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We consider the problem of maintaining a dynamic dictionary T of keys and associated data for
which both the keys and data are bit strings that can vary in length from zero up to the length w of
a machine word. We present a data structure for this variable-bit-length dictionary problem that
supports constant time lookup and expected amortized constant time insertion and deletion. It
uses O(m+3n−n log2 n) bits, where n is the number of elements in T , and m is the total number
of bits across all strings in T (keys and data). Our dictionary uses an array A[1 . . . n] in which
locations store variable-bit-length strings. We present a data structure for this variable-bit-length
array problem that supports worst-case constant-time lookups and updates and uses O(m + n)
bits, where m is the total number of bits across all strings stored in A.

The motivation for these structures is to support applications for which it is helpful to efficiently
store short varying length bit strings. We present several applications, including representations
for semi-dynamic graphs, order queries on integers sets, cardinal trees with varying cardinality,
and simplicial meshes of d dimensions. These results either generalize or simplify previous results.

Categories and Subject Descriptors: E.2 [Data Storage Representations]: —Hash-table rep-
resentations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Compression

1. INTRODUCTION

There has been significant recent interest in data structures that use near opti-
mal space while supporting fast access [Jacobson 1989; Munro and Raman 2001;
Chuang et al. 1998; Brodnik and Munro 1999; Pagh 2001; Raman et al. 2002;
Blandford et al. 2003; Raman and Rao 2003; Fotakis et al. 2005; Grossi and Vitter
2005]. In addition to theoretical interest, such structures have significant practi-

This work was supported in part by the National Science Foundation as part of the Aladdin Center
(www.aladdin.cmu.edu) under grants ACI-0086093, CCR-0085982, and CCR-0122581. This work
was carried out while the first author was at Carnegie Mellon University.
Authors’ addresses: Blandford, Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043,
email: dan.blandford@gmail.com; Blelloch, Computer Science Department, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15232, email: guyb@cs.cmu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · D. Blandford and G. Blelloch

cal implications. In experimental work [Blandford et al. 2004], for example, it has
been demonstrated that a compact representation of graphs not only requires sig-
nificantly less space than standard representations (e.g., adjacency lists), but can
also be faster. This is because the representation requires less data to be loaded
into the cache.

Given a universe U of keys, the dictionary problem is to support lookup (mem-
bership) queries on a set T ⊂ U . Often we also want to associate satellite data with
each key. If the data comes from a universe U ′ the dictionary can be described as a
set of key-value pairs T ⊂ U ×U ′, with the condition that keys are unique. We say
that a dictionary is static if it only supports lookups and dynamic if it also supports
insertions and deletions. In this paper we assume the unit-cost RAM with standard
arithmetic and logical operations. We allow for any word length w > log2M bits,
where M is the size of the memory in bits.

In many situations it is useful to store variable-length strings in a dictionary.
This problem is fundamental and has been studied for years. Previous solutions,
however, are not space efficient when the average number of bits (or characters)
in each string is small. The standard implementations of tries, for example, are
neither time nor space efficient: on n entries they require Ω(n log n) bits and use
Ω(log n) time to look up an element of length w.

In this paper we are interested in space-efficient dynamic dictionaries for storing
variable-length bit strings. We use Sw to denote the set of bit strings up to length
w (i.e., Sw = ε ∪ {0, 1}1 ∪ {0, 1}2 ∪ . . . {0, 1}w). The variable-bit-length dictionary
(VLD) problem is the dictionary problem where T ⊂ Sw × Sw. We present a
data structure for this problem that supports lookups in O(1) time, insertions and
deletions in O(1) expected amortized time, and uses O(m+3n−n log2 n) bits, where
n = |T |, and m =

∑
(s,t)∈T (|s|+ |t|). Since the keys are unique, m > n log2 n− 2n.

The results can be extended to bit strings of arbitrary length by storing bit strings
longer than w separately using known techniques—e.g., using vector hashing [Carter
and Wegman 1979] with dynamic perfect hash tables [Dietzfelbinger et al. 1994].
This would involve replacing O(1) with O((|t|+ |s|)/w) in the time bounds.

Our dictionary structure makes use of a data structure for the simpler variable-
bit-length array (VLA) problem. The problem is to maintain an array A[1 . . . n] of
locations each storing an element from Sw while supporting lookups and updates on
any of the n locations. We present a data structure for the problem that supports
lookups and updates in O(1) worst-case time, and uses O(m + n) bits, where m =∑n

i=1 |A[i]|.
Any representation for a collection type with l possible values requires at least

log2 l bits to distinguish the values. This is often referred to as the information-
theoretic lower bound1. Consider a collection type C parameterized on some size
parameters, including the number of elements n. Given an information-theoretic
lower bound as a function of the size parameters, I(n, . . .), we say a data struc-
ture for storing the collection type is compact if it uses at most O(I(n, . . .) + n)
bits and succinct if it uses at most I(n, . . .) + o(I(n, . . .)) bits. In both cases we
require that the operations on the data structure are efficient. The data structures
presented in this paper for variable-bit-length arrays and dictionaries are compact

1Technically this is the information-theoretic lower bound assuming all values are equally likely.
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when parameterized on the number of elements and the total number of bits across
all elements.

1.1 Related Work

For fixed-length keys, space-efficient solutions of the dictionary problem have re-
ceived much attention. The information-theoretic lower bound for representing n
elements from a universe U is B = log2d

(|U |
n

)
e = n log2(|U |/n) + O(n) bits. For

bit strings of fixed length l, |U | = 2l so B = nl − n log2 n + O(n). Cleary [1984]
described a compact data structure for fixed-length keys that used (1+ ε)B +O(n)
bits with O(1/ε2) expected time for lookup and insertion while allowing satellite
data. His structure used the technique of quotienting [Knuth 1973], which involves
storing only part of each key in the hash table; the part not stored can be inferred
from the position that the key was initially hashed to.

Brodnik and Munro [1999] described a succinct data structure for static dictio-
naries supporting O(1) time lookups. It did not support satellite data. Pagh [2001]
extended this result to allow for satellite data and improve the space bound in the
lower-order term. Raman and Rao [2003] described a succinct dynamic dictionary
that supports lookup in O(1) time and insertion and deletion in O(1) expected
amortized time. The structure allows attaching fixed-length satellite data. This
previous research did not consider variable-bit-length keys or data.

Cohen and Matias [2003] described a dynamic “string-array index” that can keep
track of variable-bit-length strings. This is similar to the VLA problem, but is more
limited in that their application made updates to bit strings in random locations
(determined by a set of hash functions), and only required increasing the length of
a bit string by one bit at a time. Under these assumptions, they proved bounds
similar to ours. They did not consider the general case.

1.2 Difference coding and Applications

Our main motivation is to use variable-bit-length dictionaries as building blocks for
various other applications. We describe applications of variable-bit-length dictio-
naries to directed graphs, cardinal trees with nodes of varying cardinality, ordered
sets, and simplicial meshes. These applications either generalize or simplify previ-
ously known results.

All the applications are based on simple “pointer based” data structures, but re-
place pointers with difference codes. A difference code encodes a value by specifying
the difference between that value and another known value instead of encoding it
directly. For example the value of a pixel in an image might be encoded using the
difference from the previous pixel. If the difference is small it can be encoded in a
small number of bits, but the difference will vary requiring a different number of
bits for different pixels. In all applications we describe, the average difference is
small, but the differences can vary significantly—hence the importance of efficiently
storing variable-bit-length strings. Typically the differences we use are differences
between integer labels given to elements, such as integer labels on the vertices of a
graph.

For directed graphs we describe a data structure that supports adjacency queries,
listing the neighbors of a vertex, and deleting and inserting edges. Queries take O(1)
time, and updates take O(1) expected amortized time. For a graph with n vertices
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with integer labels bounded by O(n) the representation uses O(n+
∑

(u,v)∈E log |u−
v|) bits. Any graph from a class satisfying an n1−ε edge-separator theorem (ε > 0)
can be labeled with integers [1, . . . , n] so that

∑
(u,v)∈E log |u − v| < kn for some

constant k [Blandford et al. 2003], and hence can be coded in O(n) bits. It is
well known, for example, that the class of bounded-degree planar graphs satisfies
an n1/2 edge-separator theorem. For graphs with bounded degree this extends
previous results [Turán 1984; Keeler and Westbrook 1995; He et al. 2000; Blandford
et al. 2003] by permitting insertion and deletion of edges. We say that the graph
is partially dynamic since although it allows dynamic insertions and deletions, the
space bound relies on

∑
(u,v)∈E log |u− v| remaining small.

