CarnegieMellon
SCHOOL OF COMPUTER SCIENCE

Decoding Part II

Bhiksha Raj and Rita Singh

Recap and Lookahead

- \Box Covered so far:
	- **The Contract of the Contract o** String Matching based Recognition
	- **The Contract of the Contract o** Introduction to HMMs
	- **The Contract of the Contract o** Recognizing Isolated Words
	- ш Learning word models from continuous recordings
	- **The Contract of the Contract o** Building word models from phoneme models
	- **The Co** Context-independent and context-dependent models
	- ш Building decision trees
	- ш Tied-state models
	- ш Decoding: Concepts
	- **The Contract of the Contract o** Exercise: Training phoneme models
	- ш Exercise: Training context-dependent models
	- a a s Exercise: Building decision trees
	- ш Exercise: Training tied-state models
- \Box Decoding: Practical issues and other topics

<u>A Full N-gram Lanugage Model Graph</u>

 \Box An N-gram language model can be represented as a graph for speech recognition

Generic N-gram representations

- \Box A full N-gram graph can get *very very very* large
- \Box A trigram decoding structure for a vocabulary of D words needs D word instances at the first level and D2 word instances at the second level
	- a a s Total of $D(D+1)$ word models must be instantiated
- \Box An N-gram decoding structure will need
	- **Contract** $D + D^2 + D^3$... D^{N-1} word instances
- \Box A simple trigram LM for a vocabulary of 100,000 words would have…
	- **The Contract of the Contract o** 100,000 words is a reasonable vocabulary for a large-vocabulary speech recognition system
- □ … an indecent number of nodes in the graph and an obscene number of edges

Lack of Data to the Rescue!

- \Box We never have enough data to learn all $D³$ trigram probabilities
- LI -We learn a very small fraction of these probabilities
	- П Broadcast news: Vocabulary size 64000, training text 200 million words
		- □ 10 million trigrams, 3 million bigrams!
- П All other probabilities are obtained through backoff
- \Box This can be used to reduce graph size
	- $\overline{}$ If a trigram probability is obtained by backing off to a bigram, we can simply reuse bigram portions of the graph
- \Box Thank you Mr. Zipf !!

The corresponding bigram graph

Using Backoffs

- \Box The complete trigram LM for the two word language has the following set of probabilities:
	- \blacksquare P(sing $|$ <s> song)
	- \blacksquare P(sing $|$ <s> sing)
	- \blacksquare P(sing | sing sing)
	- P(sing | sing song)
	- **P** P(sing | song sing)
	- P(sing | song song)
	- П $P(\text{song} \mid < s$ song)
	- \blacksquare P(song $|$ <s> sing)
	- a a s P(song | sing sing)
	- **P** P(song | sing song)
	- **P** P(song | song sing)
	- $\mathcal{L}^{\mathcal{A}}$ P(song | song song)

Using Backoffs

- \Box The complete trigram LM for the two word language has the following set of probabilities:
	- \blacksquare P(sing $|$ <s> song)
	- \blacksquare P(sing $|$ <s> sing)
	- \blacksquare P(sing | sing sing)
	- P(sing | sing song)
	- **P** P(sing | song sing)
	- \mathcal{L}_{max} P(sing | song song)
	- П P(song |<s> song)
	- $\overline{}$ $P(song \mid$ sing)
	- a a P(song | sing sing)
	- \mathcal{L}_{max} P(song | sing song)
	- \mathcal{L}_{max} P(song | song sing)
	- $\overline{}$ P(song | song song)
- \Box Several of these are not available and obtained by backoff
	- \blacksquare P(sing | sing sing) = b(sing sing) P(sing|sing)
	- $\overline{}$ $P(\text{sing} \mid \text{song sing}) =$ b(song sing) P(sing|sing)
	- П $P(song | song song) =$ b(song song)P(song|song)
	- $\overline{}$ $P(song | song sing) =$ b(song sing)P(song|sing)

Several Trigrams are Backed off

Several Trigrams are Backed off

- \Box Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)
	- $\overline{}$ $P(\text{sing} \mid \text{song sing}) =$ b(song sing) P(sing|sing)
		- $P(song | song song) =$ b(song song)P(song|song)
	- \leftarrow P(song | song sing) = b(song sing)P(song|sing)

sing H

Backed off Trigram

- Several of these are not available and obtained by backoff
	- $P(sing | sing sing) =$ b(sing sing) P(sing|sing)

 P(sing | song sing)= b(song sing) P(sing|sing)

