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Abstract

Scheduling/prioritization of DBMS transactions is im-
portant for many applications that rely on database back-
ends. A convenient way to achieve scheduling is to limit
the number of transactions within the database, maintain-
ing most of the transactions in an external queue, which can
be ordered as desired by the application. While external
scheduling has many advantages in that it doesn’t require
changes to internal resources, it is also difficult to get right
in that its performance depends critically on the particular
multiprogramming limit used (the MPL), i.e. the number of
transactions allowed into the database. If the MPL is too
low, throughput will suffer, since not all DBMS resources
will be utilized. On the other hand, if the MPL is too high,
there is insufficient control on scheduling. The question of
how to adjust the MPL to achieve both goals simultaneously
is an open problem, not just for databases but in system de-
sign in general. Herein we study this problem in the context
of transactional workloads, both via extensive experimenta-
tion and queueing theoretic analysis.

We find that the two most critical factors in adjusting the
MPL are the number of resources that the workload utilizes
and the variability of the transactions’ service demands. We
develop a feedback based controller, augmented by queue-
ing theoretic models for automatically adjusting the MPL.
Finally, we apply our methods to the specific problem of ex-
ternal prioritization of transactions. We find that external
prioritization can be nearly as effective as internal prioriti-
zation, without any negative consequences, when the MPL
is set appropriately.

1. Introduction

Many of todays web applications are largely dependent
on a backend database, where the majority of the request
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processing time is spent. For such applications it is often
desirable to control the order in which transactions are exe-
cuted at the DBMS. An e-commerce applications for exam-
ple might want to give faster service to those transactions
carrying a lot of revenue.

Recently, systems researchers have started to investigate
the idea ofexternal schedulingas a method of controlling
the order in which transactions are executed. The basic
mechanism in external scheduling is demonstrated in Fig-
ure 1, and simply involves limiting the number of transac-
tions concurrently executing within the DBMS. This limit
is referred to as the MPL (multi-programming limit). If the
MPL is already met, all remaining transactions are queued
up in an external queue. The application can then control
the order in which transactions are executed by scheduling
the external queue.

DBMS

MPL=4incoming
transactions external

queue

Figure 1. Simplified view of the mechanism used in
external scheduling. A fixed limited number of trans-
actions (MPL=4) are allowed into the DBMS simul-
taneously. The remaining transactions are held back
in an external queue. Response time is the time from
when a transaction arrives until it completes, includ-
ing time spent queueing externally to the DBMS.

Examples of recent work on external scheduling come
from many areas including storage servers, web servers, and
database servers. For example, Jin et al. [9] develop an ex-
ternal scheduling front-end to provide proportional sharing
among the requests at a storage service utility. Blanquer et
al. [4] study external scheduling for quality of service pro-



visioning at an Internet services cluster. In our own recent
work [22] we propose external scheduling for providing
class-based quality of service guarantees for transactional,
database driven workloads. Finally, for many commercial
DBMS there exist tools that provide mechanisms for exter-
nal scheduling, such as the IBM DB2 Query Patroller [2].

The advantage of the external approach is that it is
portable and easy to implement since it does not require
changes to complex DBMS internals. Moreover it is ef-
fective across different types of workloads, since (unlike
the internal approach which directly schedules the resources
inside the backend DBMS) external scheduling works inde-
pendently of the system’s bottleneck resource. It is also very
flexible in that it allows applications to implement their own
custom-tailored scheduling policy, rather than being limited
to the policies supported by the backend DBMS.

While the basic idea behind external scheduling is sim-
ple, its efficacy in practice hinges on the right choice of the
MPL. For scheduling to be most effective alow MPL is de-
sirable, since then at any time only a small number of trans-
actions will be executing inside the DBMS, while a large
number are queued under the control of the external sched-
uler. On the other hand,too lowan MPL can hurt the over-
all performance of the DBMS, e.g., by underutilizing the
DBMS resources resulting in a drop in system throughput.
While many have cited the problem of choosing the MPL in
external scheduling as critical, previous research in all ar-
eas of system design leaves it as an open problem. Existing
tools for external scheduling leave the choice of MPL to the
system administrator.

The question of this paper is: How low can we choose
the MPL to facilitate effective scheduling, without hurting
overall system performance? There are three important con-
siderations when choosing an MPL: (1) As already men-
tioned, by holding back transactions outside the DBMS, the
concurrency inside the DBMS is lowered, which can lead
to a drop in throughput. We seek algorithms that determine,
for any input scenario, thelowestpossible MPL value nec-
essary to ensure near-optimal throughput levels (when com-
pared to the system without MPL). (2) Holding back trans-
actions, and sequencing them (rather than letting them all
share the database resources concurrently), creates the po-
tential for head-of-line (HOL) blocking where some long-
running transactions prevent other shorter transactions from
entering the DBMS and receiving service. This can result in
an actual increase in overall mean response time. We seek
algorithms that determine, for any input scenario, thelow-
estpossible MPL value necessary to prevent an increase in
overall mean response time. (3) Lastly, it is not at all ob-
vious that external scheduling, even with a sufficiently low
MPL, will be as effective as internal scheduling, since an
external scheduler does not have any control over the trans-
actions once they’re dispatched to the DBMS.