For an ordered set S ⊂ {0, . . . ,m} of size n we describe a compact data struc-
ture that supports insertion and deletion in O(1) expected amortized time, and
finger searching in O(log l) time, where l is the number of keys between the finger
and the key that is found. It also supports generating a finger in O(log n) time.
The representation uses O(n log(m/n)) bits. These bounds match those reported
in [Blandford and Blelloch 2004], except that the updates are expected amortized
time here and are worst case time bounds in the previous work. The structure we
describe here, however, is simpler and quite different from the previous structure
and allows for attaching a satellite bit string to each key. We also show how the
structure can be used to support the findNext operation (finding the next key in S
larger than a given key k) in O(log log m) time with the same memory bounds.

For cardinal trees (also known as tries) we describe a structure that supports
trees in which each node can have a different cardinality. Queries can request
the kth child, or the parent of any node, and updates can add or delete the kth

child if it is a leaf. Queries take O(1) worst-case time and updates take O(1)
expected amortized time. Again we can attach satellite bit strings to each node.
Using an appropriate labeling of the vertices the structure uses O(

∑
v∈V log c(p(v)))

bits, which is asymptotically optimal. This generalizes previous results on cardinal
trees [Benoit et al. 2005; Raman et al. 2002] to varying cardinality. We do not
match their optimal constant in the first order term.

For d-dimensional simplicial (triangulated) meshes we describe a data structure
that supports insertion and deletion of simplices of dimension d, and returning the
neighbors across all faces of dimension d − 1. For example, in a 3-dimensional
tetrahedral mesh one can add and delete tetrahedrons, and ask for the neighboring
tetrahedron across any of the four faces. For a mesh with n vertices with integer
labels bounded by O(n) the representation uses O(n+

∑
f∈F d maxa,b∈f log |a− b|)

bits, where F is the set of d− 1 dimensional simplices (faces) in the mesh. In three
dimensions we show that this simplifies to O(n +

∑
(a,b)∈E(log |a − b|)) where E

is the set of edges in the mesh. Updates take O(1) expected amortized time and
queries take O(1) worst case time. We used a similar data structure as described
here to implement triangulated and tetrahedral meshes [Blandford et al. 2005].

The remainder of the paper is organized as follows. Section 2 describes some
preliminary concepts that will be useful. Section 3 describes the array structure
that is a building block for our dictionary, and Section 4 describes the dictionary
itself. Sections 5–8 discuss the applications of our dictionary structure.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. PRELIMINARIES

2.1 Processor model

We assume the unit-cost RAM with w > logM, where w is the length of a machine
word and M is the size of the memory in bits. We assume the processor supports
standard logical and arithmetic operations on words including integer multiplication
and division (needed by the hash functions), and bit shifting. We also use two
special operations on words, bitSelect and bitRank, defined as follows. Given
a machine word interpreted as a bit string s[1, . . . , w], bitSelect(s, i) returns the
least bit position j such that |{s[k] = 1|k ∈ [1, . . . , j]}| = i, and bitRank(s, j)
returns |{s[i] = 1|i ∈ [1, . . . , j]}|. These operations mimic the function of the
rank and select data structures of Jacobson [1989]. If the processor does not
support these operations, they can be implemented in constant time and within
the needed memory bounds using table lookup (see Section 2.5).

2.2 Quotienting

Quotienting based hash schemes take advantage of the fact that when using hashing,
the bucket number to which a key hashes gives information about the key. In
particular for n buckets, since only about 1/n elements from the universe U hash
to that bucket, the bucket gives log n bits of information about the key—i.e., it
narrows down the set of possible keys by a factor of n. For a key with l bits (2l

possible values) we can therefore reconstruct it by storing only l− log n bits in the
bucket and using these bits along with the bucket number to reconstruct the key.
This idea was observed by Knuth [1973, Section 6.4, exercise 13] and has been used
by several others [Cleary 1984; Pagh 2001; Raman and Rao 2003; Fotakis et al.
2005]. We believe the term quotienting was suggested by Pagh [2001].

A quotienting scheme must supply three functions:

(1) a hash function h(x) that maps each key to a bucket,
(2) a quotient function g(x) that maps each key to a quotient to be stored in the

bucket, and
(3) an inverse function i(h, g) that takes the bucket and quotient and returns the

original key.

Various quotienting schemes have been suggested by the authors listed above. Since
it is convenient for us to use a scheme that works on keys of different lengths, we
use a variant in this paper.

2.3 Gamma codes

Throughout the paper we use gamma codes [Elias 1975] to encode integers. The
gamma code is a variable-length prefix code that represents a positive integer v
with blog vc zeroes, followed by the (blog vc+ 1)-bit binary representation of v, for
a total of 2blog vc+ 1 bits.

Given a string s containing a gamma code (of length ≤ w) for an integer d
followed possibly by other information, it is possible to decode the gamma code
in constant time. First, the decoder uses bitSelect(s, 1) to find the location j
of the first 1 in s. The length of the gamma code is 2j + 1, so the decoder uses
shifts to extract the first 2j + 1 bits of s. These bits are the binary code for d. To
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encode negative (or zero) as well as positive integers a sign bit can be stored with
the gamma code (before or after).

Gamma codes are only one of several variable-length codes which use O(log n)
bits to represent a positive integer n.

2.4 Memory allocation

There are various models for analyzing memory usage. In the paper we assume
the number of words used by a computation at any point in time is one more than
the location of the last word of memory currently being used. The number of bits
B < M is w times the number of words. In our algorithm descriptions, however,
we assume all memory is allocated in contiguous regions of memory of arbitrary
sizes specified by the user (integer number of words), and that these regions can be
freed by the user at a later time. We say a region is live if it has been allocated
but not freed. It is convenient to analyze space in terms of the total number of
bits across all live regions, which we denote as Bm. Since the live regions might be
scattered B might be much larger than Bm. However, using standard techniques
(e.g., [Baker 1978]) it is possible to implement a memory management scheme so
that B ∈ O(Bm), all allocations take O(1) time, and all frees take O(b) time, where
b is the size of the freed region in words. We outline how such a scheme can be
implemented here.

The idea is to maintain two memories, and to allocate in one of these, the active
memory, until it becomes too sparse, at which point it is copied and compacted
into the other memory. The two memories can be implemented in one memory
by interleaving the words. Regions are allocated one after the other in the active
memory, and each contains a header with its length, a forwarding pointer (used
during copying) and a flag indicating whether the region is allocated or freed.
Pointers to regions are somehow marked as a pointer—e.g., using one bit in the
word. We define the density as the total size of live regions (in words), divided
by the last position of the last allocated region. The goal is to bound the density
below by a constant, which implies B ∈ O(Bm) as long as the second memory is no
bigger than the first.

Copying is executed incrementally. It starts when the density goes below some
threshold α < 1, and finishes when all live regions are copied to the new memory.
The copying happens in two passes over the active memory. The first pass scans the
active memory from region to region using the lengths to find the next region. It
allocates a location in the new memory for each live region it encounters, and places
this location in the forwarding pointer of the region. As with the active memory,
regions are allocated one after the other in the new memory. The second pass copies
the data from the live regions to their new locations. Note that whenever a pointer
is copied, the value of the pointer that is written in new memory needs to refer to
the correct location in the new memory instead of the old memory. This can be
found through the forwarding pointer—hence the need for two passes.

While copying, the user continues to work in the active memory. Each read is
taken from the active memory. Each allocation is performed in both memories
returning a pointer to the active copy to the user, and placing a pointer to the new
copy in the forwarding pointer of the active copy. Each write is executed in just the
active memory during the first pass of copying, and in both memories during the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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second. When writing pointers in the new memory, the forwarded pointer needs to
be used. When the copying finishes, any pointers in the registers are updated to
point to their forwarded pointers, and the new memory becomes the active memory.

Every free of a region of size b is responsible for executing kb steps of the copy
procedure. This is required to make sure the memory does not get freed faster
than it is copied. Setting k appropriately large will guarantee that by the time the
copying is finished, the density is still bounded below by a constant.

