CarnegieMellon
SCHOOL OF COMPUTER SCIENCE

Decoding Part ||

Bhiksha Raj and Rita Singh

Recap and Lookahead

[0 Covered so far:

u
u
u
u
u
u
u
u
u
B Exercise:
B Exercise:
B Exercise:
B Exercise:

String Matching based Recognition

Introduction to HMMs

Recognizing Isolated Words

Learning word models from continuous recordings
Building word models from phoneme models
Context-independent and context-dependent models
Building decision trees

Tied-state models

Decoding: Concepts

Training phoneme models

Training context-dependent models
Building decision trees

Training tied-state models

[0 Decoding: Practical issues and other topics

19 March 2009

Carnegie Mellon

decoding: advanced

A Full N-gram Lanugage Model Graph

P(songJsSuTig song)

[0 An N-gram language model can be represented as a graph for
speech recognition

19 March 2009 Carnegie Mellon decoding: advanced

Generic N-gram representations

[0 A full N-gram graph can get very very very large

[0 A trigram decoding structure for a vocabulary of D words
needs D word instances at the first level and D2 word
Instances at the second level

B Total of D(D+1) word models must be instantiated

[0 An N-gram decoding structure will need
B D+ D?+D3.. DNV1 word instances

[0 A simple trigram LM for a vocabulary of 100,000 words
would have...

M 100,000 words is a reasonable vocabulary for a large-vocabulary
speech recognition system

[0 ... an indecent number of nodes in the graph and an obscene
number of edges

19 March 2009 Carnegie Mellon decoding: advanced

L ack of Data to the Rescue!

[0 We never have enough data to learn all D3 trigram
probabilities
[0 We learn a very small fraction of these probabilities

B Broadcast news: Vocabulary size 64000, training text 200
million words

0 10 million trigrams, 3 million bigrams!
[0 All other probabilities are obtained through backoff

[0 This can be used to reduce graph size

B |If a trigram probability is obtained by backing off to a bigram,
we can simply reuse bigram portions of the graph

O Thank you Mr. Zipf !!

19 March 2009 Carnegie Mellon decoding: advanced

The corresponding bigram graph

P(sing | sing)

P(</s> | <s>)

P(song | song)

19 March 2009 Carnegie Mellon decoding: advanced

P(song | song)

F(sing|sing sing)

19 March 2009 P(soialsona<ongarnegie Mellon decoding: advanced

Using Backoffs

[0 The complete trigram LM for the two word language has the
following set of probabilities:

19 March 2009

P(sing |<s> songQ)
P(sing | <s> sinQ)
P(sing | sing sing)
P(sing | sing song)
P(sing | song sing)
P(sing | song sonQ)

P(song |<s> songQ)
P(song | <s> sing)
P(song | sing sing)
P(song | sing sonQ)
P(song | song sing)
P(song | song songQ)

Carnegie Mellon

decoding: advanced

Using Backoffs

[0 The complete trigram LM for the two word language has the
following set of probabilities:

m P(sing |<s> song) 0 Several of these are not
B P(sing | <s> sing) available and obtained by
m P(sing | sing sing) backoftt
B P(sing | sing song) " P(sing | sing sing) =

: : b(sing sing) P(sing|sing)
B P(sing | song sing)
B P(sing | song song)

B P(sing | song sing)=
b(song sing) P(sing]|sing)

B P(song |<s> song)

® P(song | <_S> s_ing) ® P(song | song song) =

B P(song | sing sing) b(song song)P(song|song)
B P(song | sing song)

B P(song | song sing) B P(song | song sing) =

B P(song | song song) b(song sing)P(song|sing)

19 March 2009 Carnegie Mellon decoding: advanced

[0 Several of these are not

available and obtained by

backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

P(song | song)

H(singlsing sing) B P(sing | song sing)=
: b(song sing) P(sing]|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 P(sohglsonaéong) Carnegie Mellon decoding: advanced

Several Trigrams are Backed off

[0 Several of these are not
_ _ available and obtained by
) Strip the bigram graph backoff
B P(sing | sing sing) =
Sroe b(sing sing) P(sing|sing)
H(singlsing sihg) B P(sing | song sing)=

b(song sing) P(sing]|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 P(sohglsonaéong) Carnegie Mellon decoding: advanced

Backed off Trigram

[0 Several of these are not
. available and obtained by
backoff
B P(sing | sing sing) =
Srgre b(sing sing) P(sing|sing)

