
Program-Centric Cost Models for Locality

Guy E. Blelloch∗, Jeremy Fineman†, Phillip B. Gibbons‡, Harsha Vardhan Simhadri∗
∗Carnegie Mellon University †Georgetown University ‡Intel Labs Pittsburgh

{guyb,harshas}@cs.cmu.edu, jfineman@cs.georgetown.edu, phillip.b.gibbons@intel.com

Abstract
In this position paper, we argue that cost models for locality in
parallel machines should be program-centric, not machine-centric.

Categories and Subject Descriptors F.2 [Analysis of Algorithms
and Problem Complexity]; D.2.8 [Metrics]: Complexity Measures
and Performance Measures
Keywords Parallelism, Locality, Program-Centric Models

1. Introduction
For good scaling performance, parallel programs should be de-
signed to make efficient use of communication and caches. How-
ever, requiring the programmer to hand-tune her program for lo-
cality on individual machines is counter-productive. It takes con-
siderable effort to understand a new machine and optimizing for
a specific machine draws attention away from portability and cor-
rectness. One approach is to model locality for a class of parallel
machines using a machine-centric model such as the Parallel Exter-
nal Memory model (PEM) [1], Bulk-Synchronous Parallel (BSP)
or the Multi-BSP model [13]. Such models explicitly view the ma-
chine as a specific organization of a collection of processors, caches
and memory. Program costs are then analyzed, roughly, in terms of
data transfers between the components (e.g., between processors,
or between caches and memory). This approach to capturing local-
ity is specific to a particular machine organization and requires that
the user carefully schedules tasks onto processors.

To avoid this problem, we propose that locality in programs
should be quantified in an abstract programming model rather than
with regards to a machine-centric model. In this methodology,
expressions for communication costs are derived without think-
ing about how a program is scheduled on particular machines or
caches. We suggest two models for this purpose: an adaptation of
the sequential Cache-Oblivious model, and a more general Paral-
lel Cache-Oblivious (PCO) model [5]. Both are program-centric
(a.k.a. multicore-oblivious [9]) in that they are defined in terms of
the DAG representing a program execution and have no notions of
processors or cache hierarchy specifics.

Such models have little utility if they do not represent costs
on real machines. Therefore, in addition to the model itself, it is
critical to show general bounds on performance when mapping the
program onto particular machine organizations such as the tree of
caches (fig. 1(c)). Ideally, one high-level program-centric model
for locality can replace many machine-centric models, allowing
portability of programs and the analysis of their locality across
machines via machine-specific mappings. Such mappings make
use of a scheduler designed for a particular cache organization.
Schedulers should come with program performance guarantees that
are based solely on program-centric metrics (e.g., locality, work,
depth) for the program and parameters of the machine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MSPC’13, June, 2013, Seattle, Washington.
Copyright c© 2013 ACM 978-1-4503-1219-6/12/06. . . $15.00

Memory: M=∞, B

M,B M,B M,B

P PP

p processors

(a) Private cache model

Memory: M=∞, B

Cache: M,B

P PP

p processors

(b) Shared cache model

Memory: Mh = ∞, Bh

Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1

M1, B1 M1, B1 M1, B1 M1, B1 M1, B1

h

fhfh−1 . . . f1

fh

f1
P P P f1

P P P f1
P P P f1

P P P f1
P P P

Cost: Ch−1

Cost: Ch−2

(c) A Parallel Memory Hierarchy, modeled by an
h-level tree of caches, with Πhi=1fi processors.

Figure 1. Machine-centric models
In this paper, we highlight two program-centric models for

locality and corresponding schedulers that provably preserve the
locality on single- and multi-level cache models with shared global
memory (fig. 1). More details can be found elsewhere [4, 5].

2. Analyzing Locality
Locality in sequential programs. The Cache-Oblivious (CO)
model [11] is a popular model for measuring locality of sequen-
tial programs. In this model, programs are measured against an ab-
stract machine with two levels of memory: a slow unlimited RAM
and a fast “ideal” cache with limited size. Locality for a sequential
program is expressed in terms of the cache complexity function
Q(M,B), defined to be the number of cache misses on an ideal
cache of size M and cache line size B. As long as a program does
not use the parameters M and B, the bounds for the single level are
valid simultaneously across all levels of a multi-level cache hier-
archy. This model allows easy comparison of locality in programs
and has encouraged careful data layout and space management in
algorithms to maximize locality [10].

Analyzing locality in parallel programs using sequential cache
complexity and depth. Parallel programs can be represented by
directed acyclic graphs (DAGs) that impose a partial order on
the instructions. The DAG may unfold dynamically as the pro-
gram runs. One approach to analyzing the locality/cache complex-
ity of DAGs is to impose a sequential (total) order on the instruc-
tions consistent with the DAG, say according to a depth-first order
(fig. 2(l)). The cache complexity can then be analyzed in the CO
model with respect to this order. Here, we focus only on nested
parallel DAGs—programs with dynamic nesting of fork-join con-
structs but no other synchronizations—as they are more tractable
and sufficiently expressive for many algorithmic problems [6]. It
turns out that the depth-first order based cache complexity Q1, the
depth D (the critical path, or span), and the work W of the DAG—
all program-centric metrics—can be used to bound the performance

1

2

3

4

5

6

8

109

12

11

1413

157

16 Glue
Nodes

Maximal
size M
tasks

Figure 2. (l) Depth-first schedule, (r) PCO analysis

of nested-parallel programs on machine models with one level of
caches, as follows.