In Section 3 we will need to free non-constant size regions in constant time. This
can be done in the above scheme under the following bounded-release condition.
We say a region of size b is busy after it is freed but before Ω(b) instructions are
accounted towards that free. Every instruction can only be accounted towards
one busy region and only after the region is freed. The bounded-release condition
requires that at all times the total size of busy regions is no more than a constant
factor larger than the total size of the live regions. This condition will allow freeing
in constant time while maintaining the B ∈ O(Bm) bound since (a) the instructions
that are accounted towards the free can each be responsible for executing a constant
number of steps of the copy procedure, and (b) the total number of frees which are
not yet accounted for (are busy) affects the density by at most a constant factor.

2.5 Table lookup

Table lookup can be used to implement the bitSelect and bitRank operations if
they are not supported by the machine. We also use table lookup in the perfect-
hashing version of the variable-bit-length dictionary (Section 4.3). In both cases
the table lookup can support the required operations on b bits in O(1/ε) time using
a table containing at most 2εb bits, 0 < ε ≤ 1. The tables can be shared among any
number of dictionaries.

One way to account for the memory needed for the table is to set b = w and
explicitly include the time and space cost for the table in our bounds. If w ∈
Θ(logB) then a constant ε can be selected so that the table size is smaller than B
and therefore only affects the space bound by at most a factor of two.

If, however, we want to allow for larger w and don’t want to pay O(2εw)-bits for
a table we can instead use a virtual word size we, where we ∈ Θ(logB). By packing
virtual words into machine words, operations on these virtual words can easily
be simulated in constant time and with no loss in space. All the data structures
described in the paper can use words of this size internally. However, we need a
way to store user data and keys with length l where we < l ≤ w. This can be
implemented using a level of indirection where we allocate any string longer than
we in the global memory pool and store a we-bit pointer to the word in the data
structure. In the structures described in the next two sections the items that could
need to be stored in this way are the data fields of the variable-bit-length array and
hash table, and the quotient in the variable-bit-length hash table.

Using this technique, the table size can be kept to 2εO(logB) bits and by picking
ε appropriately, the space of the table can be made smaller than B, asymptotically.
As the table grows and shrinks, we might have to change dynamically and all
structures will have to be rebuilt. If only applied when the memory size changes by
a constant factor the cost of resizing we can be amortized against the cost of other
operations in the same way as resizing the hash tables can be.
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3. VARIABLE-BIT-LENGTH ARRAYS

The array problem is to support lookup and updating the locations of an array
A[1 . . . n], where each location stores an element from some universe U ′. The size
n is fixed when the array is created. Arrays are supported by just about every
programming language and are trivial to implement on the RAM when the elements
are of equal size.

The variable-bit-length array (VLA) problem is the array problem where the
universe is Sw. We define the total bits of A as m =

∑n
i=1 |A[i]|. We describe a

data structure for the problem that supports lookups and updates in O(1) worst-
case time and uses O(m + n) bits. In the discussion below we assume each element
has at least one bit. This can easily be achieved by padding a bit onto every string,
which does not affect the bounds. We will use ai to refer to the value stored at
A[i].

3.1 Overview

Our VLA data structure is based on maintaining a dynamic partition of the contents
of A into blocks of contiguous elements so that the average number of bits per block
is θ(w). The blocks are stored in a dictionary using the location of the first element
in the block (the leader) as the key, and the block as the data. A bit array is used
to find the index of an element’s leader in constant time, and an auxiliary word is
kept with each block that is used to locate an element within a block in constant
time. Using these structures we can support update and lookup in constant time.
We now present the structure in more detail.

3.2 Blocks

The elements of the array A are partitioned into a set of blocks {Bi1 , Bi2 , . . . Bil
}

where each block Bi is an encoding of a consecutive set of entries from A: ai, ai+1,
. . ., ai+r. The block stores the concatenation of the bit strings bi = aiai+1 . . . ai+r,
together with information from which the start location of each string can be found.
It suffices to store a second bit string b′i such that b′i contains a 1 at position j if
and only if some bit string ak ends at position j in bi. A block Bi consists of the
pair (bi, b

′
i), and we define the size of a block by |bi| =

∑r
j=0 |ai+j |. The following

invariants are maintained:

(1) the size of each block is at most w

(2) for any two adjacent blocks (i.e., one containing ai−1 and the next containing
ai), the sum of their sizes is greater than w.

We refer to L = {i1, i2, . . . il} (the start position of each block) as the set of leaders
and say that i is the leader of j if ai is the first element in a′js block. The blocks are
stored in a dictionary H that maps each leader i to its block (bi, b

′
i). A bit array

I[1 . . . n] is also maintained where A[i] = 1 if and only if i ∈ L.

3.3 Lookups and updates

We begin by observing that from any position k, 1 ≤ k ≤ n, the distance to the
nearest leader in either direction is at most w. This is because a block can only
hold w bits and each string has at least one bit. To find the nearest leader to the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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left (with lesser index), we let s = I[k − w] . . . I[k − 1] and compute bitSelect(s,
bitRank(s, w − 1)). To find the nearest leader to the right (with larger index), we
let s = I[k + 1] . . . I[k + w] and compute bitSelect(s, 1). These operations take
constant time.

To lookup a location A[k], one locates its leader i using I (nearest leader to the
left) and finds the block (bi, b

′
i) using H. Once the block is located, ak can be

extracted from bi since the start and end locations of ak can be found from b′i using
bitSelect(b′i, k − i) and bitSelect(b′i, k − i + 1), respectively.

To update A[k], its block Bi needs to be rewritten. Since the new element might
be of a different size than the previous element, this could involve some shifting
of bits in Bi to reduce or open space for the new element. This shifting might, in
turn, make the block either too small, violating the second invariant on block sizes,
or too large, violating the first.

If a block becomes too small, it is merged with the adjacent block with which
it violates the invariant. This must be possible since the sum of their lengths is
less than w. If it violates the invariant with both adjacent blocks it is merged with
one, and if it still violates the invariant with the other, it is also merged with the
other. Merging blocks Bi and Bj , i < j involves concatenating the contents from
the blocks with shifts and logical operations, re-inserting the result into H with
key i, deleting the leader j from H, and setting I[j] := 0. This will restore the
invariant since the block with ak no longer violates the invariant with the original
adjacent blocks, and any block on the far side of the merged adjacent block will
now be adjacent to a larger block.

If Bi becomes too large, it is split into at most three blocks. The new blocks will
be either a block beginning with ak, a block beginning with ak+1, or (if the new |ak|
is large) both. To maintain the size invariant, it may then be necessary to merge
Bi with the block on its left, or to merge the rightmost new block with the block on
its right. Splitting blocks involves extracting the appropriate bits, inserting a new
leader in H, and setting the appropriate bit in I. Splitting and merging cannot
propagate since although a split can force up to two merges, a merge cannot force
a split.

All of the operations on blocks and on I take O(1) time. The time is therefore
limited by the time for operations on the dictionary H.

3.4 A fast dictionary for blocks

Implementing the dictionary H with separate chaining and universal hashing [Carter
and Wegman 1979] gives an implementation of the variable-bit-length-array data
structure for which lookup takes expected O(1) time and update takes O(1) ex-
pected amortized time. Implementing H with Cuckoo hashing [Pagh and Rodler
2004] or the dynamic version of the FKS perfect hashing scheme [Dietzfelbinger
et al. 1994] improves lookup to O(1) worst case time. Here we present an imple-
mentation of H that takes advantage of the particular nature of the problem and
supports insertion and deletion in O(1) worst-case time.

We are looking to solve a dictionary problem where the keys come from {1, . . . , n},
the data associated with each key is of size Θ(w), and for every w consecutive
integers in the domain [1, . . . , n], at least one of them is in the dictionary. We call
this the bounded sparsity dictionary problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Theorem 3.1. The bounded sparsity dictionary problem on a dictionary T can
be solved with O(1) time insertions, deletions, and lookups, using O(|T |w) bits.