P(sing | song sing)=
b(song sing) P(sing]|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 P(sohglsonaéong) Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

IP(sing | sing)

Song~>®

19 March 2009

P(soiglsonaséong)

[0 Several of these are not

b(sing, sing)

Carnegie Mellon

available and obtained by
backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

P(sing | song sing)=
b(song sing) P(sing]|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

decoding: advanced

Hook backed off trigram to the bigram graph

IP(sing | sing)

Song~>®

19 March 2009

P(soiglsonaséong)

[0 Several of these are not

b(sing, sing)

Carnegie Mellon

available and obtained by
backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

P(sing | song sing)=
b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

decoding: advanced

Hook backed off trigram to the bigram graph

IP(sing | sing)

19 March 2009

P(soiglsonaséong)

[0 Several of these are not

b(sing, sing)

Carnegie Mellon

available and obtained by
backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

P(sing | song sing)=
b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

decoding: advanced

Hook backed off trigram to the bigram graph

Ging)

P(singh&ing) [0 Several of these are not
available and obtained by
backoff
B P(sing | sing sing) =

Song>® o — b(sing sing) P(sing]|sing)

B P(sing | song sing)=
b(song, sing) b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 P(sohglsonaéong) Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

Ging)

P(singh&ing) [0 Several of these are not
available and obtained by
backoff
B P(sing | sing sing) =

Song>® o — b(sing sing) P(sing]|sing)

b(song, sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 P(sohglsonaéong) Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

Ging)

P(singN&ing) [0 Several of these are not
available and obtained by
backoff
B P(sing | sing sing) =

Song>® o — b(sing sing) P(sing]|sing)

B P(sing | song sing)=
NS sing’.. b(song, sing) b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

S//?g}
19 March 2009 P(sohglsona j;g) Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

P(singN&ing) [0 Several of these are not

available and obtained by

backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

song>® b(sing/ sing)

B P(sing | song sing)=
b(song, sing) b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)
77 P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

song

b(sing/, sing)

P(song | song)

b(song, sing)

19 March 2009 Carnegie Mellon

[0 Several of these are not

available and obtained by
backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

B P(sing | song sing)=
b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

decoding: advanced

Hook backed off trigram to the bigram graph

P(sing Ning) [0 Several of these are not

available and obtained by

backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

song

b(sing/, sing)

P(song | song)

B P(sing | song sing)=
b(song, sing) b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

19 March 2009 Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

song

b(sing/, sing)

P(song | song)

b(song, sing)

19 March 2009 Carnegie Mellon

[0 Several of these are not

available and obtained by
backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

B P(sing | song sing)=
b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

decoding: advanced

Hook backed off trigram to the bigram graph

P(sing Ning) [0 Several of these are not

available and obtained by

backoff

B P(sing | sing sing) =
b(sing sing) P(sing|sing)

b(sing/, sing)

B P(sing | song sing)=
b(song, sing) b(song sing) P(sing|sing)

P(song | song song) =
b(song song)P(song|song)

P(song | song sing) =
b(song sing)P(song|sing)

‘ b(song, song)
g T
- 60

19 March 2009 Carnegie Mellon decoding: advanced

Hook backed off trigram to the bigram graph

P(sing"e{ng) [0 The good: By adding a
backoff arc to “sing” from
song to compose
P(song|song sing), we got
the backed off probability for
P(sing|song sing) for free
B This can result in an
enormous reduction of size

[0 The bad: P(sing|song sing)
might already validly exist in
i T ¢ R N the graph!!

b(sing/, sing)

eee)\ M Some N-gram arcs have two
different variants
Tt e B This introduces spurious
£ bisong, song) multiple definitions of some
AN trigrams

19 March 2009 Carnegie Mellon decoding: advanced

Even compressed graphs are large

[0 Even a compressed N-gram word graph can get very large

B Explicit arcs for at least every bigram and every trigram in the
LM

B This can get to tens or hundreds of millions

[0 Approximate structures required
B The approximate structure is, well, approximate

B It reduces the graph size

[0 This breaks the requirement that every node in the graph represents
a unigue word history

[0 We compensate by using additional external structures to track word
history

19 March 2009 Carnegie Mellon decoding: advanced

The pseudo trigram approach

[0 Each word has its own HMM
B Computation and memory intensive

[0 Only a “pseudo-trigram” search:

True trigram
P(dog|wag the)

wag > the > dog

catch the P(dog|catch the) .
watch R the P(dog|watch the)= dog

wag I True bigram
catch the — 2l 0 > dog

—

wag o o] wag the Pseudo trigram
oJg| wa e
catch the S > dog
watch

19 March 2009 Carnegie Mellon decoding: advanced

Pseudo Trigram

P(sing | sing)

P(song | song)

[0 Use a simple bigram graph
B Each word only represents a single word history

B At the outgoing edges from any word we can only be certain of
the last word

19 March 2009 Carnegie Mellon decoding: advanced

Pseudo Trigram

P(sing | sing)

We know the last word before
this transition was song, but
cannot be sure what preceded song

P(song | song)

[0 Use a simple bigram graph
B Each word only represents a single word history

B At the outgoing edges from any word we can only be certain of

the last word
[0 As a result we cannot apply trigram probabilities, since these require
knowledge of two-word histories

19 March 2009 Carnegie Mellon decoding: advanced

Pseudo Trigram

P(sing | sing)

P(song | song)

[0 Solution: Obtain information about the word that preceded
“song” on the path from the backpointer table

[0 Use that word along with “song” as a two-word history
B Can now apply a trigram probability

19 March 2009 Carnegie Mellon decoding: advanced

Pseudo Trigram

[0 The problem with the pseudo-trigram approach is that the LM

probabilities to be applied can no longer be stored on the
graph edge

B The actual probability to be applied will differ according to the
best previous word obtained from the backpointer table

B As a result, the recognition output obtained from the structure is
no longer guaranteed optimal in a Bayesian sense!

[1 Nevertheless the results are fairly close to optimal

B The loss in optimality due to the reduced dynamic structure is
acceptable, given the reduction in graph size

[0 This form of decoding is performed in the “fwdflat” mode of
the sphinx3 decoder

19 March 2009 Carnegie Mellon decoding: advanced

Pseudo Trigram: Still not efficient

[0 Even a bigram structure can be inefficient to search
B Large number of models
B Many edges
B Not taking advantage of shared portions of the graph

19 March 2009 Carnegie Mellon decoding: advanced

A Vocabulary of Five Words

“Flat” approach: a different
model for every word

e ° @ @ @ start

e e @ ° @ @ @ starting
e 0 @ G @ @ @ started
(D) —(R)—()—@)—Fo) stanwp
(=) —(R)) ——fp) starwr

19 March 2009 Carnegie Mellon decoding: advanced

Lextree

o Common portions of the words are shared
» Example assumes triphone models

19 March 2009

Carnegie Mellon

starting
started
startup

startiup

Different words

with identical pronunciations
must have different terminal
nodes

decoding: advanced

Lextree

oThe probability of a word is obtained deep in the tree
» Example assumes triphone models

Word identity only
known here

start /
starting

started

Different words

with identical pronunciations
must have different terminal
nodes

19 March 2009 Carnegie Mellon decoding: advanced

Unigram Lextree Decoding

Unigram probabilities
known here

19 March 2009 Carnegie Mellon decoding: advanced

Lextrees

[0 Superficially, lextrees appear to be highly efficient structures

B A lextree representation of a dictionary of 100000 words
typically reduces the overall structure by a factor of 10, as
compared to a “flat” representation

[However, all is not hunky dory..

19 March 2009 Carnegie Mellon decoding: advanced

Bigram Lextree Decoding

- Since word identities are not known at entry
we need as many lextrees at the bigram
level as there are words

Bigram trees

Opa®
_ Opa0p20
Unigram tree
@ f O>E)>Ee
P(WOrd|START) e >¢
oNoWr (word|)
()
OO+
OO
/ / O>E)>Ee
P(word|STARTED)

Bigram probabilities
known here

19 March 2009 Carnegie Mellon

decoding: advanced

Trigram Lextree Decoding

= We need as many lextrees at the trigram Trigram trees
level as the square of the number of words *J
Bigram trees (0 Only some
links shown

Unigram tree

@ ©® O ©® g BIG ©®

Trigram probabilities ___—»
known here

19 March 2009 Carnegie Mellon decoding: advanced

Lextrees

[0 The “ideal” lextree structure is MUCH larger than an ideal
“flat” structure

[J As in the case of flat structures, the size of the ideal structure
can be greatly reduced by accounting for the fact that most
Ngram probabilities are obtained by backing off

[0 Even so the structure can get very large.

