
A Parallel Complexity Model for Functional
Languages

Guy Blelloch John Greiner

October 20, 1994
CMU-CS-94-196

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored in part by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330 and
contract number F19628-91-C-0168. It was also supported in part by an NSF Young Investigator Award and by
Finmeccanica.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of Wright Laboratory or
the U. S. Government.

Keywords: Functional languages, computer architecture, parallel algorithms, lambda calculus,
models of computation

Abstract

A complexity model based on the λ-calculus with an appropriate operational semantics in presented
and related to various parallel machine models, including the PRAM and hypercube models. The
model is used to study parallel algorithms in the context of “sequential” functional languages, and
to relate these results to algorithms designed directly for parallel machine models. For example,
the paper shows that equally good upper bounds can be achieved for merging two sorted sequences
in the pure λ-calculus with some arithmetic constants as in the EREW PRAM, when they are
both mapped onto a more realistic machine such as a hypercube or butterfly network. In particular
for n keys and p processors, they both result in an O(n/p + log2 p) time algorithm. These results
argue that it is possible to get good parallelism in functional languages without adding explicitly
parallel constructs. In fact, the lack of random access seems to be a bigger problem than the lack
of parallelism.

1 Introduction

Over the years many researchers have argued that an important aspect of functional languages is
their inherent parallelism—since the languages lack side effects, it is safe to evaluate subexpressions
in parallel. Furthermore researchers have presented many implementation techniques to take ad-
vantage of this parallelism, including data-flow [24], parallel graph reduction [17, 26], and various
compiler techniques [11]. Such work has suggested that it might not be necessary to add explicit
parallel constructs to functional languages to get adequate parallelism from functional languages.

There has been little study, however, of how much parallelism can be achieved for various
problems, or how the inherent parallelism in functional languages relates to more standard models
used for analyzing parallel algorithms, such as the PRAM. For example, what are asymptotic
bounds for sorting using a parallel implementation of a functional language such as ML or Haskell?
What kind of sort would we use? How would the bounds compare with parallel sorting algorithms
designed for various machine models? Does it matter whether the language is strict or lazy?
Before these can be answered, we first need to augment functional languages with a formal model of
complexity. Furthermore, if we want to compare results to previous research on parallel algorithms,
we also need to relate this complexity to run time on various machine models. This relation needs
to capture some aspects of the parallel implementation of the language. To address these issues
this paper makes the following contributions:

1. We introduce a parallel model based on the pure λ-calculus with applicative order evaluation
and specified in terms of a profiling semantics [33, 34]. Complexity is given in terms of the
total work executed by a program along with the depth (steps) of the computation, assuming
that the two expressions of an application e1 e2 are evaluated in parallel. We show that
the model is basically equivalent within constant factors to the functional subsets of eager
languages such as ML or Lisp when the parallelism in those languages comes from evaluating
arguments in parallel. This correspondence allows us to prove our results for mapping the
model onto various machines models using the simpler λ-calculus while allowing us to prove
results on algorithms using an ML-like language.

2. We prove results on how the complexities in our model relate to complexities of various
machine-based models, including the PRAM [12], hypercube, and butterfly models. The
results are summarized in Figure 1. The proofs involve introducing a parallel version of the
SECD machine [21], the P-ECD machine. A state of the P-ECD machine consists of a set
of ECD substates, and each state transition of the machine transforms this set into a new
set of substates. On each step the substates are scheduled across the processors of the host
machine. We also prove results for simulating the PRAM model on our model.