Proof. The idea for the dictionary is to partition the domain {1, . . . , n} into
groups of size w of contiguous indices (i.e., {1, . . . , w}, {w + 1, . . . , 2w}, . . .). Each
group is responsible for the entries with keys in its range, and will therefore contain
between 1 and w entries. For each group g ∈ {1, . . . , dn/we} the data structure will
include

(1) a count c of how many entries it contains,
(2) an array D containing the data for the entries stored one after the other, but

not necessarily in the same order as their keys, and
(3) an array E[1 . . . w] storing for each key [g ∗ w + 1, . . . , (g + 1) ∗ w] a pointer to

its position in D. Entries with no data are marked with a null pointer.

All this information for each group is stored in a contiguous region of memory which
is allocated from the global pool. An array P [1 . . . dn/we] of pointers is maintained
with pointers from each group index to its region of memory.

For a lookup with key g ∗ w + i in group g, we check E[i] and if null, we return
null, otherwise we return D[E[i]]. When an entry with key g ∗ w + i is inserted,
we increment the counter c, store the data at location D[c], and set the pointer
E[i] := c. When an entry is deleted, if it is the topmost entry in D (i.e., E[i] = c)
we delete it, otherwise we swap it with the topmost entry, adjusting pointers in E,
and delete it. In either case c is decremented and E[i] is set to null. All operations
take constant worst-case time assuming there is enough space in the array D.

The array D is allocated is sizes that are powers of two and resized when it fills
or becomes too empty (e.g., double the size when it fills, and halve the size when it
goes below 1/4th full). The algorithm also updates the number of bits used to store
each of the pointers in E when D is resized so the number of bits is just enough
to point to all locations in D—this is necessary to achieve the required bounds.
Since a constant fraction of the elements of D are occupied, the space used by D
is O(cw). For E, each pointer will require O(log c) bits, for a total of Θ(w log c).
This can be charged against the number of bits taken by the Θ(c) entries, which is
Θ(cw). The counter only takes O(log c) bits. Hence the space required by a group
is O(cw).

Freeing of memory regions satisfies the bounded-release condition described in
Section 2.4 since we can account the instructions used in the insertions or dele-
tions executed on a group between resizing towards the free for the old region.
Furthermore, the contents of a region can be copied to the new resized region
incrementally—every insertion or deletion does a constant number of copy steps
with a constant selected such that by the time another resizing is required, the
data is fully copied. While incrementally copying, any insertion or deletion is ap-
plied to the new copy, and any lookup is done in the new copy if copied or updated
already, and in the old if not.

All operations therefore take O(1) worst case time and the total space for the
dictionary is O(|T |w) bits.

Theorem 3.2. An array A[1 . . . n] storing elements from Sw with m total bits
can be represented using O(n + m) bits while supporting lookups and updates in
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Compact Dictionaries for Variable-Length Keys and Data, with Applications · 11

O(1) worst-case time.

Proof. For an array A the variable-bit-length array structure described contains
n bits in I plus O(w) bits per block. There are O((n + m)/w) blocks since the
invariant guarantees that the average number of bits per block is at least w/2,
not including the last block, and we padded each string with a bit, adding n bits.
When the blocks are stored in a bounded sparsity dictionary they will therefore
use O(n + m) space. All operations as described take constant time and make a
constant number of calls to the bounded sparsity dictionary.

4. VARIABLE-BIT-LENGTH DICTIONARIES

The dynamic variable-bit-length dictionary (VLD) problem is to support lookup,
insertion and deletion on a dictionary T ⊂ Sw × Sw of key-data pairs. We assume
the keys in T are distinct, that lookup on a key returns the data associated with
the key or some special value if the key is not in T , and that insertion using a key
already in T overwrites the old data with the new data. We define the total bits of
T as m =

∑
(s,t)∈T (|s|+ |t|).

We first discuss a straightforward implementation based on chained hashing that
supports lookups in O(1) expected time and insertions and deletions in O(1) ex-
pected amortized time. We then present an implementation based on the dynamic
version [Dietzfelbinger et al. 1994] of the FKS perfect hashing scheme [Fredman
et al. 1984] that improves the lookup time to O(1) worst-case time. Both struc-
tures use quotienting as described in Section 2.2 and make use of the VLA structure
described in the previous section.

For all hash tables we use a number of buckets that is a power of 2—i.e., 2q

for some integer q. As the number of entries in T grows or shrinks, we resize the
structure using a standard doubling or halving scheme so that 2q ∈ Θ(|T |). For
convenience we assume buckets are numbered from 0 to 2q − 1 instead of 1 to 2q.

4.1 Hashing

For hashing it will be convenient to treat the bit strings s as integers. Accordingly,
when necessary we interpret each bit string as the binary representation of an
integer. To ensure that every string has a unique integer representation given that
they have different lengths, we prepend a 1 to each string. The strings used for
keys can thus have length up to w + 1.

In the framework described in Section 2.2, our quotienting scheme uses a hash
function h(s) : Sw+1 → {0, . . . , 2q − 1}, a quotient function g(s) : Sw+1 → Sw−q+1,
and an inverse function i(h, g) : {0, . . . , 2q − 1} × Sw−q+1 → Sw+1. For our space
and time bounds we require that |g(s)| = max(|s|− q, 0), and that h(s) comes from
a family of c−universal hash functions.

A family H of hash functions h : U → R is c−universal if for any x1, x2 ∈ U, x1 6=
x2, and uniformly selected random h ∈ H, Pr(h(x) = h(y)) ≤ c/|R|. A family H
is (c, 2)−universal (or c pairwise universal) if for any x1, x2 ∈ U, x1 6= x2, any
y1, y2 ∈ R, and uniformly random h ∈ H, Pr(h(x1) = y1 ∧ h(x2) = y2) ≤ c/|R|2.

To construct h we use any family of (2, 2)−universal hash function H0 with
domain {0, . . . , 2w+1−q − 1} and range {0, . . . , 2q − 1}. For example, we can use:

h0(x) = ((αx + β) mod p) mod 2q

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 · D. Blandford and G. Blelloch

where p > 2w+1−q is prime and α, β are randomly and independently chosen from
{1, . . . , p− 1} and {0, . . . , p− 1} respectively [Carter and Wegman 1979].

Given H0, we construct a family of hash functions

H = {h(s) = (s mod 2q)⊕ h0(sdiv 2q) : h0 ∈ H0}
where ⊕ indicates logical exclusive or of the bits of two integers.

We choose our hash function h(s) randomly from H and use the quotient function
g(s) = sdiv 2q (this is simply shifting s right by q bits). It is not hard to verify
that the following works as an inverse function given the h0(s) that h(s) is based
on:

i(h, g) = g · 2q + h⊕ h0(g)

We show that the family H is 2−universal as follows. Given x1, x2 ∈ Sw+1, x1 6=
x2, we have

Pr(h(x1) = h(x2)) = Pr((x1 mod 2q)⊕ h0(x1 div 2q) = (x2 mod 2q)⊕ h0(x2 div 2q))
= Pr(h0(x1 div 2q)⊕ h0(x2 div 2q) = (x1 mod 2q)⊕ (x2 mod 2q))

If x1 div 2q = x2 div 2q the probability is zero since h0(x1 div 2q)⊕h0(x2 div 2q) = 0,
but x1 mod 2q and x2 mod 2q must be different given that x1 6= x2. Otherwise the
probability is ≤ 2/2q by the (2, 2)−universality of H0). Thus Pr(b1 = b2) ≤ 2/2q.

Note also that selecting a function from H0 and hence H requires O(w) random
bits.

4.2 Dictionary with chained hashing

Our simpler data-structure for the VLD uses a variant of the standard hashing with
separate chaining. The data structure consists of a hash table using a variable-bit-
length array A[0 . . . 2q] for the buckets. It uses a hash function h(s) ∈ H, quotient
function g(s), and inverse function i(h, g) as described above. To insert a key-value
pair (s, t) into the structure, we store the pair (g(s), t) in bucket A[h(s)]. To store
the pair (g(s), t) we prepend a gamma code to each of g(s) and t indicating their
length, and then concatenate these together into a single bit string. The gamma
code increases the length by at most a constant factor.