[0 Approximate structures are needed.

19 March 2009 Carnegie Mellon decoding: advanced

Approximate Lextree Decoding

[0 Use a unigram Lextree structure

[0 Use the BP table of the paths entering the lextree to identify the
two-word history

[0 Apply the corresponding trigram probability where the word is
Identity is known

[0 This is the approach taken by Sphinx 2 and Pocketsphinx

19 March 2009 Carnegie Mellon decoding: advanced

Approximate Lextree Decoding

[0 Approximation is far worse than the pseudo-trigram
approximation

B The basic graph is a unigram graph
[0 Pseudo-trigram uses a bigram graph!

[0 Far more efficient than any structure seen so far
B Used for real-time large vocabulary recognition in '95!

[How do we retain the efficiency, and yet improve accuracy?

[0 Ans: Use multiple lextrees
®m Still a small number, e.g. 3.

19 March 2009 Carnegie Mellon decoding: advanced

Static 3-Lextree Decoding

[0 Multiple lextrees

[0 Lextrees differ in the times in which they O2a®
may be entered oo
m E.qg. Iextre_:e 1 can be entered if (t%:_% ==0), NN W
lextree 2 if (t%3==1) and lextree3 if
(t%3==2).
[0 Trigram probability for any oNC
word uses the best bigram
history for entire lextree OO
(history obtained from NN
backpointer table)
O This is the strategy used by Sphinx3
in the “fwdtree” mode oG
. . > O+@
[0 Better than a single lextree, but still not
even as accurate as a pseudo-trigram flat 052020240

search

19 March 2009 Carnegie Mellon decoding: advanced

Dynamic Tree Composition

[0 Build a “theoretically” correct N-gram lextree

[0 However, only build the portions of the lextree that are
requried

[0 Prune heavily to eliminate unpromising portions of the graphs
B To reduce composition and freeing

[0 In practice, explicit composition of the lextree dynamically
can be very expensive

B Since portions of the large graph are being continuously
constructed and abandoned

[0 Need a way to do this virtually -- get the same effect without
actually constructing the tree

19 March 2009 Carnegie Mellon decoding: advanced

The Token Stack

Maintain a single lextree structure
However multiple paths can exist at any HMM state
B This is not simple Viterbi decoding anymore

[0 Paths are represented by “tokens” that carry only the relevant
information required to obtain Ngram probabilities

H Very light
[0 Each state now bears a stack of tokens

O O

19 March 2009 Carnegie Mellon decoding: advanced

Token Stack

[0 The token stack emulates full lextree graphs
[0 Efficiency is obtained by restricting the number of active
tokens at any state

® If we allow N tokens max at any state, we effectively only need
the physical resources equivalent to N lextrees

B But the tokens themselves represent components of many
different N-gram level lextrees

[0 Most optimal of all described approaches
O Sphinx4 takes this approach

[0 Problems: Improper management of token stacks can lead to
large portions of the graph representing different variants of
the same word sequence hypothesis

B No net benefit over multiple (N) fixed lextrees

19 March 2009 Carnegie Mellon decoding: advanced

Which to choose

[0 Depends on the task and your patience

[0 Options
B Pocket sphinx/ sphinx2 : Single lextree
[0 Very fast

0 Little tuning

B Sphinx3 fwdflat: Bigram graph with backpointer histories
O Slow
[0 Somewhat suboptimal
0 Little tuning
B Sphinx3 fwdtree: Multiple lextrees with backpointer histories
[0 Fast
[0 Suboptimal
[0 Needs tuning
B Sphinx4: Token-stack lextree
[0 Speed > fwdflat, Speed < fwdtree
[0 Potentially optimal
[0 But only if very carefully tuned

19 March 2009 Carnegie Mellon decoding: advanced

Lanquage weights

[0 The Bayesian classification equation for speech recognition is

Speech recognition system solves

!

word,,word,,...,word, =
argmax,, ., .« {P(signallwd,,wd,,...,wd,)P(wd,,wd,,...,wd)}

I I

Acoustic model Lanugage model
For HMM-based systems
this is an HMM

wd, ,wd, ,

19 March 2009 Carnegie Mellon decoding: advanced

Lanquage weights

[0 The standard Bayesian classification equation attempts to
recognize speech for best average sentence recognition error