- $P(song | song song) =$ b(song song)P(song|song)
- \leftarrow P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 $\overline{}$ P(sing | song sing)= b(song sing) P(sing|sing)

- П $P(song | song song) =$ b(song song)P(song|song)
- $\left\langle \frac{\sqrt{2}}{2} \right\rangle$ P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 P(sing | song sing)= b(song sing) P(sing|sing)

- П $P(song | song song) =$ b(song song)P(song|song)
- $\left\langle \frac{\sqrt{2}}{2} \right\rangle$ P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 $P(\text{sing} \mid \text{song sing}) =$ b(song sing) P(sing|sing)

- П $P(song | song song) =$ b(song song)P(song|song)
- \leftarrow P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 P(sing | song sing)= b(song sing) P(sing|sing)

- П $P(song | song song) =$ b(song song)P(song|song)
- \leftarrow P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 $P(\text{sing} \mid \text{song sing}) =$ b(song sing) P(sing|sing)

 $P(song | song song) =$ b(song song)P(song|song)

 \leftarrow P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 $P(\text{sing} \mid \text{song sing}) =$ b(song sing) P(sing|sing)

 $P(song | song song) =$ b(song song)P(song|song)

 \leftarrow P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 \blacksquare P(sing | song sing) = b(song sing) P(sing|sing)

 $P(song | song song) =$ b(song song)P(song|song)

 $\left\langle \frac{\sqrt{S}}{S}\right\rangle$ P(song | song sing) = b(song sing)P(song|sing)

- Several of these are not available and obtained by backoff
	- $\overline{}$ $P(\text{sing} \mid \text{sing} \text{sing}) =$ b(sing sing) P(sing|sing)

 \blacksquare P(sing | song sing) = b(song sing) P(sing|sing)

 $P(song | song song) =$ b(song song)P(song|song)

 $P(song | song sing) =$ b(song sing)P(song|sing)

- The good: By adding a backoff arc to "sing" from song to compose P(song|song sing), we got the backed off probability for P(sing|song sing) for free
	- $\overline{}$ This can result in an enormous reduction of size
	- The bad: P(sing|song sing) might already validly exist in the graph!!
		- Т, Some N-gram arcs have two different variants
		- П This introduces spurious *multiple* definitions of some trigrams

Even compressed graphs are large

- \Box Even a compressed N-gram word graph can get very large
	- $\overline{}$ Explicit arcs for at least every bigram and every trigram in the LM
	- **The Co** This can get to tens or hundreds of millions
- \Box Approximate structures required
	- **The Co** The approximate structure is, well, approximate
	- **The Second Second** It reduces the graph size
		- \Box This breaks the requirement that every node in the graph represents a unique word history
		- \Box We compensate by using additional external structures to track word history

The pseudo trigram approach

- \Box Each word has its own HMM
	- П Computation and memory intensive
- \Box Only a "pseudo-trigram" search:

- \Box Use a simple bigram graph
	- $\overline{}$ Each word only represents a *single word* history
	- **The Second** At the outgoing edges from any word we can only be certain of the last word

- \Box Use a simple bigram graph
	- $\overline{}$ Each word only represents a *single word* history
	- $\overline{}$ At the outgoing edges from any word we can only be certain of the last word
		- \Box As a result we cannot apply *trigram* probabilities, since these require knowledge of two-word histories

- П Solution: Obtain information about the word that preceded "song" on the path from the backpointer table
- \Box Use that word along with "song" as a two-word history
	- $\overline{}$ Can now apply a trigram probability

Pseudo Trigram

- \Box The problem with the pseudo-trigram approach is that the LM probabilities to be applied can no longer be stored on the graph edge
	- $\overline{}$ The actual probability to be applied will differ according to the best previous word obtained from the backpointer table
	- $\overline{}$ As a result, the recognition output obtained from the structure is no longer guaranteed optimal in a Bayesian sense!
- \Box Nevertheless the results are fairly close to optimal
	- $\overline{}$ The loss in optimality due to the reduced dynamic structure is acceptable, given the reduction in graph size
- \Box This form of decoding is performed in the "fwdflat" mode of the sphinx3 decoder

Pseudo Trigram: Still not efficient

- \Box Even a bigram structure can be inefficient to search
	- \mathcal{L}^{max} Large number of models
	- **The Second Second** Many edges
	- $\mathcal{L}^{\mathcal{L}}$ Not taking advantage of shared portions of the graph

A Vocabulary of Five Words

"Flat" approach: a different model for every word

Lextree

^o Common portions of the words are shared

• Example assumes triphone models

Lextree

oThe probability of a word is obtained deep in the tree

• Example assumes triphone models

Unigram Lextree Decoding

Lextrees

 \Box Superficially, lextrees appear to be highly efficient structures

- a a A lextree representation of a dictionary of 100000 words typically reduces the overall structure by a factor of 10, as compared to a "flat" representation
- \Box However, all is not hunky dory..

