Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

Decoding Part II

Bhiksha Raj and Rita Singh

Recap and Lookahead

- Covered so far:
 - String Matching based Recognition
 - Introduction to HMMs
 - Recognizing Isolated Words
 - Learning word models from continuous recordings
 - Building word models from phoneme models
 - Context-independent and context-dependent models
 - Building decision trees
 - Tied-state models
 - Decoding: Concepts
 - Exercise: Training phoneme models
 - Exercise: Training context-dependent models
 - Exercise: Building decision trees
 - Exercise: Training tied-state models
- Decoding: Practical issues and other topics

A Full N-gram Lanugage Model Graph

An N-gram language model can be represented as a graph for speech recognition

Generic N-gram representations

- □ A full N-gram graph can get *very very very* large
- A trigram decoding structure for a vocabulary of D words needs D word instances at the first level and D² word instances at the second level
 - Total of D(D+1) word models must be instantiated
- □ An N-gram decoding structure will need
 - **D** + D^2 + D^3 ... D^{N-1} word instances
- A simple trigram LM for a vocabulary of 100,000 words would have...
 - 100,000 words is a reasonable vocabulary for a large-vocabulary speech recognition system
- an indecent number of nodes in the graph and an obscene number of edges

Lack of Data to the Rescue!

- We never have enough data to learn all D³ trigram probabilities
- We learn a very small fraction of these probabilities
 - Broadcast news: Vocabulary size 64000, training text 200 million words
 - □ 10 million trigrams, 3 million bigrams!
- □ All other probabilities are obtained through backoff
- □ This can be used to reduce graph size
 - If a trigram probability is obtained by backing off to a bigram, we can simply reuse bigram portions of the graph
- □ Thank you Mr. Zipf !!

The corresponding bigram graph

decoding: advanced

Using Backoffs

- The complete trigram LM for the two word language has the following set of probabilities:
 - P(sing |<s> song)
 - P(sing | <s> sing)
 - P(sing | sing sing)
 - P(sing | sing song)
 - P(sing | song sing)
 - P(sing | song song)
 - P(song |<s> song)
 - P(song | <s > sing)
 - P(song | sing sing)
 - P(song | sing song)
 - P(song | song sing)
 - P(song | song song)

Using Backoffs

- The complete trigram LM for the two word language has the following set of probabilities:
 - P(sing |<s> song)
 - P(sing | <s> sing)
 - P(sing | sing sing)
 - P(sing | sing song)
 - P(sing | song sing)
 - P(sing | song song)
 - P(song |<s> song)
 - P(song | <s> sing)
 - P(song | sing sing)
 - P(song | sing song)
 - P(song | song sing)
 - P(song | song song)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) = b(sing sing) P(sing|sing)
 - P(sing | song sing) = b(song sing) P(sing|sing)
 - P(song | song song) =
 b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

Several Trigrams are Backed off

Several Trigrams are Backed off

P(songlsong song)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) = b(sing sing) P(sing|sing)
 - P(sing | song sing) = b(song sing) P(sing|sing)
 - P(song | song song) =
 b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

sing

<u>Backed off Trigram</u>

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)

- P(song | song song) =b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)

- P(song | song song) =b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)
 - P(sing | song sing) = b(song sing) P(sing|sing)
 - P(song | song song) =b(song song)P(song|song)
 - P(song | song sing) =b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)
 - P(sing | song sing) = b(song sing) P(sing|sing)
 - P(song | song song) =b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)

- P(song | song song) =b(song song)P(song|song)
 - P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) =b(sing sing) P(sing|sing)

P(sing | song sing) = b(song sing) P(sing|sing)

P(song | song song) = b(song song)P(song|song)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) = b(sing sing) P(sing|sing)

P(sing | song sing) = b(song sing) P(sing|sing)

P(song | song song) = b(song song)P(song|song)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) = b(sing sing) P(sing|sing)

P(sing | song sing) = b(song sing) P(sing|sing)

P(song | song song) =b(song song)P(song|song)

- Several of these are not available and obtained by backoff
 - P(sing | sing sing) = b(sing sing) P(sing|sing)

P(sing | song sing) = b(song sing) P(sing|sing)

P(song | song song) = b(song song)P(song|song)

- The good: By adding a backoff arc to "sing" from song to compose
 P(song|song sing), we got the backed off probability for P(sing|song sing) for free
 - This can result in an enormous reduction of size
 - The bad: P(sing|song sing) might already validly exist in the graph!!
 - Some N-gram arcs have two different variants
 - This introduces spurious multiple definitions of some trigrams