3. We prove upper bounds in the model for merging and sorting. In particular we give a parallel
algorithm that merges two sorted sequences of size n stored as balanced trees with O(n) work
and O(log n) steps. The algorithm borrows ideas from algorithms designed for the PRAM [35],
but has some substantial changes to make up for the lack of random access. Based on this
algorithm we can sort a sequence stored as a balanced tree with O(n log n) work and O(log2 n)
steps. For sequences stored as a list any algorithm would require Ω(n) steps just to traverse
the list. This accentuates the importance of storing data as trees rather than lists to take
advantage of parallel implementations of functional languages. Our work bounds are optimal
for both merging and sorting and our step bounds are optimal for merging. Furthermore

1

Machine Model Time

CREW PRAM O(w/p+ s log p)
CRCW PRAM O(w/p+ s(log log p)3)
CRCW PRAM (randomized) O(w/p+ s log∗ p)
Butterfly (randomized) O(w/p+ s log p)
Hypercube (randomized) O(w/p+ s log p)

Figure 1: The mapping of Work (w) and Steps (s) in the proposed model (the A-PAL) to running
time on various machine models. The number of processors on the machine is p. For the randomized
algorithms the running times are high-probability bounds (i.e., they will run within the specified
time with very high probability). All the results assume that the number of independent variable
names in a program is constant, as will be discussed in Section 4.

when the complexity for merging is mapped onto a hypercube or butterfly network, the
resulting time (O(n/p + log2 p)) is equally as good as mapping an optimal EREW PRAM
merge algorithm onto a hypercube or butterfly. It is an open question of whether the step
complexity of sorting can be improved without effecting the work.

We chose applicative-order evaluation over normal-order evaluation because of ambiguities in
defining a formal model based on normal-order evaluation. The problem is that normal-order
evaluation can have wide range of implementations, such as call-by-name, call-by-need, and call-by
speculation [16], and these implementations would have very different complexity models. The first
two, call-by-need and call-by-name, actually offer no parallelism. Call-by-speculation offers plenty
of parallelism but does the the same amount of work as applicative-order semantics. In particular,
a model based on call-by-speculation would give the same asymptotic work bounds as our model,
although it might be possible to improve some step bounds. Most implementations of lazy languages
suggested in the literature sit somewhere between call-by-need and call-by-speculation. Typically
some heuristic or strictness analysis is used to decide when to use call-by-speculation instead of call-
by-need, and there is some way to garbage collect speculative computations that are never needed.
In these implementations a complexity model would depend critically on what heuristics are used
or how good the strictness analysis is. An interesting line of future work would be to formally
compare implementation using their complexity models. For example it should be possible to show
that one heuristic always gets as much parallelism as another without increasing the work.

We note that one inconvenience with our model is the need to keep track of how many variable
names are needed. In particular our simulation bounds need to include the logarithm of the
number of independent variables (ve) in order to account for variable lookup. Fortunately it is
straightforward to show that the number of variables for algorithms, such as sorting, is independent
of the size of the input, so that ve does not effect the asymptotic bounds. Another choice would
be to restrict the λ-calculus to only allow a constant number of variables. This, however, would
require that we chose a particular constant and then show how to convert programs with more
variables into this fixed constant number.

2

Organization of the Paper

The paper is organized as follows. Section 2 describes the model and Section 3 describes an extended
language with conditionals, recursion, data-types and local variables and shows that it is equivalent
within constant factors to the base model. Sections 4 and 5 relate the model to various machine
models. Section 6 gives algorithms for sorting and merging. Section 7 discusses related work.

2 The PAL Model

Our model is based on the untyped λ-calculus with an applicative order operational semantics
augmented with complexity measures. We chose the λ-calculus rather than a specific language
since its simplicity makes the simulation results in Section 4 much cleaner, and many features of
modern languages (e.g., data-types, conditionals, recursion, and local variables) can be simulated
with constant overhead (Section 3), therefore not affecting asymptotic performance.

The parallelism in our model arises from evaluating the function and argument simultaneously
and is specified by the definitions of the complexity measures. These are work, the total number
of operations executed, and steps, analogous to depth in a circuit model. There is no notion of
processors in the model, and in many ways the model more closely resembles circuit models than
machine models. For the sake of practicality, we also consider an extension to the λ-calculus that
adds a set of arithmetic constants (the integers along with some integer operators). This extension
can be simulated on the pure model with costs polylogarithmic in the integer range. We will
henceforth refer to the pure version as the parallel applicative λ-calculus (PAL) model and the
extended version as the Arithmetic-PAL (A-PAL) model.