® NOT word recognition error
B Its defined over sentences

[0 But hidden in it is an assumption:

B The infinity of possible word sequences is the same size as the
infinity of possible acoustic realizations of them

B They are not

B The two probabilities are not comparable — the acoustic evidence
will overwhelm the language evidence

[0 Compensating for it: The language weight

B To compensate for it, we apply a language weight to the
language probabilities
[0 Raise them to a power
[0 This increases the relative differences in the probabilities of words

19 March 2009 Carnegie Mellon decoding: advanced

Language weights

[0 The Bayesian classification equation for speech recognition is
modified to

word, ,word,,...,word,, = .
. W
.« 1P(signal|wd,,wd,,...,wd)P(wd, ,wd,,...,wd)}

wd, ,wd, .., wd

arg max

[0 Which is equivalent to

arg max {log(P(signal | wd,,wd,,...)) + Iwt *log(P(wd,,wd,,...))}

wd;,wd,,...,

0 Lwtis the language weight

19 March 2009 Carnegie Mellon decoding: advanced

Lanquage Weights

[0 They can be incrementally applied

arg max {log(P(signal | wd,,wd,,...)) + Iwt *log(P(wd,,wd,,...)) }

wd;,wd,,...,

[0 Which is the same as

argmax, .4 {logP(signal [wd,,wd,,...)+Iwt*log P(wd,)}
lwt *log P(wd, | wd,) + Iwt *log(P(wd, | wd,,wd,)...}

[0 The language weight is applied to each N-gram probability
that gets factored in!

19 March 2009 Carnegie Mellon decoding: advanced

Optimizing Language Weight: Example

[0 No. of active states, and word error rate variation with language
weight (20k word task)

B WER(%) O #States

25+ 5000

4500+

20+ 4000+

3500

154 3000+

25004

107 2000

15004

5] 10004

500+

0- 0-
85 95 105 115 125 135 145 8.5 10.5 12.5 14.5

Language Weight Language Weight
[0 Relaxing pruning improves WER at LW=14.5 to 14.8%

19 March 2009 Carnegie Mellon decoding: advanced

The corresponding bigram graph

Lwt * log P(sing | sing)

Lwt * log P(song | song)

[0 The language weight simply gets applied to every edge in the
language graph

B Any language graph!
19 March 2009 Carnegie Mellon decoding: advanced

Lanquage Weights

[0 Language weights are strange beasts

B Increasing them decreases the a priori probability of any word
seguences

B But it increases the relative differences between the probabilities
of word sequences

[0 The effect of language weights is not understood

B Some claim increasing the language weight increases the
contribution of the LM to recognition

[0 This would be true if only the second point above were true

[How to set them
B Try a bunch of different settings
® Whatever works!
B The optimal setting is recognizer dependent

19 March 2009 Carnegie Mellon decoding: advanced

Silences, Noises

[0 How silences and noises are handled

19 March 2009 Carnegie Mellon decoding: advanced

Silences and Noises
Ging)

[0 Silences are given a special probability
B Called silence penalty

B Determines the probability that the speaker pauses between
words

[J Noises are given a “noise” probability
B The probability of the noise occurring between words
B Each noise may have a different probability

19 March 2009 Carnegie Mellon decoding: advanced

Silences and Noises
Ging)

[0 Silences are given a special probability
B Called silence penalty

B Determines the probability that the speaker pauses between
words

[J Noises are given a “noise” probability
B The probability of the noise occurring between words
B Each noise may have a different probability

19 March 2009 Carnegie Mellon decoding: advanced

Stuttering

[0 Add loopy variants of the word before each word
B Computationally very expensive

B But used for reading tutors etc. when the number of possibilities
Is very small

19 March 2009 Carnegie Mellon decoding: advanced

Rescoring and N-best Hypotheses

[0 The tree of words in the backpointer table is often collapsed
to a graph called a lattice

[0 The lattice is a much smaller graph than the original language
graph
B Not loopy for one

O Common technique:
B Compute a lattice using a small, crude language model

B Modify lattice so that the edges on the graph have probabilities
derived from a high-accuracy LM

B Decode using this new graph
B Called Rescoring

[0 An algorithm called A-STAR can be used to derive the N best
paths through the graph

19 March 2009 Carnegie Mellon decoding: advanced

Confidence

[0 Skipping this for now

19 March 2009 Carnegie Mellon decoding: advanced