Even compressed graphs are large

- Even a compressed N-gram word graph can get very large
 - Explicit arcs for at least every bigram and every trigram in the LM
 - This can get to tens or hundreds of millions
- Approximate structures required
 - The approximate structure is, well, approximate
 - It reduces the graph size
 - This breaks the requirement that every node in the graph represents a unique word history
 - We compensate by using additional external structures to track word history

The pseudo trigram approach

- Each word has its own HMM
 - Computation and memory intensive
- Only a "pseudo-trigram" search:

- □ Use a simple bigram graph
 - Each word only represents a *single word* history
 - At the outgoing edges from any word we can only be certain of the last word

- □ Use a simple bigram graph
 - Each word only represents a *single word* history
 - At the outgoing edges from any word we can only be certain of the last word
 - As a result we cannot apply *trigram* probabilities, since these require knowledge of two-word histories

- Solution: Obtain information about the word that preceded "song" on the path from the backpointer table
- □ Use that word along with "song" as a two-word history
 - Can now apply a trigram probability

Pseudo Trigram

- The problem with the pseudo-trigram approach is that the LM probabilities to be applied can no longer be stored on the graph edge
 - The actual probability to be applied will differ according to the best previous word obtained from the backpointer table
 - As a result, the recognition output obtained from the structure is no longer guaranteed optimal in a Bayesian sense!
- Nevertheless the results are fairly close to optimal
 - The loss in optimality due to the reduced dynamic structure is acceptable, given the reduction in graph size
- This form of decoding is performed in the "fwdflat" mode of the sphinx3 decoder

Pseudo Trigram: Still not efficient

- Even a bigram structure can be inefficient to search
 - Large number of models
 - Many edges
 - Not taking advantage of shared portions of the graph

A Vocabulary of Five Words

"Flat" approach: a different model for every word

Carnegie Mellon

<u>Lextree</u>

o Common portions of the words are shared

• Example assumes triphone models

<u>Lextree</u>

oThe probability of a word is obtained deep in the tree

• Example assumes triphone models

Unigram Lextree Decoding

<u>Lextrees</u>

□ Superficially, lextrees appear to be highly efficient structures

- A lextree representation of a dictionary of 100000 words typically reduces the overall structure by a factor of 10, as compared to a "flat" representation
- □ However, all is not hunky dory..

Bigram Lextree Decoding

Trigram Lextree Decoding

<u>Lextrees</u>

- The "ideal" lextree structure is MUCH larger than an ideal "flat" structure
- As in the case of flat structures, the size of the ideal structure can be greatly reduced by accounting for the fact that most Ngram probabilities are obtained by backing off
- Even so the structure can get very large.
- Approximate structures are needed.

- □ Use a unigram Lextree structure
- Use the BP table of the paths entering the lextree to identify the two-word history
- Apply the corresponding trigram probability where the word is identity is known

□ This is the approach taken by Sphinx 2 and Pocketsphinx

Approximate Lextree Decoding

- Approximation is far worse than the pseudo-trigram approximation
 - The basic graph is a unigram graph
 - Pseudo-trigram uses a bigram graph!
- □ Far more efficient than any structure seen so far
 - Used for real-time large vocabulary recognition in '95!
- □ How do we retain the efficiency, and yet improve accuracy?
- Ans: Use *multiple* lextrees
 - Still a small number, e.g. 3.

Static 3-Lextree Decoding

Multiple lextrees

- Lextrees differ in the times in which they may be entered
 - E.g. lextree 1 can be entered if (t%3 ==0), lextree 2 if (t%3==1) and lextree3 if (t%3==2).
- Trigram probability for any word uses the best bigram history for entire lextree (history obtained from backpointer table)

This is the strategy used by Sphinx3 in the "fwdtree" mode

Better than a single lextree, but still not even as accurate as a pseudo-trigram flat search

Carnegie Mellon

Dynamic Tree Composition

- □ Build a "theoretically" correct N-gram lextree
- However, only build the portions of the lextree that are requried
- Prune heavily to eliminate unpromising portions of the graphs
 - To reduce composition and freeing
- In practice, explicit composition of the lextree dynamically can be very expensive
 - Since portions of the large graph are being continuously constructed and abandoned
- Need a way to do this *virtually* -- get the same effect without actually constructing the tree

The Token Stack

- □ Maintain a single lextree structure
- □ However multiple paths can exist at any HMM state
 - This is not simple Viterbi decoding anymore
- Paths are represented by "tokens" that carry only the relevant information required to obtain Ngram probabilities
 - Very light
- □ Each state now bears a *stack* of tokens

Token Stack

- □ The token stack emulates full lextree graphs
- Efficiency is obtained by restricting the number of active tokens at any state
 - If we allow N tokens max at any state, we effectively only need the physical resources equivalent to N lextrees
 - But the tokens themselves represent components of many different N-gram level lextrees
- Most optimal of all described approaches