The abstract syntax of the model is

e ∈ Expressions ::= c | x | λx.e | e1 e2

where the meta-variable c ranges over a set of constants. For the PAL model this set is empty, and
for the A-PAL model it includes arithmetic constants.

We define the semantics of the language in terms of an evaluation relation. Each of the languages
used in this paper is deterministic, so each of their evaluation relations will be functions. The
possible values resulting from evaluation of a PAL expression are defined by

v ∈ Values ::= c | cl(E, x, e)

A closure cl(E, x, e) represents a function and denotes the value of a λ expression. Its first compo-
nent is an environment, which is a finite mapping from variables to values. The empty environment
is denoted by [], and the extension of an environment with a variable and associated value is de-
noted by E[x 7→ v], where x may already be in E. If E has a binding for x, the associated value is
denoted by E(x).

Since we are using applicative order semantics and there are no side-effects in this model, the
function and argument can be evaluated in parallel. This is the only form of parallelism we consider
in this paper, and a goal of the paper is to demonstrate that this is a reasonably powerful model
of parallel computation. To generate useful simulation results on machine models with bounded
parallelism, it is important to keep track of the total work taken by a computation as well as the
parallel depth of the computation. We therefore track two measures: the work complexity is the

3

E ` c λ−→ c; 1, 1 (CONST)

E ` λx.e λ−→ cl(E, x, e); 1, 1 (LAM)

E(x) = v

E ` x λ−→ v; 1, 1
(VAR)

E ` e1
λ−→ cl(E′, x, e′); s1, w1 E ` e2

λ−→ v2; s2, w2

E′[x 7→ v2] ` e′
λ−→ v; s3, w3

E ` e1 e2
λ−→ v; max(s1, s2) + s3 + 2, w1 + w2 + w3 + 2

(APP)

E ` e1
λ−→ c; s1, w1 E ` e2

λ−→ v2; s2, w2 δ(c, v2) = v

E ` e1 e2
λ−→ v; max(s1, s2) + 2, w1 + w2 + δw(c, v2)

(APPC)

Figure 2: The profiling semantics of the PAL model.

total number of reductions to evaluate the expression, and the step complexity is the time for
evaluation assuming that e1 and e2 are always evaluated in parallel.

We formalize these complexities in terms of a profiling semantics for the language [33, 34]. In
such a semantics, evaluating an expression always returns cost measures as well as the resulting
value. Our profiling semantics is an extension of the standard environment-based operational

semantics of the applicative order λ-calculus. The judgment E ` e λ−→ v; s, w reads as “In the
environment E, the expression e evaluates to value v in s steps and w work.” When evaluating a
program, we start with an empty environment. Our profiling semantics is defined by the rules in
Figure 2.

Constants, λ-expressions, and variables evaluate in constant steps and work. As usual, constants
evaluate to themselves, λ-expressions evaluate to closures, and the value of variables is determined
by the current environment.

The APP and APPC rules define the application of user-defined and constant functions, re-
spectively, where the meaning of a constant function application is given by the partial function δ.
Parallel execution of a function and its argument is specified by combining their step complexity
with max. Applying a constant function is assumed to take constant steps, a reasonable assumption
for most constant functions, including those used here. But the amount of work depends on the
function and its argument and is given by the function δw. The specific constant costs used here
are selected to guarantee an exact correspondence between work and the number of reductions in
an SECD machine (see Lemma 1).

Definition 1 The PAL model is the λ-calculus with no constants and with the semantics defined

by E ` e λ−→ v; s, w.

4

δ(add, i) = addi δ(mul, i) = muli
δ(addi, i

′) = i+ i′ δ(muli, i
′) = i× i′

δ(neg, i) = −i δ(div2, i) = bi/2c

δ(pos?, i) = if i > 0 then cl([], x, λy.x) else cl([], x, λy.y)

δw(c, i) = 1

Figure 3: The δ and δw functions for the A-PAL model.

