s>sing)
P(sing|<s>sing sing)

P(</s>|<s>sing sing)

P(song|<s>sing sing)

P(sing|<s>sing song)

P(sing|<s>song sing)

P(sing|<s> song song)

P(song|<s>sing song)

P(song|<s>song sing)

P(song|<s> song song)

P(sing|<s> song)

P(song|<s>sing)

P(song|<s> sing)

P(song|<s>)

P(sing|<s>sing sing sing)

P(song|<s>sing sing sing)

P(</s>|<s>)

P(</s>|<s>sing)
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song
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sing

song

sing

song

sing

song

sing

song

</s>
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)

P(sing | <s> sing)
P(sing|sing sing)

P(</s>|sing sing)

P(song|sing sing)

P(sing|sing song)

P(sing|song sing)

P(sing|song song)

P(song|sing song)

P(song|song sing)

P(song|song song)

P(sing| <s> song)

P(song | <s> sing)

P(song | <s> sing)

P(song
| <s>)

• The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM
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sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(
si

ng
| <

s>
)

P(sing | <s> sing)

P(</s>|sing sing)

P(sing|sing song)

P(sing|song sing)

P(sing|song song)

P(song|sing song)

P(song|song sing)

P(song|song song)

P(sing| <s> song)

P(song | <s> sing)

P(song | <s> sing)

P(song
| <s>)

• The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM
P(sing|sing sing)

P(
so

ng
|s

in
g 

si
ng

)
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P(song|<s> sing)

P(song|<s> sing)
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the

<s> </s>
rock

star

P(</s> | <s>)

P(star | </s>)

P(the | <s> the)
This is wrong! This would apply the probability
P(the | <s> the) to instances of “the the the”
(for which the correct probability value is
P(the | the the)

• Three word vocabulary “the”, “rock”, “star”
– The graph initially begins with bigrams of <s>
– There are edges from every node to “</s>”, that 

are not shown
– Trigrams of “<s> the”..

Ea
ch

 w
or

d 
is

 a
n 

H
M

M
Trigram representations

P(the | </s>)

P(rock | </s>)
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the

– Trigrams for all “<s> word” sequences
• A new instance of every word is required to ensure that the 

two preceding symbols are “<s> word”

<s>
rock

star

the

rock

star

P(the | <s> the)

P(rock | <s> the)

the

rock

star

the

rock

star

P(the | <s> star)

P(rock | <s> star)

Trigram representations

</s>

P(star | <s> the)

P(star | <s> star)
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the

<s>
rock

star

the

rock

star

the

rock

star

the

rock

star

This always represents a partial
sequence ending with “rock star”
Any edge coming out of this 
instance of STAR will have the
word pair context “ROCK STAR”

– Each word in the second level represents a specific set of 
two terminal words in a partial word sequence

P(star | star  rock)

P(star | rock rock)

P(star | the rock)

Trigram representations
Ea

ch
 w

or
d 

is
 a

n 
H

M
M
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the

<s>
rock

star

the

rock

star

the

rock

star

the

rock

star

Edges coming out of this wrongly
connected STAR could have word
pair contexts that are either 
“THE STAR” or “ROCK STAR”.
This is amibiguous. A word cannot have 
incoming edges from two or more 
different words

Trigram representations
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• The logic can be extended:
• A trigram decoding structure for a vocabulary of 

D words needs D word instances at the first level 
and D2 word instances at the second level
– Total of D(D+1) word models must be instantiated
– Other, more expensive structures are also possible

• An N-gram decoding structure will need
– D + D2 +D3… DN-1 word instances
– Arcs must be incorporated such that the exit from a 

word instance in the (N-1)th level always represents a 
word sequence with the same trailing sequence of  N-1 
words

Generic N-gram representations
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To Build a Speech Recognizer
• Train word HMMs from many training instances

– Typically one trains HMMs for individual phonemes, then 
concatenates them to make HMMs for words

– Recognition, however is almost always done with WORD HMMs
(and not phonemes as is often misunderstood)

• Train or decide a language model for the task
– Either a simple grammar or an N-gram model

• Represent the language model as a compact graph
• Introduce the appropriate HMM for each word in the graph 

to build a giant HMM

• Use the Viterbi algorithm to find the best state sequence 
(and thereby the best word sequence) through the graph!