□ Sphinx4 takes this approach

- Problems: Improper management of token stacks can lead to large portions of the graph representing different variants of the same word sequence hypothesis
 - No net benefit over multiple (N) fixed lextrees

Which to choose

- Depends on the task and your patience
- Options
 - Pocket sphinx/ sphinx2 : Single lextree
 - Very fast
 - □ Little tuning
 - Sphinx3 fwdflat: Bigram graph with backpointer histories
 - □ Slow
 - Somewhat suboptimal
 - □ Little tuning
 - Sphinx3 fwdtree: Multiple lextrees with backpointer histories
 - Fast
 - Suboptimal
 - Needs tuning
 - Sphinx4: Token-stack lextree
 - □ Speed > fwdflat, Speed < fwdtree
 - Potentially optimal
 - But only if very carefully tuned

Language weights

□ The Bayesian classification equation for speech recognition is

Speech recognition system solves

Language weights

- The standard Bayesian classification equation attempts to recognize speech for best average sentence recognition error
 - NOT word recognition error
 - Its defined over sentences
- But hidden in it is an assumption:
 - The infinity of possible word sequences is the same size as the infinity of possible acoustic realizations of them
 - They are not
 - The two probabilities are not comparable the acoustic evidence will overwhelm the language evidence
- Compensating for it: The language weight
 - To compensate for it, we apply a *language* weight to the language probabilities
 - □ Raise them to a power
 - □ This increases the relative differences in the probabilities of words

Language weights

The Bayesian classification equation for speech recognition is modified to

 $word_{1}, word_{2}, \dots, word_{N} =$ $\arg \max_{wd_{1}, wd_{2}, \dots, wd_{N}} \{ P(signal | wd_{1}, wd_{2}, \dots, wd_{N}) P(wd_{1}, wd_{2}, \dots, wd_{N}) \}$

□ Which is equivalent to

 $\arg \max_{wd_1, wd_2, ...,} \{ \log(P(signal | wd_1, wd_2, ...)) + lwt * \log(P(wd_1, wd_2, ...)) \}$

□ *Lwt* is the language weight

Language Weights

□ They can be incrementally applied

 $\arg \max_{wd_1, wd_2, \dots} \{ \log(P(signal | wd_1, wd_2, \dots)) + lwt * \log(P(wd_1, wd_2, \dots)) \}$

Which is the same as

 $\arg \max_{wd_1,wd_2,...,} \{ \log P(signal | wd_1, wd_2,...) + lwt * \log P(wd_1) \}$ $lwt * \log P(wd_2 | wd_1) + lwt * \log(P(wd_3 | wd_1, wd_2)...) \}$

The language weight is applied to each N-gram probability that gets factored in!

Optimizing Language Weight: Example

 No. of active states, and word error rate variation with language weight (20k word task)

□ Relaxing pruning improves WER at LW=14.5 to 14.8%

The corresponding bigram graph

- The language weight simply gets applied to every edge in the language graph
- Any language graph!

Carnegie Mellon

Language Weights

- □ Language weights are strange beasts
 - Increasing them *decreases* the a priori probability of any word sequences
 - But it *increases* the relative differences between the probabilities of word sequences
- □ The effect of language weights is not understood
 - Some claim increasing the language weight increases the contribution of the LM to recognition
 - □ This would be true if *only* the second point above were true
- How to set them
 - Try a bunch of different settings
 - Whatever works!
 - The optimal setting is recognizer dependent

How silences and noises are handled

Carnegie Mellon

□ Silences are given a special probability

- Called silence penalty
- Determines the probability that the speaker pauses between words
- □ Noises are given a "noise" probability
 - The probability of the noise occurring between words
 - Each noise may have a different probability

□ Silences are given a special probability

- Called silence penalty
- Determines the probability that the speaker pauses between words
- □ Noises are given a "noise" probability
 - The probability of the noise occurring between words
 - Each noise may have a different probability

Stuttering

Add loopy variants of the word before each word

- Computationally very expensive
- But used for reading tutors etc. when the number of possibilities is very small

Rescoring and N-best Hypotheses

- The tree of words in the backpointer table is often collapsed to a graph called a lattice
- The lattice is a much smaller graph than the original language graph
 - Not loopy for one
- Common technique:
 - Compute a lattice using a small, crude language model
 - Modify lattice so that the edges on the graph have probabilities derived from a high-accuracy LM
 - Decode using this new graph
 - Called Rescoring
- An algorithm called A-STAR can be used to derive the N best paths through the graph

<u>Confidence</u>

□ Skipping this for now