Section 2 describes the wide range of hardware configu-
rations, workloads and different DBMS we use in our exper-
iments. Section 3 evaluates experimentally how low we can
set the MPL without hurting throughput and overall mean
response time. We find that the answer to this question is
complex, and we identify the dominant factors that provide
the answer to this question. Next, in Section 4 we create
queueing theoretic models based on the findings in Sec-
tion 3, that capture the relationship between the MPL and
throughput and overall mean response time. We then show
how a feedback-based controller can be used, in conjunc-
tion with the queueing models, to automatically adapt the
MPL. Finally, in Section 5 we evaluate the effectiveness of
external scheduling in one particular application involving
prioritization of transactions. We study whether external
scheduling with the appropriately chosen MPL can be as
effective as internal scheduling with respect to providing
differentiation between high and low priority transactions.

It is important to note that throughout this paper the ques-
tion is how low an MPL one can choose without hurting
system performance. While this question has not been ad-
dressed in any previous work, a complementary question
involving high MPLs has been looked at in the context of
admission control, see for example [5, 8, 10, 12, 18]. The
point of these studies is that throughput suffers when too
many transactions are allowed into the DBMS at once, due
to excessive lock contention (lock thrashing) or due to over-
load of some system resource. Hence it is beneficial to have
some high MPL upper bound on the number of transactions
allowed within the DBMS, with the understanding that if
this MPL is set too high, then throughput will start to drop.
Admission control studies how to limit the number of con-
current transactions within the DBMS bydropping trans-
actions when this limit is reached. Our work looks at the
other end of this problem – that of very low MPLs needed
to provide prioritization differentiation or some other type
of scheduling – and does not involve dropping requests.

2. Experimental setup

To answer the questions of feasibility and effectiveness
of external prioritization, it is important to evaluate theef-
fect of different workloads and hardware configurations on
these questions. The importance of looking at different
workloads is that an I/O bound workload may, for exam-
ple, require a higher MPL, as disks need more simultaneous
requests to perform efficiently. The importance of consider-
ing different hardware configurations is that a higher MPL
may be required to achieve good throughput in a system
with a large number of hardware resources, since more re-
quests are needed to keep the many resources busy. We will
therefore experiment with a wide range of hardware config-
urations and workloads, and two different DBMS.



Workload Benchmark Configuration Database Main memory Bufferpool CPU IO
load load

WCPU−inventory TPC-C 10 warehouses, 1GB 3GB 1GB high low
WCPU−browsing TPC-W Browsing 100 EBs, 10K items, 140K customers 300MB 3GB 500 MB high low
WI/O−browsing TPC-W Browsing 500 EBs, 10K items, 288K customers 2GB 512MB 100 MB low high
WI/O−inventory TPC-C 60 warehouses, 6GB 512MB 100MB low high

WCPU+I/O−inventory TPC-C 10 warehouses, 1GB 1GB 1GB high high
WCPU−ordering TPC-W Ordering 100 EBs, 10K items,140K customers 300MB 3GB 500MB high low

Table 1. Description of the workloads used in the experiments.

2.1. Experimental architectures

The DBMS we experiment with are IBM DB2 [1] ver-
sion 8.1, and Shore [20]. Shore is a prototype storage man-
ager with state-of-the-art transaction management, 2PL, and
Aries-style recovery; we use it because we have the source
code, enabling us to implement internal priorities. All of our
external scheduling results are also corroborated using Post-
greSQL [21] version 7.3, although we do not show these
results here for lack of space.

The DBMS is running on a 2.4-GHz Pentium 4 running
Linux 2.4.23. The buffer pool size and main memory size
will depend on the workload (see Table 1). The machine
is equipped with six 120GB IDE drives, one of which we
use for the database log. The number of remaining IDE
drives that we use for the data will depend on the particular
experiment. The workload generator is run on a separate
machine with the same specifications as the database server.

2.2. Experimental workloads and setups

When discussing the effect of the MPL it is important
to consider a wide range of workloads. Unfortunately there
are only a limited number of standard OLTP benchmarks
which are both well-accepted and publicly available, in par-
ticular TPC-C [6] and TPC-W [7]. Fortunately, however,
these two benchmarks can be used to create a much wider
range of workloads by varying a large number of (i) hard-
ware and (ii) benchmark configuration parameters. Table 1
describes the different workloads we create based on dif-
ferent configuration of the two benchmarks. The bench-
mark configuration parameters that we vary include: (a)
the number of warehouses in TPC-C, (b) the size of the
database in TPC-W (this includes both the number of items
included in the database store and the number of “emulated
browsers” (EBs) which affects the number of customers),
and (c) the type of transaction mix used in TPC-W, partic-
ularly whether these are primarily “browsing” transactions
or primarily “ordering” transactions. We run the workloads
from Table 1 under different hardware configurations cre-
ating 17 different “Setups” as summarized in Table 2. The
hardware parameters that we vary include: (a) the number
of disks (1 – 6), (b) the number of CPUs (1 or 2), and (c)

Setup Workload Number Number Isolation
CPUs disks level

1 WCPU−inventory 1 1 RR
2 WCPU−inventory 2 1 RR
3 WCPU−browsing 1 1 RR
4 WCPU−browsing 2 1 RR
5 WIO−inventory 1 1 RR
6 WIO−inventory 1 2 RR
7 WIO−inventory 1 3 RR
8 WIO−inventory 1 4 RR
9 WIO−browsing 1 1 RR
10 WIO−browsing 1 4 RR
11 WCPU+IO−inventory 1 1 RR
12 WCPU+IO−inventory 2 4 RR
13 WCPU−ordering 1 1 RR
14 WCPU−ordering 1 1 UR
15 WCPU−ordering 2 1 RR
16 WCPU−ordering 2 1 UR
17 WCPU−inventory 1 1 UR

Table 2. Definition of setups based on the workloads
in Table 1.

the main memory (ranging between 512 MB and 3 GB).
We also vary the isolation level to create different levels of
lock contention, starting with the default isolation levelof 3

(corresponding to RR in DB2 – Repeatable Read), but also
experimenting with lower isolation levels (UR – Uncommit-
ted Read), leading to less lock contention. In all workloads,
we hold the number of clients constant at 100.