It is also necessary to handle several strings hashing to the same bucket. If all
the entries in the bucket along with a gamma coded count of the number of entries
fit within w bits, we simply concatenate the bits using bit-shifting and store the
concatenation in the appropriate array slot A. Otherwise we allocate a separate
VLA for the bucket and store the entries one per location, possibly doubling the
array when it overflows and halving it when it becomes too empty. The cost of
halving or doubling can be amortized against the insertions or deletions between
resizing. A pointer is maintained to the secondary VLA, and the cost of this pointer
can be charged against the fact that the number of bits within the bucket is more
than w.

To implement a lookup on a key s we look in bucket h(s) and search for the
quotient g(s). If we find g(s) we return the corresponding t—since the bucket and
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quotient map to a unique key, matching on the quotient implies matching on the key.
To search for the quotient we note that the elements in a bucket can be decoded one
after the other, each taking constant time. The count on the number of elements
indicates when to stop. Each bucket has expected O(1) elements, since the hash
functions used are 2-universal, so lookups for any element can be accomplished in
expected O(1) time. Deletion requires searching for the key as above, and then
splicing out the quotient and value using bit shifts. Since we assume insertion
removes any equal valued key, insertion also has to first search and then insert at
the end if not found.

Inserting or deleting might require incrementing or decrementing q (doubling or
halving the number of buckets), and rehashing the whole table. To rehash we need
i(h, g) to determine the key for each element in the hash table. The cost of the free
and rehashing can be amortized against the previous 2q−2 operations. Therefore
insertions and deletions can be accomplished in expected amortized O(1) time.

4.3 Dictionary with perfect hashing

Our second data-structure for the VLD uses a variant of the dynamic version [Di-
etzfelbinger et al. 1994] of the FKS perfect hashing scheme [Fredman et al. 1984].
Recall that the FKS scheme uses two levels of hashing. The first level hashes all
keys into about n buckets. Let li be the number of elements that hash to bucket
i, then each bucket uses its own second level hash table of size about l2i . This
size results in a constant probability that there are no collisions in the second level
table. If there are collisions, another hash function is selected for the bucket and
this repeats until one is found which has no collisions. Also if there is too much
imbalance between buckets, a different first-level hash function is selected.

In the dynamic version of FKS, the buckets are resized and the hash functions
selected as necessary to keep appropriate balance between buckets and avoid colli-
sions at the second level. The scheme we use follows directly from Dietzfelbinger
et al. [1994] dynamic FKS except in three ways:

(1) we store the quotient from the first-level hash function instead of the key in the
buckets,

(2) if there are fewer than w bits that hash to a bucket, then we store the bits
directly in the bucket and do not use a second-level hash table, and,

(3) all arrays for the first and second level hash tables use a VLA structure.

For the first level hashing we use the same functions h(s), g(s) and i(h, g) as
above. We maintain a variable-bit-length array of 2q buckets, and as before we
store each pair (g(s), t) in the bucket indicated by h(s). The number of buckets 2q

is set to maintain the condition of the dynamic FKS scheme, and a new function
h(s) is selected from H when required by the scheme.

If multiple strings collide within a bucket, and their total length is w bits or less,
then we store the concatenation of the strings in the bucket, as we did with chained
hashing above. If the length is greater than w bits we allocate a separate VLA to
store the elements using a second level of hashing. We maintain the size and hash
function of the second-level hash table exactly as described by Dietzfelbinger et al.
[1994]. We note that they suggest a lazy deletion scheme in which deleted locations
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are just marked as deleted until the next resizing. This can work for us, but when
marking a location as deleted, its contents has to be removed (overwritten with an
empty string) to maintain the space bound.

In the primary array we store a w-bit pointer to the secondary array for that
bucket. We charge the cost of this pointer, and the O(w)-bit overhead for the array
and hash function, to the cost of the w bits that were stored in that bucket. The
space bounds for our dictionary structure follow from the bounds proved in [Diet-
zfelbinger et al. 1994]: the structure allocates only O(n) array slots, and using our
VLA structure requires only O(1) bits per unused slot. Thus the space requirement
of our structure is dominated by the space required to store the quotients and data
from the dictionary entries.

Access to entries stored in secondary arrays takes worst-case constant time. Ac-
cess to entries stored in the primary array is more problematic, as the potentially
w bits stored in a bucket might contain O(w) entries, and to meet a worst-case
bound it is necessary to find the correct entry (quotient) in constant time.

We can solve this problem using table lookup by scanning the string s in regions
of size αw, 0 < α ≤ 1. Each lookup would take two arguments: a region starting
at the beginning of some entry (quotient and data) in s, and the quotient to be
looked up. It would return whether the quotient appears in the region and where,
and therefore potentially process multiple entries at once. If it does not appear in
the region it would return the start of the last entry that starts in the region. The
finger can then be moved to that point for the next lookup. If the quotient being
looked up is longer than αw we can just try to match it directly. If it does not
match, we can use a table to skip to the start of the last entry that starts in the
region. The main table would have 2αw2αw entries mapping a region and a quotient
to a pointer within a region, requiring 22αw log(αw) bits. The process takes at most
O(1/α) steps. By setting ε = 3α this is within our bounds described in Section 2.5.

This scheme gives us the following theorem:

Theorem 4.1. A dictionary T ⊂ Sw ×Sw with n elements and m total bits can
be represented using O(m + 3n − n log2 n) bits, while supporting lookups in O(1)
worst-case time, and insertions and deletions in O(1) expected amortized time.

Proof. The quotient stored for each s uses O(max(|s| − q, 1)) bits and the data
t uses O(|t|) bits (including the gamma code). We maintain q ≥ log2 n by resizing.
The VLA structures increases the space by at most a constant factor plus a linear
factor in the total number of entries. The total space used by our variable-bit-length
dictionary structure is therefore O(n +

∑
(s,t)∈T (max(|s| − log2 n, 1) + |t|)).

Because the keys need to be unique, we have the bound 3n >
∑

(s,t)∈T (max(|s|−
log2 n, 1)−(|s|−log2 n)). Therefore the space bound is within O(3n+

∑
(s,t)∈T (|s|+

|t| − log n)) which is equivalent to O(m + 3n− n log2 n).
The time bounds follow from the discussion above.

We now show that the representation is compact. Recall that the information
theoretic lower bound I(n, ...) is a function representing the logarithm of the number
of distinct values of the given size, and that a data structure is compact if it uses
O(n + I(n, ...)) bits and supports its operations efficiently.

Theorem 4.2. The VLD data structure we described is compact with respect to
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the number of entries n and total bits m.

Proof. We first consider the case when the data fields are empty. To derive
the desired bounds it is sufficient to consider just the sets for which all keys are
the same length within one, i.e., between bm/nc and dm/ne. Including other sets
would just increase the lower bound. Since there are at least 2bm/nc possible keys,
the number of possible such sets is at least

(
2bm/nc

n

)
. This gives:

I(n, m) > log2

(
2bm/nc

n

)
> log2((2

bm/nc/n)n)
> n(log2(2

m/n−1)− log2 n)
= m− n− n log2 n

We also note that I(n, m) must be positive, so O(n + I(n, m)) is the same as
O(max(m−n log2 n, n)). From Theorem 4.1 we have the space for the VLD bounded
by S(n, m) ∈ O(m+3n−n log n) which is within the bound O(max(m−n log2 n, n)).
To include the data fields we note that each bit in a data field contributes at least
one bit to I(n, m) since it can have two values. Since it also contributes 1 bit to m
and hence O(1) bit to S(n, m), we have our bounds. All the operations on sets are
as efficient as non-compact dictionaries.

We finish the section by noting that another possible solution to the VLD problem
would be to use w separate dictionaries, one for each of the possible lengths of the
key. In fact, log w dictionaries would suffice, one for each power of two up to w.
Each length would use a succinct or compact dynamic dictionary for fixed length
keys which supports satellite data (e.g., [Raman and Rao 2003]). However, these
structures would need to be extended to handle variable-length data fields. This
should not be hard using the VLA structure described in Section 3. When doing a
lookup or update, the data-structure would apply the operation to the appropriate
dictionary. For small n one would need to be careful that the overhead for multiple
dictionaries is not too large, i.e., that it is O(w) bits.

5. COMPACT GRAPH REPRESENTATION

We describe a data-structure for maintaining directed graphs. It is based on an
integer labeling of the vertices and uses difference coding between neighboring ver-
tices to reduce space. For an appropriate labeling, any graph with small edge
separators—e.g., bounded-degree planar graphs—can be represented using a linear
number of bits.