Adding Constants to the PAL Model

We now extend the basic PAL model with arithmetic constants to obtain the Arithmetic-PAL
model. These constants can be simulated on the pure version, but this would require non-constant
overheads in both work and steps. The constants are

c ∈ Constants ::= . . . | i | add | addi |mul |muli | neg | div2 | pos?

where i ranges over the integers. The primitive functions are addition, multiplication, negation,
division by two, and the test for positive integers. The choice of primitives is not important, but for
the purpose of lower bounds proofs they should be incompressible [2], which ensures that certain
kinds of data encoding schemes cannot asymptotically improve complexity bounds, e.g., encoding
arrays as integers. This is why general division has been omitted.

For syntactic simplicity, binary functions take one argument at a time, so that when applied to
the first argument they return a new “curried” function that can be applied to the other argument.
So the constants also include the results of applying the binary primitive functions to one argument,
which are functions which expect the remaining argument. It is intended that these latter constants
would not be used in programs, but we have not fundamentally distinguished them from the other
constants for the sake of simplicity.

The δ and δw functions for these constants are given in Figure 3. The two closures in the δ-rule
for pos? are standard encodings for the booleans and can be used to encode conditionals as in
Section 3. Applying each of these constants requires constant work.

Definition 2 The A-PAL model is the λ-calculus with the constants add, mul, neg, div2, and

pos? and with the semantics defined by E ` e λ−→ v; s, w.

3 Extending the A-PAL Language

The λ-calculus by itself is too cumbersome a language for practical usage, but it does form the
core of languges such as Lisp and ML. In this Section we define the µML model using the primary
language constructs of these languages and show that this model can be translated to the A-PAL
model with only constant overheads and adding only a constant number of variables. This implies
that the simpler A-PAL model is sufficient for proving asymptotic complexity results in the µML
model.

5

The µML model adds pairing, lists, booleans and conditionals, local variables, and explicit
recursion to the PAL model. It also has more primitives and a syntax based on that of Standard
ML. Its syntax is defined by

c ∈ Constants ::= i | + | +i | - | -i | * | *i | /2 | false | true |
= | > | >i | not | nil | nil? |
cons | consv | hd | tl | fst | snd

e ∈ Expressions ::= c | x | (e1, e2) | fn x => e | e1 e2 |
let x = e1 in e2 | letrec x y = e1 in e2

A let expression defines the local variable x within e2 and gives it the value of e1. Similarly, a
letrec expression defines the function x (with argument y) within e2 and gives it the value of e1.
However, this also defines x within e1, so its definition may be recursive.

The values of the language contain constants, cons-pairs, pairs, and closures. A special kind of
closure is used for recursive functions in order to avoid using recursive environments:

v ∈ Values ::= c | 〈v1, v2〉 | (v1, v2) | Cl(E, x, e) | ClR(E, x, e, y)

The profiling semantics are defined by the relation E ` e ML−→ v; s, w, which reads “In the envi-
ronment E, the expression e evaluates to v in s steps and w work.” It is defined by the rules given
in Figure 4, using the δ and δw definition given in Figure 5.

In order to relate the µML model to the PAL model, we define a translation function T on
expressions, values, and environments. Figure 6 defines T on expressions and values, and this
extends to environments in a point-wise manner.

The following theorem show that the µML model can be simulated by the simpler PAL model
with only constant overheads. Thus, algorithms in the two models have the same asymptotic
complexity bounds.

Theorem 1 There exist ks and kw such that if E ` e ML−→ v; s, w then T [[E]] ` T [[e]]
λ−→ T [[v]]; s′, w′

such that s′ ≤ ks ∗ s, and w′ ≤ kw ∗ w.

Proof: With the given definition of the A-PAL and µML models, suitable constants are ks = 12
and kw = 16. The values result from the complexity of the translation, particularly the letrec

case, and the constants used in the A-PAL and µML model definitions. The proof has many cases,
and we look at a representative few.