Mapping Q1, D, and W for one level hierarchies. Two natural
parallel machine models with a single cache level are the private
cache (as in PEM model [1]) and the shared cache machine mod-
els [2]. The private model (fig. 1(a)) is a collection of p processors
each with its own cache of dimensions M and B, all sharing a
RAM. In the shared cache model (fig. 1(b)), p processors share one
cache of dimensions M and B. In both models, processors can ac-
cess their own caches in unit time and cache misses go to RAM
and take C units of time. In both cases, the total number of cache
misses QP and running time T can be bounded in terms of Q1, D
and W by appropriate choice of scheduler: Work-Stealing (WS) [8]
for the private cache model and Parallel Depth-First (PDF) [3] for
the shared cache model:

WS: QP ≤ Q1(M,B) +O(pDlM/B); T ≤ (W +C ·QP)/p+Dl,

PDF: QP (M,B) ≤ Q1(M −pBDl, B); T ≤ (W +C ·QP)/p+Dl,

where Dl = DC. For low depth programs (polylog in input size)
with good locality according to Q1, these schedulers guarantee
good performance—QP is close to Q1, T is close to optimal [4].

Analyzing locality in parallel programs using the PCO model.
Although Q1, D, and W are good program-centric metrics for ma-
chines where one level of cache (either private or shared) dominates
the program’s running time, it has proven to be hard to generalize
these results to multiple levels (Sec. 3, [5]). The problem arises be-
cause the depth-first order based Q1 accounts for cache line reuse
between instructions unordered in the DAG. The Parallel Cache-
Oblivous (PCO) model [5] overcomes this problem and seems to
be more suitable for analyzing performance on cache hierarchies.
In the PCO model, locality, denoted by Q∗(M,B), is defined based
solely on the composition rules used to construct nested parallel
programs. The model and analysis have no notions of processors,
schedulers, or cache hierarchy specifics.

We refer to any segment of a DAG between a fork and the corre-
sponding join as a task. We refer to the memory footprint of a task
(total number of distinct cache lines it touches) as its size. We say
a task is size M maximal if its size is less than M but the size of
its parent task is more than M . Roughly speaking, the PCO analy-
sis decomposes the program into a collection of maximal subtasks
that fit in M space, and “glue nodes”—instructions outside these
subtasks (fig. 2(r)). For a maximal size M task t, the PCO cache
complexity Q∗(t;M,B) is defined to be the number of distinct
cache lines it accesses, counting accesses to a cache line from un-
ordered instructions multiple times. The model then pessimistically
counts all memory instructions that fall outside of a maximal sub-
task (i.e., glue nodes) as cache misses. The total cache complexity
of a program is the sum of the complexities of the maximal tasks,
and the memory accesses outside of maximal tasks. Although it
may seem that this is overly pessimistic, it turns out that for many
well-designed parallel algorithms, Q∗ = O(Q1) [5].

Mapping Q∗ to multi-level hierarchies. To understand the effec-
tiveness of the PCO model when mapped to a multi-level cache
hierarchy we consider the Tree of Caches model (fig. 1(c)). The
model is parameterized by the number of cache levels h, the di-
mensions of the cache Mi, Bi and fan-out fi at level-i, and transfer
cost Ci from level i to i+ 1. The total number of processors is p =
Πh
i=1fi. To obtain a good schedule for this model, a careful mix of

ideas from WS, PDF and space bounded [9] schedulers can be ap-
plied at different scales in the program. However, it may not be pos-
sible to effectively schedule “irregular” programs on the model, i.e.,
programs with vastly different work-size balances across different
segments within the DAG. The greater the irregularity, the lesser
the exploitable parallelism. In [5], we quantified the notion of ex-
ploitable parallelism by extending the PCO model to a new metric
Q∗α(M,B) to account for the cost of irregularity. Further, for most
“reasonable” algorithms, especially polylog-depth algorithms, we
showed that Q∗α(M,B) = O(Q∗(M,B)). Finally, we constructed
an optimal scheduler based on the Q∗α metric that can execute any
“reasonable” program within time O((Σhi=1Q

∗(Mi, Bi) · Ci)/p).

3. Conclusion
This paper highlighted our efforts to design program-centric local-
ity measures that can be provably mapped to various machine mod-
els. We have also designed algorithms for various problems that
are optimal based on these program-centric measures [4, 7]. Im-
plementations of these algorithms have shown great scalability on
shared memory machines with deep hierarchies, validating our ap-
proach [6, 7, 12]. Extrapolating from these successes, we advocate
using this approach for principled design and analysis of programs
for new machines with increasingly complex memory hierarchies.

Acknowledgments. This work is partially supported by the Na-
tional Science Foundation under grants CCF-1018188 and CCF-
1218188, by Intel Labs Academic Research Office, and by the Intel
Science and Technology Center for Cloud Computing.

References
[1] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental

parallel algorithms for private-cache multiprocessors. In SPAA, 2008.
[2] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among

threads. In SPAA, 2004.
[3] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient

scheduling for languages with fine-grained parallelism. J. ACM, 46
(2), 1999.

[4] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low-depth cache
oblivious algorithms. In SPAA, 2010.

[5] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In
SPAA, 2011.

[6] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally
deterministic parallel algorithms can be fast. In PPoPP, 2012.

[7] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and i/o
efficient set covering algorithms. In SPAA, 2012.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46(5), 1999.

[9] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran.
Oblivious algorithms for multicores and network of processors. In
IPDPS, 2010.

[10] E. D. Demaine. Cache-oblivious algorithms and data structures. In
Summer School on Massive Data Sets, LNCS. Springer-Verlag, 2002.

[11] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In FOCS, 1999.

[12] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan. Brief announcement: The problem
based benchmark suite. In SPAA, 2012.

[13] L. G. Valiant. A bridging model for multi-core computing. In ESA,
2008.