3. Feasibility of low MPL: Experimental study

In this section we ask how low can we make the MPL
without causing deterioration in throughput and/or overall
mean response time. The aim is to look atlow values of
the MPL and study their effect on throughput and then on
mean response time using the experimental setups described
in the previous section. (We will not be considering high
values of the MPL, that are commonly looked at in studies
dealing with overload and admission control.) We will be
interested in identifying theworkload factorsthat affect the
answer to the question of “how low can one make the MPL.”
These results are summarized in Section 3.3.
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Figure 2. Effect of MPL on throughput in CPU
bound workloads:(a)WCPU−inventory (Setups 1 and
2 of Table 2) and (b)WCPU−browsing (setups 3 and
4 of Table 2).

3.1. Effect on throughput

For CPU bound workloads
Figure 2 shows the effect of the MPL on the throughput

under two CPU-bound workloads:WCPU−inventory and
WCPU−browsing. The two lines shown consider the case
of 1 CPU versus 2 CPUs. In the single CPU case, under
both workloads, the throughput reaches its maximum at
an MPL of about 5. In the case of 2 CPUs, the maximum
throughput is reached at aroundMPL = 10 in the case
of workloadWCPU−inventory and at aroundMPL = 7

in the case of workloadWCPU−browsing. Observe that
a higher MPL is needed to reach maximum throughput
in the case of 2 CPUs as compared with 1 CPU because
more transactions are needed to saturate 2 CPUs. The
fact that theWCPU−inventory requires a slightly higher
MPL is likely due to the fact that theWCPU−inventory

workload has some I/O components due to updates. The
additional I/O component means that more transactions are
needed to fully utilize the CPU, since some transactions
are blocked on I/O to the database log. All these maximum
throughput points are achieved at surprisingly low MPL
values, considering the fact that both these workloads are
intended to run with 100 clients according to the TPC
specifications.

For I/O bound workloads
Figure 3 shows the effect of the MPL on the through-

put under two I/O-bound workloads:WI/O−inventory and
WI/O−browsing. The lines shown consider different num-
bers of disks. TheWI/O−inventory workload is a pure I/O-
only workload, because of the larger database size. For this
workload, the MPL point at which maximum throughput is
reached isMPL = 2 for the case of 1 disk,MPL = 5

for the case of 2 disks,MPL = 7 for the case of 3 disks,
and MPL = 10 for the case of 4 disks. Observe that
the MPL needed to maximize throughput grows for systems
with more disks, since more transactions are required to sat-
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Figure 3. Effect of MPL on throughput in I/O bound
workloads: (a)WI/O−inventory (setups 5–8 of Ta-
ble 2) and (b)WI/O(TPC−browsing (setups 9 and 10
of Table 2).

urate more resources. Again, these numbers are extremely
low considering the fact that the TPC specifications for this
workload assumes 600 clients (we use 100 clients experi-
mentally).

It is interesting to note that the the increase in MPL
necessary to ensure x% of the maximum throughput is a
somewhatlinear function. We will give analytical vali-
dation for this observation in Section 4. Although it may
appear problematic that the necessary MPL grows linearly
with more disks, it is important to notice that systems with
many disks also have a proportionately larger population of
clients, hence an MPL that seems large may still be small in
proportion to the client population.

For WI/O−browsing, the MPL at which maximum
throughput is reached is higher than forWI/O−inventory

(aboutMPL = 13 for one disk and aboutMPL = 20

for four disks). The reason is that the size of this database
is smaller than for theWI/O−inventory workload, thus
resulting in a larger CPU component than in the purely
I/O-basedWI/O−inventory . As explained in Section 3.1 the
additional CPU component will add to the MPL needed.
Still, it is surprising that an MPL of 20 suffices given
that the TPC specifications for this workload assumes 500
clients (recall we use 100 clients experimentally).

For “balanced” CPU + IO workloads
Figure 4 considers workloadWCPU+I/O−inventory

which is balanced (equal) in its requirements of CPU and
I/O (both resources are equally utilized). In the case of just
1 disk and 1 CPU, an MPL of 5 suffices to reach maximum
throughput. Adding only disks to the hardware configura-
tion changes this value only slightly, since the CPU bot-
tleneck remains. Similarly, adding only CPUs changes the
required MPL value only slightly, since now the workload
becomes solely I/O bound. However if we add 4 disks and 2
CPUs (maintaining the initial balanced proportions of CPU
and I/O), we find that the MPL needed to reach maximum
throughput increases to around 20. This number is still low
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Figure 4. Effect of MPL on throughput in
workload exhibiting both high I/O and CPU:
WCPU+I/O−inventory (setups 11 and 12 of Table 2).

in light of the fact that the TPC specified number of clients
for this workload is 100.

In summary, the MPL required is largely proportional
to the number of resources that are utilized in a system
without an MPL. In a balanced workload the number of
resources that are utilized will be high; hence the MPL is
higher.

For Lock-bound workloads
Figure 5 illustrates the effect of increasing the locking

needed by transactions (increasing the isolation level from
UR to RR) on the MPL for workloadsWCPU−inventory

andWCPU−ordering. While the MPL needed overall is al-
ways under 20, the basic trend is that increasing the amount
of locking lowers the MPL. The reason is that when the
amount of locking is high, throwing more transactions into
the system doesn’t increase the rate at which transactions
complete, since they are all queueing. Beyond some point,
increasing the number of transactions actually lowers the
throughput, as seen in [5,8,12,18].