We consider the following operations on a directed graph G = (V,E):

adjacent(u, v): true iff (u, v) ∈ E

firstEdge(u): return the first neighbor of u in G

nextEdge(u, v): for an edge (u, v) ∈ E, return the next neighbor of u

addEdge(u, v): add the edge (u, v) to E as the first edge leaving v

deleteEdge(u, v): delete the edge (u, v) from E.
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adjacent(u, v)
return (lookup((u, v)) 6= null)

firstEdge(u)
(vp, vn)←lookup((u, u))
return vn

nextEdge(u, v)
(vp, vn)←lookup((u, v))
return vn

addEdge(u, v)
(vp, vn)←lookup((u, u))
(u, vnn)←lookup((u, vn))
insert((u, u), (vp, v))
insert((u, v), (u, vn))
insert((u, vn), (v, vnn))

deleteEdge(u, v)
(vp, vn)←lookup((u, v))
(vpp, v)←lookup((u, vp))
(v, vnn)←lookup((u, vn))
insert((u, vp), (vpp, vn))
insert((u, vn), (vp, vnn))
delete((u, v))

Fig. 1. Pseudocode for the graph operations.

firstEdge and nextEdge are used to list the neighbors of a vertex and we assume
there is an arbitrary ordering on outgoing edges (neighbors) from each vertex. We
begin by describing a general data structure for representing integer labeled n-
vertex graphs. We then describe how this structure can be efficiently compressed
by assigning labels appropriately.

We uses a representation similar to the standard adjacency-list representation but
represent each edge (element in a “list”) using an entry in a dictionary. Consider
a vertex u and some ordering on its neighboring vertices v1, . . . , vd(u), where d(u)
is the degree of u. We define v0 = u and vd(u)+1 = u. We represent each edge
(u, vi) (for 1 ≤ i ≤ d) using the dictionary entry (u, vi; vi−1, vi+1)—that is, (u, vi)
is the key, and (vi−1, vi+1) is the associated data. This effectively forms a doubly-
linked “list” among the edges of a vertex. For each vertex we include an entry
(u, u; vd(u), v1) which is used as the head and tail of this list.

Given this representation we can support all of the above operations using dic-
tionary operations—the pseudocode is shown in Figure 1. The addEdge inserts
the edge at the front of the adjacency list of the source vertex, and deleteEdge
splices the edge out of its list. For addEdge we leave out the case where there is
no existing edge on the vertex, which is straightforward to implement. By using
an appropriate implementation of hashing [Dietzfelbinger et al. 1994; Pagh and
Rodler 2004] the update operations, addEdge and deleteEdge take O(1) ex-
pected amortized time and the rest of the operations take O(1) worst-case time.
For n vertices and m edges, the structure uses O((n + m)w) bits.

To compress this structure we make use of difference coding by storing each
dictionary entry using differences with respect to u. That is to say, rather than
storing an entry (u, vi; vi−1, vi+1) in the dictionary, we instead store (u, vi−u; vi−1−
u, vi+1−u). We then use a variable-bit-length dictionary to store the entries, where
the binary code for u and gamma code for (vi − u) are concatenated to form the
key, and the gamma codes for (vi−1 − u) and (vi+1 − u) are concatenated together
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to form the data.2 This gives the following result.

Theorem 5.1. Any graph with n vertices with integer labels bounded by O(n)
can be stored in O(n +

∑
(u,v)∈E log |u − v|) bits, while supporting queries in O(1)

time and updates in O(1) expected amortized time.

Proof. The time bounds follow from the discussion above. For space we consider
the total bits in the dictionary. For each entry (u, vi; vi−1, vi+1), the binary code for
u uses log n+O(1) bits since the label is bounded by O(n). For the three differences
that are encoded in each entry we note that every difference u−v corresponds to an
edge in the graph (or a 0 when encoding u−u at the beginning or end of the lists).
Furthermore every edge appears in at most three entries—the previous, the actual
edge, and the next entry in the adjacency list. Since each edge (u, v) appears O(1)
times in the differences, and the gamma code for each difference takes O(log(|u−v|))
bits, the total bits is bounded by n(log n + O(1)) + O(

∑
(u,v)∈E log |u − v|) bits.

When used with Theorem 4.1, this gives the desired space bounds.

The graph structure we describe can be used to represent any graph but the space
bound is best only for graphs which have some locality on their labels. We say that
a labeling of an n-vertex graph is k-compact if

∑
e∈E log2 |u − v| < kn. We say a

graph is k-compact if it has a k-compact labeling. Blandford et al. showed that
for any family of graphs satisfying an O(n1−ε)-edge separator theorem, ε > 0, all
members are O(1)-compact [Blandford et al. 2003]. This includes bounded-degree
planar graphs, which satisfy an O(n

1
2 )-edge separator theorem, and certain well-

shaped meshes [Miller et al. 1997] of fixed dimension. The labeling can be found
using separator trees. Additionally, many graphs in practice have been found to be
k-compact for much smaller k than would be expected for random graphs [Blandford
et al. 2004] (e.g., web link graphs, VLSI circuits, and Internet connectivity graphs).
The following follows directly from the theorem above.

Corollary 5.2. All n-vertex graphs with a k-compact labeling can be stored in
O(kn) bits while allowing updates in O(1) expected amortized time and queries in
O(1) worst-case time.

6. ORDERED INTEGER SETS

The ordered integer set problem is to represent a dynamic set S ⊂ {0, . . . ,m− 1},
while supporting operations that take advantage of the order. Here we consider
finger searching: fingerSearch with a finger to a key k1 ∈ S and a search key k2 ∈ S
finds the key min{k3 ∈ S|k3 > k2}, and returns k3 and a finger to k3. Finger
searching will take O(log l) time, where l = |{k ∈ S|k1 ≤ k ≤ k2}|. Insertion and
deletion, and generating a finger to the next key in S greater or equal to a given
key k, will take time O(log |S|). We show that this also leads to a data structure
which supports insertion, deletion and finding the next key greater than a given
key (findNext) in time O(lg lg m), but not finger searching. In all cases the data
structures use O(n log(m/n)) bits, which is asymptotically optimal.

2We assume the word length is sufficient to hold the concatenation—if not it is straightforward
to simulate the longer words (at most a constant times the word length) with shorter words.
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To represent the set we use a standard red-black tree on the elements, but use
difference codes between keys to store “pointers”. Other balanced trees could also
be used. We will refer to nodes of the tree by the value of the element stored
at the node. We assume n ≤ m/2. (If n > m/2, then rather than storing S,
our representation stores the complement of S.) For each element v we denote
the parent, left-child, right child, and red-black flag as p(v), l(v), r(v), and q(v)
respectively.

The tree is represented as a dictionary containing entries of the form (v; l(v) −
v, r(v)−v, q(v)). (It is also possible to add parent pointers p(v)−v without violating
the space bound, but in this case they are unnecessary.) We store the integer at the
root directly. It is straightforward to traverse the tree from top to bottom in the
standard way. It is also straightforward to implement a rotation by inserting and
deleting a constant number of dictionary elements. Assuming dictionary queries
take O(1) time, using a hand data structure [Blelloch et al. 2003], finger searching
can be implemented in O(log l) time with an additional O(log2 n) space. Insertion
and deletion take O(log n) expected amortized time. Unlike balanced trees, this
structure has the added advantage of supporting lookup (membership testing) in
O(1) time.

It remains to show the space bound for the structure.

Lemma 6.1. For a set of integers S ⊂ {0, . . . ,m − 1} of size n stored in a red-
black tree T ,

∑
v∈T (log |p(v)− v|) ∈ O(n log(m/n)).

Proof. Consider the elements of a set S ⊂ {0, . . . ,m− 1} organized in a set of
levels L(S) = {L1, . . . , Ll}, Li ⊂ S. If |Li+1| ≤ α|Li|, 1 ≤ i < l, α < 1, we say such
an organization is a proper level covering of the set.