Bigram Lextree Decoding

Trigram Lextree Decoding

Lextrees

- \Box The "ideal" lextree structure is MUCH larger than an ideal "flat" structure
- П. As in the case of flat structures, the size of the ideal structure can be greatly reduced by accounting for the fact that most Ngram probabilities are obtained by backing off
- \Box Even so the structure can get very large.
- П Approximate structures are needed.

- \Box Use a unigram Lextree structure
- \Box Use the BP table of the paths entering the lextree to identify the two-word history
- \Box Apply the corresponding trigram probability where the word is identity is known

⊔ **This is the approach taken by Sphinx 2 and Pocketsphinx**

Approximate Lextree Decoding

- \Box Approximation is far worse than the pseudo-trigram approximation
	- **The Contract of the Contract o** The basic graph is a unigram graph
		- \Box Pseudo-trigram uses a bigram graph!
- \Box Far more efficient than any structure seen so far
	- $\overline{}$ Used for real-time large vocabulary recognition in '95!
- \Box How do we retain the efficiency, and yet improve accuracy?
- \Box Ans: Use *multiple* lextrees
	- $\overline{}$ Still a small number, e.g. 3.

<u>Static 3-Lextree Decoding</u>

 \Box Multiple lextrees

- \Box Lextrees differ in the times in which they may be entered
	- × E.g. lextree 1 can be entered if $(t\%3 == 0)$, lextree 2 if $(t\%3 == 1)$ and lextree3 if $(t\%3 == 2)$.
- \Box Trigram probability for any word uses the best bigram history for entire lextree (history obtained from backpointer table)

\Box **This is the strategy used by Sphinx3 in the "fwdtree" mode**

 \Box Better than a single lextree, but still not even as accurate as a pseudo-trigram flat search

Dynamic Tree Composition

- \Box Build a "theoretically" correct N-gram lextree
- П However, only build the portions of the lextree that are requried
- \Box Prune heavily to eliminate unpromising portions of the graphs
	- $\overline{}$ To reduce composition and freeing
- \Box In practice, explicit composition of the lextree dynamically can be very expensive
	- П Since portions of the large graph are being continuously constructed and abandoned
- \Box Need a way to do this *virtually* -- get the same effect without actually constructing the tree

The Token Stack

- \Box Maintain a single lextree structure
- \Box However multiple paths can exist at any HMM state
	- ш This is not simple Viterbi decoding anymore
- \Box Paths are represented by "tokens" that carry *only* the relevant information required to obtain Ngram probabilities
	- **STAR** Very light
- \Box Each state now bears a *stack* of tokens

Token Stack

- П The token stack emulates full lextree graphs
- 0 Efficiency is obtained by restricting the number of active tokens at any state
	- П If we allow N tokens max at any state, we effectively only need the physical resources equivalent to N lextrees
	- П But the tokens themselves represent components of many different N-gram level lextrees
- П Most optimal of all described approaches

\Box **Sphinx4 takes this approach**

- \Box Problems: Improper management of token stacks can lead to large portions of the graph representing different variants of the same word sequence hypothesis
	- П No net benefit over multiple (N) fixed lextrees

Which to choose

- \Box Depends on the task and your patience
- \Box **Options**
	- a a Pocket sphinx/ sphinx2 : Single lextree
		- \Box Very fast
		- □ Little tuning
	- **The Second Second** Sphinx3 fwdflat: Bigram graph with backpointer histories
		- □ Slow
		- □ Somewhat suboptimal
		- □ Little tuning
	- a ser Sphinx3 fwdtree: Multiple lextrees with backpointer histories
		- □ Fast
		- □ Suboptimal
		- \Box Needs tuning
	- and the contract Sphinx4: Token-stack lextree
		- □ Speed > fwdflat, Speed < fwdtree
		- **D** Potentially optimal
		- **□** But only if very carefully tuned

Language weights

 \Box The Bayesian classification equation for speech recognition is

Speech recognition system solves

Language weights

- \Box The standard Bayesian classification equation attempts to recognize speech for best *average sentence recognition error*
	- $\overline{}$ *NOT* word recognition error
	- $\overline{}$ Its defined over sentences
- \Box But hidden in it is an assumption:
	- П The infinity of possible word sequences is the same size as the infinity of possible acoustic realizations of them
	- $\overline{}$ They are not
	- $\overline{}$ The two probabilities are not comparable – the acoustic evidence will overwhelm the language evidence
- \Box Compensating for it: The language weight
	- $\overline{}$ To compensate for it, we apply a *language* weight to the language probabilities
		- \Box Raise them to a power
		- \Box This increases the relative differences in the probabilities of words