3.2. Effect on response time

Section 3.1 showed that external scheduling with low
MPL is feasible in that it doesn’t cause a significant loss in
throughput provided the MPL is not too low. Because we
are working in a closed system, an immediate consequence
of this fact is that the overall mean response time also does
not suffer (see Little’s Law [15]). However, this point is
far less obvious for anopen system, where response time is
not inversely related to throughput. In this section we will
investigate the effect of the MPL value on mean response
time in great detail, starting with experimental work and
then moving to queueing theoretic analysis.

Experimentally, we modify our experimental setup to an
open system with Poisson arrivals. For the open system we
find that for workloads based on TPC-C the response time is
insensitive to the MPL value, provided it is at least 4. In the
case of TPC-W based workloads, the MPL value needs to

5 10 15 20 25 30
0

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t (

xa
ct

/s
ec

)

MPL

Isolation UR
Isolation RR

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (x

ac
t/s

ec
)

MPL

UR isolation
RR isolation

(a)WCPU−inventory (b) WCPU−ordering

Figure 5. Effect of MPL on throughput in workloads
with heavy locking: (a)WCPU−inventory (setups 1
and 17 of Table 2) and (b)WCPU−ordering (setups
15 and 16 of Table 2).

be at least 8, for a system utilization of 70%, and at least 15
if the system utilization increases to 90 in order to obtain
close-to-optimal mean response times (when compared to
the system without MPL).

The most important observation is that the degree to
which the MPL affects the mean response time is dominated
by the variability of the workload, rather than other fac-
tors such as the resource utilization. For example the work-
loads based on the TPC-W benchmark consistently require
a higher MPL than the TPC-C based benchmarks, indepen-
dent of whether they are CPU bound (e.g.WCPU−browsing)
or IO bound (e.g.WIO−browsing). The reason is that the
service demands of the transactions in the TPC-W bench-
mark are more variable than those in the TPC-C benchmark.

The above observation can be explained both intuitively
as well as through queueing theory. Intuitively, a low
MPL increases overall mean response time when short
transactions (which in a standard, non-MPL system would
have short response times) get stuck waiting behind very
long transactions in the external queue (independently of
whether the long transaction is IO-bound or CPU-bound).
For this to happen the workload needs to exhibit high vari-
ability of the service requirements, i.e. the transaction mix
must contain some transactions that are much longer than
the average. From a theoretical perspective our external
scheduling mechanism with MPL parameter can be viewed
as a single unbounded First-in-first-out (FIFO) queue feed-
ing into a Processor-Sharing (PS) server where only MPL
jobs may share the PS server. A high MPL makes the sys-
tem behave more like a PS server, while a low MPL makes
it more similar to a FIFO server. In queueing theory it is
well known that the mean response time at a FIFO server is
directly affected by job size variability [13], while that of a
PS server is insensitive to job size variability.

To get an idea of whether the levels of variability ex-
hibited by the TPC-C and TPC-W benchmarks are repre-
sentative, we obtain traces from one of the top-10 online
retailers and from one of the top-10 auctioning sites in the



US for comparison. We compute the squared coefficient of
variation (C2), a standard statistical measure for variability,
for both the traces and the benchmarks. We find that the
C2 values of the traces are in agreement with the TPC-C
benchmark: In the TPC-C benchmark theC2 value varies
between 1.0 and 1.5 (depending on the setup), while the
traces exhibit values forC2 of around 2. The variability in
the TPC-W benchmark is higher exhibitingC2 values of 15.

3.3 Results: Factors influencing choice of MPL

Our aim in this section has been to determine how low
we can feasibly make the MPL without noticeably hurting
throughput and mean response time. We have seen, via a
wide range of experimental workloads, that the answer to
this question is strongly dominated by just a few key factors
of the workload.

For throughput, what’s important is the number of re-
sources that the workload would utilize if run without an
MPL. For example, if an IO-bound workload is run on a
system with 4 disks, then a higher MPL is required than if
the same workload is run on a system with only 1 disk.

With respect to not hurting overall mean response time,
the dominant factor in lower-bounding the MPL is the vari-
ability in service demands of transactions. Workloads with
more variable service demands require a higher MPL.

Importantly, we find that the question of how low one
can feasibly make the MPL, both with respect to throughput
and mean response time, is hardly affected by whether the
workload is I/O bound, CPU bound, or lock bound. This is
a surprising finding, and shows that thenumberof resources
that must be utilized to keep throughput high is more impor-
tant than thetypeof resources.

We note that the graphs shown in this section all assume
a high offered load in terms of the transaction arrival rate,
and as we have seen, it is quite feasible to make the MPL
low with only small deterioration in throughput. When the
offered load is low, the deterioration in throughput is even
smaller, since the external queue is typically empty.

4. Finding the right MPL

The previous section demonstrates the general feasibility
of external scheduling across a wide range of workloads. In
all experiments an MPL of less than 20 suffices to achieve
near optimal throughput and mean response time, while the
number of clients is comparatively far higher than 20 (typi-
cally a hundred or several hundred).

However, the performance study in the previous section
merely indicates the general existence of a good MPL value.
The purpose of this section is to develop techniques for
automatically tuning the MPL value to make the external
scheduling approach viable in practice. We seek a method

for identifying the lowest MPL value that limits throughput
and response time penalties to some threshold specified by
the DBA (e.g. “throughput should not drop by more than
5%”).