We first consider the sum of the log-differences of cross pointers within each
level, and then count the pointers in the red-black trees against these pointers.
For any set S ⊂ {0, . . . ,m − 1} we define next(e, S) = min{e′ ∈ S ∪ {m}|e′ > e},
and M(S) =

∑
j∈S log(next(j, S) − j). Since logarithms are concave the sum is

maximized when the elements are evenly spaced and hence M(S) ≤ |S| log(m/|S|).
For any proper level covering L of a set S this gives:∑

Li∈L(S)

M(Li) ≤
∑

Li∈L

|Li| log(m/|Li|)

≤
i<l∑
i=0

αi|S| log(m/(αi|S|)))

≤ |S|
i<l∑
i=0

αi(i log(1/α) + log(m/|S|))

∈ O(|S| log(m/|S|))

This represents the total log-difference when summed across all “next” pointers.
The same analysis bounds similarly defined “previous” pointers. Together we call
these cross pointers.

We now account for each pointer in the red-black tree against one of the cross
pointers. First partition the red-black tree into levels based on one more than the
number of black nodes in the path from any leaf to the node, not including the
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node—a red-black tree maintains the invariant that this is the same for all paths
from a leaf. This gives a proper level covering with α = 1/2. Now for each node i,
the difference of its value to that of each of its two children is at most the difference
of its value to that of the previous and next elements in its level. Therefore we can
account for the cost of the left child against the previous pointer and the right child
against next pointer. The sum of the log-differences of the child pointers is therefore
at most the sum of the log-differences of the next and previous cross pointers. This
gives the desired bound.

Theorem 6.2. A set of integers S ⊂ {0, . . . ,m − 1} of size n represented as
a dictionary red-black tree and using a compressed dictionary uses O(n log((n +
m)/n)) bits and supports finger-search queries in O(log l) time, and insertion and
deletion in O(log n) expected amortized time.

Proof. Recall that the space needed for a compressed dictionary is bounded by
O(s + 3n− n log2 n), where s is the total bits in the dictionary. The bits stored in
the dictionary consist of n keys of log2m bits each, and a total of O(n log(m/n))
bits for the pointers (by Lemma 6.1). This gives s = n log2 m+O(n log(m/n)). The
total space is therefore bounded by O(n log2 m + O(n log(m/n)) + 3n − n log2 n),
which simplifies to O(n log((n + m)/n)) bits.

Corollary 6.3. A set of integers S ⊂ {0, . . . ,m − 1} of size n, can be rep-
resented using O(n log(m/n)) bits while supporting findNext in O(log log m) time,
and insert and delete in O(log log m) expected amortized time.

Proof. The van Emde Boas tree structure [van Emde Boas et al. 1976] sup-
ports findNext, insert and delete in O(log log m) time. By using dynamic perfect
hashing [Dietzfelbinger et al. 1994] to store the elements of the tree, the struc-
ture can be implemented with O(n log m) bits, but the time for updates becomes
O(log log m) expected amortized time [Mehlhorn and Naher 1990]. To reduce the
space, the set can be partitioned into groups of Θ(log n) contiguous elements each
(except perhaps the first and last groups which can be smaller). The least key in
each group is called the leader. Each group is stored in its own dictionary red-black
tree, and therefore supports find, insert, and delete in O(log log n) time (expected
amortized for the updates). The leader of each group is stored in the van Emde
Boas structure. When a group becomes too large during an insertion it is split,
and when it becomes too small during a deletion it is merged with a neighbor, and
possibly re-split. The costs for splits and merges can be amortized against the num-
ber of insertions or deletions between splits or merges. The total time is therefore
O(log log m) for findNext, and O(log log m) expected amortized for insertion and
deletion.

To analyze space we define the range of a group as the difference between the
smallest and largest value. For l groups of size ni, 1 < i ≤ l and range mi, the total
space required for the dictionary red-black trees is O(

∑l
i=1(ni log(mi/ni)). This

is because every key is stored relative to keys above it in the tree, so the effective
range of the integers stored for each group is mi. We need lg m bits to point to the
root. The sum is maximized when all the mi are approximately equal, which gives a
total space of O(n log(m/n)) bits. Along with the O((n/ log n) log m) bits required
to store the leaders in the van Emde Boas tree, we have the desired bounds.
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7. CARDINAL TREES

A cardinal tree is a rooted tree in which every node has c slots for children any of
which can be filled3. We generalize the standard definition of cardinal trees to allow
each node v to have a different c, denoted as c(v). For a node v we want to support
returning the parent p(v) and the ith child v[i] (for 1 ≤ i ≤ c(v)), if any. We also
want to support deleting or inserting a leaf node. As with graphs, we consider
these partially dynamic operations since the updates might require relabeling of
the nodes to maintain the space bounds.

The data structure we describe is based on labeling the vertices of the tree with
integers and using difference codes to represent the tree “pointers” between nodes.

Lemma 7.1. Integer labeled cardinal trees with vertices V and labels in the range
[1, . . . , k|V |] can be stored in O(

∑
v∈V (log c(p(v))+ log |p(v)−v|+log k)) bits while

supporting parent and child queries in O(1) time and insertion and deletion of leaves
in O(1) expected amortized time.

Proof. To support parent queries we keep a variable-bit-length dictionary stor-
ing entries of the form (v; p(v) − v), for each node v. The total number of bits
stored in the keys and data of this dictionary is

∑
v∈V (log2(k|V |)+ log2 |p(v)− v|),

which using Theorem 4.1 gives O(log k + log |p(v)− v|) bits.
To support child queries we keep a dictionary storing entries as follows: for each

node v, if v is the ith child of its parent, we store an entry (p(v), i; v − p(v)). The
keys are kept by appending the log(k|V |)-bits for p(v) with the log(c(p(v)) bits for i.
The total number of bits stored in the keys and data of this dictionary is therefore∑

v∈V (log2(k|V |)+log2(c(p(v))+log2 |p(v)−v|), which based on Theorem 4.1 gives
O(log k + +log(c(p(v)) + log |p(v)− v|) bits.

The total number of bits across the two dictionaries is therefore as stated.

Any tree T can be separated into a set of trees of size at most n/2 by removing
a single node. Recursively applying such a separator on the cardinal tree defines
a separator tree Ts over the nodes. An integer labeling can then be given to the
nodes of T based on the preorder traversal of Ts. We call this preorder-traversal
labeling a tree-separator labeling.

For each node v ∈ Ts, we denote the degree of v by d(v). We let Ts(v) denote
the subtree of Ts that is rooted at v. Thus |Ts(v)| is the size of the piece of T for
which v was chosen as a separator.

Lemma 7.2. For all tree-separator labellings of trees T = (V,E) of size n,∑
(u,v)∈E

(log |u− v|) < O(n) + 2
∑

(u,v)∈E

log(max(d(u), d(v)))

Proof. Consider the separator tree Ts = (V,Es) on which the labeling is based,
and the following one-to-one correspondence between the edges E and edges Es.
Consider an edge (v, v′) ∈ Es between a node v and a child v′. This corresponds to
an edge (v, v′′) ∈ T , such that v′′ ∈ Ts(v′). We need to account for the log-difference

3We use the definition from [Benoit et al. 2005].
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log |v − v′′|. We have |v − v′′| < |Ts(v)| since all labels in any subtree are given by
the preorder traversal. We partition the edges into two classes and calculate the
cost for edges in each class.

First, if d(v) >
√
|Ts(v)| we have for each edge (v, v′′), log |v−v′′| < log |Ts(v)| <

2 log d(v) < 2 log max(d(v), d(v′′)).
Second, if d(v) ≤

√
|Ts(v)| we charge each edge (v, v′′) to the node v. The most

that can be charged to a node is
√
|Ts(v)| log |Ts(v)| (one pointer to each child).

Note that for any tree in which for every node v: (A) |Ts(v)| < |Ts(p(v))|/2, and
(B) cost(v) ∈ O(|Ts(v)|c) for some c < 1, we have

∑
v∈V cost(v) ∈ O(n). Therefore

the total charge is O(n).
Summing the two classes of edges gives

O(n) + 2
∑

(u,v)∈E

log(max(d(u), d(v)))

Theorem 7.3. Cardinal trees with a tree-separator labeling can be stored in
O(

∑
v∈V log(1 + c(p(v)))) bits.