If e is a constant or an abstraction, then it is clear that the evaluation relations preserve the
translation. Also, the given relations on the costs hold since s = s′ = 1, and w = w′ = 1.

If e = (e1, e2) then it is again clear that evaluation preserves the translation. To show that
the given relations on the costs hold, define the costs of evaluating ei as si and wi. Then s =
max(s1, s2) + 1, w = w1 + w2 + 1, s′ = max(s′1 + 3, s′2) + 3, and w′ = w′1 + w′2 + 7. The if- and
let-expression cases are similar.

The application case is also similar, except that we must look at the various possibilities of the
value of the function.

The most complicated case is that of letrec-expressions. Without working through the whole
derivation, note that the translation of a recursive closure is the result of evaluating Y (λx.λy.T [[e]])

6

E ` c ML−→ c; 1, 1 (CONST)

E ` fn x => e
ML−→ Cl(E, x, e); 1, 1 (LAM)

E(x) = v

E ` x ML−→ v; 1, 1
(VAR)

E ` e1
ML−→ Cl(E′, x, e′); s1, w1 E ` e2

ML−→ v2; s2, w2

E′[x 7→ v2] ` e′
ML−→ v; s3, w3

E ` e1 e2
ML−→ v; max(s1, s2) + s3 + 1, w1 + w2 + w3 + 1

(APP)

E ` e1
ML−→ c; s1, w1 E ` e2

ML−→ v2; s2, w2 δ(c, v2) = v

E ` e1 e2
ML−→ v; max(s1, s2) + 1, w1 + w2 + δw(c, v2) + 1

(APPC)

E ` e1
ML−→ v1; s1, w1 E ` e2

ML−→ v2; s2, w2

E ` (e1, e2)
ML−→ (v1, v2); max(s1, s2) + 1, w1 + w2 + 1

(PAIR)

E ` e1
ML−→ true; s1, w1 E ` e2

ML−→ v; s2, w2

E ` if e1 then e2 else e3
ML−→ v; s1 + s2 + 1, w1 + w2 + 1

(IFT)

E ` e1
ML−→ false; s1, w1 E ` e3

ML−→ v; s3, w3

E ` if e1 then e2 else e3
ML−→ v; s1 + s3 + 1, w1 + w3 + 1

(IFF)

E ` e1
ML−→ v1; s1, w1 E[x 7→ v1] ` e2

ML−→ v2; s2, w2

E ` let x = e1 in e2
ML−→ v2; s1 + s2 + 1, w1 + w2 + 1

(LET)

E[x 7→ ClR(E, x, e1, y)] ` e2
ML−→ v2; s, w

E ` letrec x y = e1 in e2
ML−→ v2; s+ 1, w + 1

(LETREC)

Figure 4: The profiling semantics of the µML model.

7

δ(c, i) = ci, if c ∈ {+, -, *, >, =}

δ(+i, i
′) = i+ i′ δ(-i, i

′) = i− i′
δ(*i, i

′) = i ∗ i′ δ(/2, i) = bi/2c
δ(>i, i

′) = if i > i′ then true δ(=i, i
′) = if i = i′ then true

else false else false

δ(not, true) = false δ(not, false) = true

δ(nil?, nil) = true δ(nil?, (v1, v2)) = false

δ(cons, v) = consv δ(consv, v
′) = 〈v, v′〉

δw(c, v) = 1

Figure 5: The δ and δw functions for the µML model.

in the environment E. The overhead of this translation can be divided into two sources. First,
there is overhead that is independent of the specific subexpressions e1 and e2, which is dominated
by the evaluation of Y . This overhead shows that ks ≥ 12, and kw ≥ 16. Second, there is overhead
for each application of the function x, since this involves unrolling the recursion. This overhead
shows that ks ≥ 9, and kw ≥ 12. �

In addition, the translation T introduces only a constant number of variables, as shown by the
following theorem. Together with the previous theorem, this shows that algorithms in the two
models have the same asymtotic complexity bounds when mapped only models such as the RAM
and PRAM.