Database workloads are complex, and exactly predicting
throughput and response time numbers is generally not fea-
sible. The key observation is that for us it suffices to predict
how a given MPLchangesthroughput and mean response
time relative to the optimal performance. The change in per-
formance caused by an MPL value is strongly dominated by
only a few parameters (as summarized in Section 3.3); the
change in throughput is mostly affected by the number of
parallel resources utilized inside the DBMS; the change in
mean response time is mainly affected by the variability in
the workload. In both casesqueueing-related effectsdomi-
nate, rather than other performance factors.

The above observations leads us to the idea of tuning
the MPL through a feedback control loop augmented with
queueing theoretic guidance. We start by developing queue-
ing theoretic models and analysis to capture basic properties
of the relationship between system throughput and response
time and the MPL. We then use these models to predict a
lower bound on the MPL that limits performance penalties
to some specified threshold. While the analytically obtained
MPL value might not be optimal, it provides the control
loop with a good starting value. The control loop then opti-
mizes this starting value in alternating observation and reac-
tion phases. The observation phase collects data on the rel-
evant performance metrics (throughput and mean response
time) and the reaction phase updates the MPL accordingly,
i.e. if the throughput is too low the MPL is increased and if
it is too high the MPL is decreased.

In the remainder of this section we detail the above ap-
proach. We first explain the queueing theoretic methods
for predicting the relationship between MPL and through-
put (Section 4.1) and mean response time (Section 4.2). In
Section 4.3, we show how this knowledge can be used in a
feedback control loop to fine-tune the MPL parameter.

4.1. Queueing analysis of throughput vs. MPL

We start by creating a very simplistic model of the
database internal resources as shown in Figure 6.1 We
model the MPL by using a “closed” system with a fixed
(MPL) number of clients as represented in Figure 6. We as-
sume that the service times of all devices are exponentially
distributed with service rate proportional to their utilization
in the unlimited system (with unbounded MPL).

The reason why such a simple model is sufficient is that
we are only interested in achieved throughput relative to the

1Our current model includes only CPU and disk resources. We don’t
model memory (or bufferpool) as a separate resource since the time a trans-
action spends accessing memory is time it either occupies the CPU (mem-
ory hit) or utilizes a disk (memory miss) and is therefore accounted for.
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Figure 6. Theoretical model representing the DBMS
internals. This model provides us with a theoretical
upper bound on the MPL needed to provide maximum
throughput.

optimal throughput. It is therefore not necessary to know
the exact service demands at a device, just the relative pro-
portions, since these will equally affect the throughput with
and without MPL (e.g. a 5-times higher service demand will
reduce throughput in both cases by a factor of 5). More-
over, in this type of queueing model the distribution of the
service demand at the individual servers will not impact the
throughput.

We analyze this “closed” system for different MPL val-
ues and and determine the achieved throughput. We com-
pare the results to the maximum throughput for the system,
until we find the lowest MPL value that leads to the de-
sired throughput level (e.g. not more than 5% lower than the
maximum throughput). Simple binary search can be used to
make this process more efficient.

The MPL yielded by this analysis is in fact an upper
bound on the actual MPL that we would get in experiments
for two reasons: First, we purposely create the “worst-case”
in our analytical model by assuming that all resources are
equally utilized. This is realistic for the experimental setups
that we consider, since we assume that the data is evenly
striped over the disks and the CPU scheduler will ensure
that on average all CPUs are equally utilized. For unbal-
anced workloads a smaller MPL might actually be feasible,
and this could easily be integrated into the model. Second
we do not allow for the fact that a client may be able to
utilize two resources (e.g., two disks) at once.

To evaluate the usefulness of the model in predicting
good MPL ranges we parameterize and evaluate the model
based on theWI/O−inventory workload. For this workload
there is almost no CPU usage, however the number of disks
play an important role. In our experiments, we were able to
experiment with up to 4 disks, as shown in Figure 3. How-
ever in analysis we can go much further. Figure 7 shows
the results of the analysis with up to 16 disks. The first ob-
servation is that the results of the analysis for 1 to 4 disks
look very similar to the actual experimental results from
Figure 3. Next, we observe that the MPL required to reach
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Figure 7. Results of theoretical analysis showing the
effect of the MPL on throughput as a function of the
number of resources. The squares (circles) denote
the minimum MPL that limits throughput loss to 5%
(20%). Note that the set of circles form a perfectly
straight line, as do the squares.

near maximum throughput growslinearly with the number
of disks: The minimum MPL that is sufficient to achieve
80% of the maximum throughput is marked with circles,
and the minimum MPL that is sufficient to achieve 95% of
the maximum throughput is marked with squares. Both the
circles and the squares formstraight lines. This matches the
linear trend we also observed in experiments.

The take-away point is that simple queueing analysis, as
we have done, captures the main trends of the throughput
vs. MPL function well, and is a useful tool in obtaining
an initial estimate of the MPL required to achieve the de-
sired throughput. While we find that the current analysis
is a very good predictor of our experimental results for the
4-disk system, it is certainly possible to refine the analytic
queueing model further, or to integrate it with existing sim-
ulation tools for more realistic modeling of the hardware
resources involved. However, such improvements are not
crucial since the main purpose of the above model is merely
to provide the controller with a good starting value, rather
than a perfect prediction.

4.2. Queueing analysis of response time vs. MPL

Section 3 indicates that the effect of the MPL on the
mean response time is dominated by the variability in the
workload and hardly affected by other workload parameters
such as the bottleneck resource or the level of lock con-
tention. For workloads with little variability (C2 ≈ 1) MPL
values around 4 are sufficient to achieve optimal mean re-
sponse time, while more variable workloads (C2 ≈ 15) re-
quire an MPL of 8-15 (depending on system load). How-
ever, these particular results for the right choice of the MPL
are hard to generalize, since they are based on only two
benchmarks with two different levels of variability (C2 ≈ 1

andC2 ≈ 15). We therefore resort to analysis to obtain
more general results.