Language weights

 \Box The Bayesian classification equation for speech recognition is modified to

 $word_{_1}, word_{_2}, ..., word_{_N} =$ P *(signal|wd₁,wd₂,...,wd_n</sub>)* $P(wd_1, wd_2, ..., wd_2)$ w *d*₁,w*d*₂,...,w*d*_N **(2)** $\sum_{i=1}^{N} V_i \cdot w_i$, $\sum_{i=1}^{N} V_i \cdot w_i$ $\argmax_{_{wd_{_1}, wd_{_2},\text{...,}wd_{_N}}}\{P(signal|wd_{_1}, wd_{_2},\text{...}, wd_{_N})P(wd_{_1}, wd_{_2},\text{...}, wd_{_N})\}$ *lwt*

 \Box Which is equivalent to

 $\argmax_{\mathit{wd}_1, \mathit{wd}_2, \mathit{...},} \{ \log(P(\textit{signal} \mid \mathit{wd}_1, \mathit{wd}_2, \mathit{...})) + lwt * \log(P(\mathit{wd}_1, \mathit{wd}_2, \mathit{...})) \}$

 \Box *Lwt* is the language weight

Language Weights

П They can be incrementally applied

 $\argmax_{\mathit{wd}_1, \mathit{wd}_2, \mathit{...}, \mathit{\{(log(P(signal \mid wd_1, wd_2, \mathit{...})) + lwt * log(P(wd_1, wd_2, \mathit{...}))\}}$

П Which is the same as

> w t * $\log P(wd_2 | wd_1)$ + lwt * $\log (P(wd_3 | wd_1, wd_2)...)$ arg max $\max_{w d_1, w d_2, ...,} \{ \log P(\textit{signal} \mid wd_1, wd_2, ...) + lwt * \log P(w d_1) \}$ *P signal wd wd lwt ^P wd wd wd* +

 \Box The language weight is applied to each N-gram probability that gets factored in!

Optimizing Language Weight: Example

 \Box No. of active states, and word error rate variation with language weight (20k word task)

 \Box Relaxing pruning improves WER at LW=14.5 to 14.8%

The corresponding bigram graph

- \Box The language weight simply gets applied to every edge in the language graph
- 19 March 2009 $\overline{}$ Any language graph!

Language Weights

- \Box Language weights are strange beasts
	- $\overline{}$ Increasing them *decreases* the a priori probability of any word sequences
	- **The Contract of the Contract o** But it *increases* the relative differences between the probabilities of word sequences
- \Box The effect of language weights is not understood
	- $\overline{}$ Some claim increasing the language weight increases the contribution of the LM to recognition
		- \Box This would be true if *only* the second point above were true
- \Box How to set them
	- П Try a bunch of different settings
	- $\overline{}$ Whatever works!
	- ш The optimal setting is recognizer dependent

 \Box How silences and noises are handled

19 March 2009

\Box Silences are given a special probability

- $\overline{}$ Called silence penalty
- $\overline{}$ Determines the probability that the speaker pauses between words
- \Box Noises are given a "noise" probability
	- $\overline{}$ The probability of the noise occurring between words
	- **The Second Second** Each noise may have a different probability

\Box Silences are given a special probability

- $\overline{}$ Called silence penalty
- $\overline{}$ Determines the probability that the speaker pauses between words
- \Box Noises are given a "noise" probability
	- $\overline{}$ The probability of the noise occurring between words
	- **The Second Second** Each noise may have a different probability

Stuttering

\Box Add loopy variants of the word before each word

- **The Co** Computationally very expensive
- ш But used for reading tutors etc. when the number of possibilities is very small

Rescoring and N-best Hypotheses

- \Box The tree of words in the backpointer table is often collapsed to a graph called a lattice
- \Box The lattice is a much smaller graph than the original language graph
	- П Not loopy for one
- \Box Common technique:
	- $\overline{}$ Compute a lattice using a small, crude language model
	- $\overline{}$ Modify lattice so that the edges on the graph have probabilities derived from a high-accuracy LM
	- $\overline{}$ Decode using this new graph
	- П Called Rescoring
- \Box An algorithm called A-STAR can be used to derive the *N* best paths through the graph

Confidence

□ Skipping this for now