Proof. We are interested in the edge cost Ec(T ) =
∑

v∈V (log |v − p(v)|). Sub-
stituting p(v) for u in Lemma 7.2 gives:

Ec(T ) < O(n) + 2
∑
v∈V

log(max(d(v), d(p(v))))

< O(n) + 2
∑
v∈V

(d(v) + log d(p(v)))

= O(n) + 4n + 2
∑
v∈V

log d(p(v))

< O(n) + 2
∑
v∈V

log(1 + c(p(v)))

With Lemma 7.1 this gives the required bounds.

8. SIMPLICIAL MESHES

Using our variable-bit-length dictionary structure we can implement space-efficient
representations of d-dimensional simplicial meshes (triangulated meshes). We de-
scribe a representation that supports a simplicial mesh in which every (d − 1)-
dimensional face belongs to one or two d-dimensional simplices. We will describe
the structure for 3 dimensions but note that this can be generalized to d dimen-
sions. Simplices are defined as sets of vertices, such that a triangle (2-dimensional
simplex) is a set of three vertices and a tetrahedron is a set of four vertices. The
mesh structure supports the following operations on a mesh M :

findSimplex({a, b, c}): returns vertices d such that {a, b, c, d} ∈M

insertSimplex({a, b, c, d}): adds {a, b, c, d} to M

deleteSimplex({a, b, c, d}): deletes {a, b, c, d} from M
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findSimplex(S)
(a, b, c)← order(S)
return lookup((a, b, c))

insertSimplex(S)
for each ordered face (a, b, c) in S

(e, 0)← lookup((a, b, c))
insert((a, b, c), (d, e))

deleteSimplex(S)
for each ordered face (a, b, c) of S

(d, e)← lookup((a, b, c))
if e ∈ S then swap(d, e)
if e = 0 then delete((a, b, c))
else insert((a, b, c), (e, 0))

Fig. 2. Pseudocode to support simplicial mesh operations.

We represent a simplicial mesh as a dictionary of simplices. Each face {a, b, c} in
the mesh may belong to two tetrahedra, {a, b, c, d} and {a, b, c, e}. For each face in
the mesh we store the entry (a, b, c; d, e). We assume a canonical ordering on the
vertex labels, for example a < b < c, and only store the face in that order. We
will refer to this as an ordered face. If a face belongs to only one tetrahedra (on a
boundary) then we store the special character 0 in the second slot. The operations
can then be implemented as shown in Figure 2.

The representation can be compressed by labeling the vertices with integers and
encoding b, c, d, and e relative to a. That is, the representation stores tuples of the
form (a, b− a, c− a; d− a, e− a) in the variable-bit-length dictionary.

Note that there is one tuple stored per face. To analyze the space usage of this
structure, we charge the cost of storing b−a and c−a to the face (a, b, c); we charge
the cost of d − a to the face (a, b, d) and of e − a to the face (a, b, e). Assuming
the integer labels on the vertices V are O(|V |), the quotienting of the dictionary
absorbs the (log |V | + O(1))-bit cost of representing a. Each face is charged O(1)
times, and each time the charge is O(max(log |a − b|, log |a − c|, log |b − c|)) =
O(log |a− b|+ log |a− c|+ log |b− c|). This gives a bound of O(

∑
(a,b,c)∈F (log |a−

b|+ log |a− c|+ log |b− c|)), where F is the 2-skeleton (that is, the set of faces) of
the mesh.

This structure generalizes to d dimensions. A similar argument to the above
shows that the space usage in that case is O(

∑
f∈F (d maxa,b∈E(f) log |a−b|)), where

F is the set of faces ((d − 1) simplices) in the mesh, and E(f) is the set of edges
in the face. For the special case of three dimensions we prove the following bound
based on just the edges.

Theorem 8.1. A 3-dimensional simplicial mesh with n vertices with integer la-
bels bounded by O(n) and edges E can be implemented with O(

∑
(a,b)∈E log |a− b|)

bits while supporting lookups in O(1) time, and updates in O(1) expected amortized
time.
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Proof. The time bounds follow directly from the times for the compressed dic-
tionary.

For space we begin with the space bound O(
∑

(a,b,c)∈F (log |a− b|+ log |a− c|+
log |b−c|)) bits. To show the stronger bound, we wish to charge the cost of each face
(a, b, c) ∈ F to one of its adjoining edges. An edge (a, b) can be assigned a charge
of log |a− b|. We define the heaviest edges of (a, b, c) to be the two edges with the
greatest difference between their vertices. For example, if a < b < c and c−b < b−a,
then (a, b) and (a, c) are the heaviest edges. Note that log |c− a| > log |c− b| and
log |c−a| ≤ 1+log |b−a|, so we can charge the O(log |b−a|+log |c−a|+log |c−b|)
cost of the face to either of its heaviest edges. However, we must ensure that no
edge is charged more than O(1) times.

To this end we describe an edge-to-face mapping so that every face maps to two
of its edges, and every edge is mapped to a constant number of faces. One of the
two edges a face maps to must be heavy, so therefore we can charge that face to the
heavy edge, and every edge will be charged at most a constant number of times.
This gives the desired space bound. Note that the mapping is purely for analysis
and is not needed by the data structure.

For any vertex vi ∈ V , consider all the tetrahedra that include the vertex. The
surface created from the opposite faces of these tetrahedra from vi form a two-
dimensional surface, and is called the link L(vi) of vi. Euler’s rule applies to this
surface, and hence we know that |E(L(vi))| < 3|V (L(vi))|.

We will now direct all of the edges in E(L(vi)) in such a way as to ensure that
no vertex of L(vi) has in-degree greater than 5. This can be done iteratively: At
each step, find a vertex v ∈ V (L(vi)) of degree 5 or less. (Euler’s rule guarantees
that this is possible.) Direct all edges containing v into v, and then delete v and all
its edges from L(vi). At termination, all edges have been directed, and no vertex
has received in-degree greater than 5.

Now, consider the edges from vi to the vertices in V (L(vi)), and the faces formed
by the vertex vi and the edges in E(L(vi)). For a face (vi, vj , vk), w.o.l.g. assume
the edge (vj , vk) is directed from vj to vk by the procedure above, add the edge
(vi, vk) and face (vi, vj , vk) to the edge-to-face mapping. Note that (vi, vk) will be
assigned to at most 5 faces from vi and at most another 5 when applying the same
procedure from the other end. Therefore it is mapped to O(1) faces. This is true
for all edges.

Also note that when applying the procedure to vj , at least one of the two edges
(vj , vi) or (vj , vk) will be added to the edge-to-face mapping. Therefore the triangle
(vi, vj , vk) will be mapped to at least two of its edges. This will be true for all
triangles. This gives our desired mapping and shows that every face can be charged
to one of its heavy edges and that every edge gets charged O(1) times.

If the 1-skeleton of the mesh (that is, the graph induced by the edges) has a
k-compact labeling, then the representation of the mesh will use O(n) bits. We
note that well-shaped meshes with bounded degree have small separators [Miller
et al. 1997] and are therefore k-compact for fixed dimension.
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9. CONCLUSIONS

We have described data structures for maintaining a dynamic dictionary where both
the keys and associated data are bit-strings of varying length. The VLD structure
is compact in that it’s size is O(n + I(n, m)) where I(n, m) is the information-
theoretic lower-bound for table with n elements and m total bits across the keys
and data. The time for operations match the best known results for dictionaries in
general. We also described a compact array structure that supports variable-bit-
length strings. The VLA structure is an important part of the implementation of
the dictionary.

We described several data structures for various applications that made use of the
VLD. All these data structures are based on standard pointer-based techniques, but
pointers are stored as the difference between integer labels or integer values between
elements. This approach seems to be a reasonably general technique that might be
applied to many problems where labels can be assigned with some locality.

We leave some open questions. In regards to space, none of the structures we
develop are succinct—i.e., use I(n, m) + o(I(n, m)) bits. A succinct static VLA
follows directly from succinct structures for the select operation [Munro 1996]. It
seems that developing a succinct static VLD should also be possible. Developing a
succinct dynamic VLA or VLD seem more difficult.

In regards to the applications, we described how to support dynamic operations
on graphs, cardinal trees and simplicial meshes, but the effectiveness of these oper-
ations depends on maintaining a locality on the labels. In particular it is not clear
how to maintain the space bounds under arbitrary sequences of updates. It would
be interesting to study how to dynamically maintain labels so that space bounds
can be maintained in the presence of arbitrary or perhaps certain classes of update
operations.
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