From a theoretical perspective our external scheduling
mechanism with MPL parameter can be viewed as a sin-
gle unbounded First-in-first-out (FIFO) queue feeding into
a Processor-Sharing (PS) server where only MPL jobs may
share the PS server as illustrated in Figure 8. Note that this
is not a poor approximation of our system in that, as we see
in [22], Figure 8, the DBMS in many ways behaves like a
PS system.

PS

Multi−

programming

Limit (MPL) = 2

FIFO

queue

Poisson

arrivals

Figure 8. Queueing network model of external
scheduling mechanism with MPL = 2.

To the best of our knowledge, there is no existing simple
solution to our queueing network in Figure 8. Therefore, we
derive the following solution approach: We start by model-
ing the job sizes (service requirements) by a 2-phase hyper-
exponential (H2) distribution, with probability parameterp
and ratesµ1 andµ2, allowing us to arbitrarily vary theC2

parameter. We can then represent the network in Figure 8 by
an equivalent special “flexible multiserver queue” where the
number of servers fluctuates between 1 and MPL as needed,
and where thesumof the service rates at the multiple servers
is always maintained constant and equal to that at the single
PS server. The continuous-time Markov chain correspond-
ing to the flexible multiserver queue is shown in Figure 9
for the case of anH2 service time distribution (with param-
etersp, µ1, andµ2), arrival rateλ and MPL = 2. Note that
we define the shorthandq = 1 − p. This Markov chain
lends itself to Matrix-analytic analysis [14, 19], becauseof
its repeating structure.

Figure 10 shows the results of evaluating the Markov
chain in Figure 9. We find that for lowC2 values of 1 or 2,
the mean response time is largely independent of the MPL
value and equal to that for the pure PS system (with infinite
MPL), assuming the MPL is at least 5. For higherC2 val-
ues of 5–15, we find that the MPL depends on the load and
needs to be at least 10 (for load of0.7) or 30 (for load of
0.9) to ensure low mean response time (similar to PS).

4.3. A simple controller to find lowest feasible MPL

Next we explain how we use feedback control combined
with queueing theory for tuning the MPL parameter.

When using feedback control for tuning parameters, the
difficult part is choosing the right amount by which to ad-
just the parameter in each iteration: too small, conservative
adjustments will lead to long convergence times, while too
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Figure 9. Continuous-time Markov chain (CTMC)
corresponding to the flexible multiserver queue rep-
resentation of the queueing network in Figure 8. The
two jobs in service may both have service rateµ1 (top
row), or may have ratesµ1 andµ2 (middle row), or
may both have service ratesµ2 (bottom row).

large adjustments can cause overshooting and oscillations.
We circumvent the problem by using the queueing theoretic
models from the previous subsections to “jump-start” the
control-loop with a good, close-to-optimal starting value
for the MPL. Initializing the control-loop with a close-to-
optimal starting value provides fast convergence times, even
given only small conservative constant adjustments.

A second critical factor in implementing the feedback
based controller is the choice of the observation period. It
needs to contain enough samples to provide a reliable es-
timate of mean response time and throughput. We deter-
mine the appropriate number of samples through the use of
confidence intervals. For our workloads an observation pe-
riod needs to span around 100 transactions to provide stable
estimates. It is also important the observation period be-
ing studied does not have unusually low load, as this would
cause low throughput independent of the current MPL used.
Our controller takes the above two points into account by
updating the MPL only after observation periods that con-
tain a sufficient number of executed transactions and exhibit
representative system loads.

We find in experiments that our queueing theoretically
enhanced controller converges for all our experimental se-
tups in less than 10 iterations to the desired MPL. While
we find that using our simplistic control-loop is effective
in determining the desired MPL, our approach could easily
be extended to incorporate more complex control methods,
e.g. following guidelines provided in [11]. This will be
particularly useful for situations where queueing theoretical
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Figure 10. Evaluation of CTMC for differentC2.
The system load is 0.7 (top) and 0.9 (bottom).

models are not precise enough in predicting good, close-to-
optimal starting values for the controller.

5. External scheduling for Prioritization

Thus far we have presented an algorithm for finding a
low MPL that doesn’t hurt throughput or overall mean re-
sponse time. The goal in keeping the MPLlow is that a low
MPL gives us control on the order in which transactions are
scheduled, since we canpick the order in which transac-
tion are dispatched from the external queue. Thus we are
enabling certain transactions to run in isolation from others.

In this section, we apply our technique to the problem
of differentiating between “high” and “low” priority trans-
actions. Such a problem arises for example in the case of a
database backend for a three-tiered e-commerce web site. A
small fraction of the shoppers at the web site spend a large
amount of money, whereas the remaining shoppers spend a
small amount of money. It makes sense from an economic
perspective to prioritize service to the “big spenders,” pro-
viding them with lower mean response time.

We would like to offer high priority transactions low re-
sponse times and low priority transactions higher response
times. The lower the MPL that we use, the greater the dif-
ferentiation we can create between high and low priority
response times. At the same time we would like to keep
the MPL high enough that throughput and overall mean re-
sponse time are not hurt beyond a specified threshold. The
technique presented in Section 4 allows us to achieve both

of the above goals by specifying an exact MPL which will
achieve the required throughput and overall mean response
time, while being as low as possible, and hence provid-
ing maximal differentiation between high and low priority
transactions.

In Section 5.1 we present results achieved via external
prioritization, where, for each workload, the MPL is ad-
justed using the methods from Section 4. In Section 5.2
we discuss how one could alternatively implement priori-
tization internally to the DBMS by scheduling internal re-
sources. Finally in Section 5.3, we compare the effective-
ness of our external and internal approaches, and show that
external scheduling, with the proper MPL, can be as effec-
tive as internal scheduling for our workloads.

5.1. Effectiveness of external prioritization

We start by implementing and studying the effective-
ness of external prioritization. The algorithm that we use
for prioritization is relatively simple. For any given MPL,
we allow as many transactions into the system as allowed
by the MPL, where the high-priority transactions are given
first priority, and low-priority transactions are only chosen if
there are no more high-priority transactions (see Figure 1).
The MPL is held fixed during the entire experiment.

Note that this paper does not deal with how the trans-
actions obtain their priority class. As stated earlier, we as-
sume that the e-commerce vendor has reasons for choosing
some transactions/clients to be higher or lower-priority.Ex-
perimentally, we handle this by simply at random assigning
10% of the transaction “high”-priority and the remainder
“low”-priority.

We first consider the case where the MPL is adjusted to
limit throughput loss to 5% (compared to the case where no
external scheduling is used), see Figure 11(top), and then
the case where the MPL is chosen to limit throughput loss
to 20%, see Figure 11(bottom). For each of these two cases,
we experiment with all 15 setups shown in Table 2. In each
experiment we apply the external scheduling algorithm de-
scribed in above and measure the mean response times for
high and low priority transaction, in addition to the overall
mean response time when no priorities are used.

We find that using external prioritization, in the case of
5% throughput loss (Figure 11(top)), high priority trans-
actions perform 4.2 to 21.6 times better than low priority
transactions with respect to mean response time. The av-
erage improvement of high priority transactions over low
priority transactions is a factor of 12.1. The low priority
transactions suffer only a little as compared to the case of
no prioritization, by a factor ranging from 1.15 to 1.17, with
an average suffering of 16 %. The above numbers are visi-
ble from the figure (or caption). Not visible from the figure
is whether prioritization causes the overall mean response



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

5

10

15

Setup

Re
sp

on
se

 Ti
me

 (s
ec

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

5

10

15

Setup

Re
sp

on
se

 Ti
me

 (s
ec

)
High Prio
Low Prio
No Prio

High Prio
Low Prio
No Prio

Figure 11. Results of external scheduling algorithm. This figure showsthe mean response times for high and low
priority requests, as well as the case of no prioritization,for all 17 setups described in Table 2. In thetop graph, the
MPLs have been set to sacrifice a maximum of 5% throughput for each experiment. In thebottomgraph, The MPLs
are set to sacrifice a maximum of 20% throughput. Observe thatworkloads 5, 9, and 10 have been cut off. The values
for these workloads in (top) are (7.6 sec, 76.864 sec), (26.2sec, 111 sec), and (9.4 sec, 50.9 sec), respectively, and in
(bottom) are (4.1 sec, 79.3 sec) (15 sec 112 sec) (4.2 sec and 51.9 sec) respectively.

time to rise. It turns out that the overall mean response time
is never hurt by more than 6% compared to the orginal sys-
tem without external scheduling.

We find that using external prioritization, in the case
of 20% throughput loss (Figure 11(bottom)), high priority
transactions perform 7 to 24 times better than low prior-
ity transactions with respect to mean response time. The
average improvement of high priority transactions over low
priority transactions is a factor of 18. The low priority trans-
actions suffer by a factor ranging from 1.35 to 1.39, as com-
pared to the case of no prioritization, with an average suffer-
ing of 37%. The above numbers are visible from the figure
(or caption). Not visible from the figure is whether prior-
itization causes the overall mean response time to rise. It
turns out that the overall mean response time is never hurt
by more than 25% compared to the orginal system with-
out external scheduling. Observe that in the case of 20%
throughput loss, the differentiation between high and low
priority requests is more pronounced, since the MPL values
are lower, but this comes at the cost of lower throughput and
higher overall response times.

5.2. Implementation of internal scheduling

Scheduling the internals of the DBMS is obviously more
involved than external scheduling. It is not even clearwhich

resourceshould be prioritized: the CPU, the disk, the lock
queues, etc. Once one resolves that first question, there is
the follow-up question ofwhich algorithmshould we use
to give priority to high-priority transactions, without exten-
sively penalizing low priority transactions. Both questions
are not obvious.

In a recent publication, [16], we address the first question
of which resource should be prioritized via a detailed re-
source breakdown. We find that in OLTP workloads run on
2PL (2-phase locking) DBMS, transaction execution times
are often dominated by lock waiting times, and hence pri-
oritization of transactions is most effective when appliedat
the lock queue. We find that other workloads or DBMS lead
to transaction execution times being dominated by CPU us-
age or I/O, and hence prioritization of transactions is most
effective when applied at those other resources.

Having seen that it is not obvious which internal resource
needs to be scheduled, we now turn to the particular 17 se-
tups shown in Table 2. Some of these (e.g., setup 3 and
4) are CPU bound, while others (e.g., 1 and 2) are lock-
bound, and still others are I/O bound (e.g. setup 5-10). In
our experiments with internal scheduling we consider two
particular setups: Setup 1 (Lock-bound) and Setup 3 (CPU-
bound).

For setup 1, we implement thePreempt-on-Wait(POW)
lock prioritization policy [17] in Shore [20]. In POW, high
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Figure 13. Comparison of internal vs external pri-
oritization for setup 3.

priority transactions move ahead of low-priority transac-
tions in the lock queue, and are allowed to even preempt
a low-priority lock holder if that low-priority lock holderis
waiting at another lock queue.

For setup 3, CPU prioritization is available in IBM DB2
through the DB2gov tool [3]. However, we find that we
achieve better priority differentiation by “manually” setting
the CPU scheduling priorities used by the Linux operating
system. We use therenice command in Linux to set the
CPU priority of a DB2 process executing a high priority
transaction to -20 (the highest available CPU priority) and
the CPU priority of a DB2 process executing a low priority
transaction to 20 (the lowest available CPU priority).

In the next section we show the results for internal
scheduling for these setups.

5.3. Internal prioritization results and comparison
with external results

In this section we consider setup 1 and 3 from Table 2.
For each setup, we compare the performance obtained via
internal prioritization with that obtained via external prior-
itization. We consider 3 versions of external prioritization,
the first involving 5% throughput loss, the second involving
20% throughput loss, and the third involving 0% throughput
loss. Figure 12) shows the results for setup 1, and Figure 13

shows the results for setup 3.
For both setups, we find that with respect to differenti-

ating between high and low priority transactions, external
scheduling is nearly as effective as the internal scheduling
algorithms that we looked at herein (for the case of zero
throughput loss), and can even be more effective when the
MPL is low (at the cost of a sacrifice in throughput). Look-
ing at the suffering of the low priority transactions as com-
pared to the overall mean response time, we find that exter-
nal scheduling results in only negligibly more suffering for
the low priority transactions, when compared with the in-
ternal scheduling algorithms herein. The penalty to the low
priority transactions is minimized when the MPL is chosen
so that no throughput is lost.

Because of the inherent difficulty in implementing inter-
nal scheduling, we were only able to provide numbers for
setups 1 and 3 out of the 17 setups in Figure 2. However
it is clear that for these two setups, external scheduling is
a viable approach when compared with internal scheduling,
and we hypothesize that external scheduling will compare
favorably on the remaining setups as well, given the strong
results shown for external scheduling in Figure 2.

We are not trying to say that external scheduling is al-
ways as effective as internal scheduling. Although the inter-
nal scheduling algorithms that we considered are quite ad-
vanced, there may be other internal scheduling algorithms
which are superior to our external approach for certain
workloads. Similarly, we are not trying to say that our pro-
posed method for external scheduling is optimal. There may
be many ways of further enhancing our external scheduler,
for example by leveraging DBMS internal information on
resource utilization, or information on resource demands of
transactions. The point that we make in this paper is that ex-
ternal scheduling is a promising approach, when the MPL
is adjusted appropriately.

6. Conclusion

This paper lays the experimental and theoretical ground-
work for an exploration of the effectiveness of external
scheduling of transactional workloads.

At the heart of our exploration is the question ofhowex-
actly should one limit the concurrent number of transactions
allowed into the DBMS, i.e., the MPL (multi-programming
limit). The obvious tradeoff is that one both wants the MPL
to be low enough to create good prioritization differentia-
tion and at the same time high enough so as not to limit
throughput or create other undesirable effects like increas-
ing overall mean response time.

Our work begins with an experimental study of how the
MPL setting affects throughput and mean response. Our
experiments include a vast array of 17 experimental setups
(see Table 2), spanning a wide variety of hardware config-



urations and workloads, and two different DBMS (Shore,
IBM DB2). We find that the choice of a good MPL is dom-
inated by a few key factors. The dominant factor in lower-
bounding the MPL with respect to minimizing throughput
loss is the number of resources that the workload utilizes.
The key factor in choosing an MPL so as not to hurt overall
mean response time, is the variability in service demands of
transactions. The fact of whether a workload is I/O bound,
CPU bound, or lock bound is much less important in choos-
ing a good MPL. Throughout we find that the values of MPL
that are needed to ensure high throughput and low over-
all mean response time are in the lower range, in particular
when compared with the typical number of users associated
with the above experimental setup workloads.

The above experimental study encourages us to develop
a tool for dynamically determining the MPL as a function
of the workload and system configuration. The tool takes as
input from the DBA the maximum acceptable loss in system
throughput and increase in mean response time, and deter-
mines the lowest possible MPL that meets these conditions.
The tool uses a combination of queueing theoretic models
and a feedback based controller, based on our discovery of
the dominant factors affecting throughput and overall mean
response time.

Finally, we apply our tool for adjusting the MPL to
the problem of providing priority differentiation. Given
high and low priority transactions, we schedule the exter-
nal queue based on these priorities (high priority transac-
tions are allowed to move ahead of low priority transac-
tions) and the current MPL. We experiment with different
MPL values by configuring our tool with different thresh-
olds for the maximum acceptable loss in system throughput
and increase in mean response time. We find that the ex-
ternal scheduling mechanism is highly effective in provid-
ing prioritization differentiation. Specifically, we achieve a
factor of 12 differentiation in mean response time between
high and low priority transactions across our 17 experimen-
tal setups, if the MPL is adjusted to limit deterioration in
throughput and mean response time to 5%. If we allow up to
20% deterioration in throughput and overall mean response
time, we obtain a factor of 16 differentiation between high
and low priority response times.

Lastly, to gauge the effectiveness of our external ap-
proach, we implement several internal prioritization mech-
anisms that schedule the lock resources and the CPU re-
sources. We find that our external mechanism and internal
mechanisms are comparable with respect to their effective-
ness in providing priority differentiation for the workloads
studied.

Our methods for dynamically adapting the MPL are very
general. While we have applied them only to OLTP work-
loads in this paper, they are likely to apply to other work-
loads as well, and also to more general scheduling policies.
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