Theorem 2 There exists a constant k such that if T [[e]] = e′, then ve ≤ k + ve′.

Proof: The translation T involves a fixed number of variables, which fall into two classes. First,
x and y are used as metavariables representing variables in the original expression e. Thus any
variable occurring in e is also in its translation e′. Second, the translation introduces at most k = 3
variables, x′, y′, and z′, which may be independent of those in e. �

Many other language extensions would add only constant overheads. In particular, recursive
datatype definitions and the associated pattern matching such as that in Standard ML can be
defined in the same way that lists are defined here. Each constructor (nil, cons) tags its data,
each destructor (hd, tl) selects the appropriate component, and each mutator (nil?) tests for the
appropriate tag. Pattern matching is built upon such mutators. Such datatype definition and
pattern matching is assumed in Section 6.

4 Simulating the A-PAL on Various Machines

In this section we prove simulation bounds for simulating the A-PAL model (or PAL) on various
machine models. We first describe the simulation on a serial RAM and then extend this for the
simulation on a PRAM, hypercube and butterfly network. To simulate the A-PAL on the RAM,
we use a variant of the SECD machine [21, 27] as an intermediate step. We first show how the work

8

Expressions:

T [[x]] = x T [[i]] = i
T [[+]] = add T [[*]] = mul
T [[-]] = neg T [[/2]] = div2

T [[true]] = λx′.λy′.x′ T [[not]] = λx′.x′ T [[false]] T [[true]]
T [[false]] = λx′.λy′.y′

T [[nil]] = λx′.x′ 0 0 T [[=]] = λx′.λy′.0? (add x′ (neg y′))
T [[nil?]] = λx′.0? (x′ T [[true]]) T [[>]] = λx′.λy′.pos? (add x′ (neg y′))
T [[hd]] = λx′.T [[fst]](T [[snd]] x′) T [[cons]] = λx′.λy′.λz′.z′ 1 (λz′.z′ x′ y′)
T [[tl]] = λx′.T [[snd]](T [[snd]] x′) T [[(e1, e2)]] = (λx′.λy′.λz′.z′ x′ y′) T [[e1]] T [[e2]]
T [[fst]] = λx′.x′ (λy′.λz′.y′) T [[fn x => e]] = λx.T [[e]]
T [[snd]] = λx′.x′ (λy′.λz′.z′) T [[e1 e2]] = T [[e1]] T [[e2]]

T [[if e1 then e2 else e3]] = T [[e1]] (λx′.T [[e2]]) (λx′.T [[e3]]) 0

T [[let x = e1 in e2]] = (λx.T [[e2]]) T [[e1]]

T [[letrec x y = e1 in e2]] = (λx.T [[e2]]) (Y (λx.λy.T [[e1]]))

Values:

T [[+]] = add T [[*]] = mul
T [[-]] = neg T [[/2]] = div2

T [[true]] = cl([], x′, λy′.x′) T [[not]] = cl([], x′, x′ T [[false]] T [[true]])
T [[false]] = cl([], x′, λy′.y′)
T [[nil]] = cl([], x′, x′ 0 0) T [[=]] = cl([], x′, λy′.0? (add x′ (neg y′)))
T [[nil?]] = cl([], x′, 0? (x′ T [[true]])) T [[=i]] = cl([x′ 7→ i], y′, 0? (add x′ (neg y′)))
T [[hd]] = cl([], x′, T [[fst]](T [[snd]] x′)) T [[>]] = cl([], x′, λy′.pos? (add x′ (neg y′)))
T [[tl]] = cl([], x′, T [[snd]](T [[snd]] x′)) T [[>i]] = cl([x′ 7→ i], y′,pos? (add x′(neg y′)))
T [[fst]] = cl([], x′, x′ (λy′.λz′.y′)) T [[cons]] = cl([], x′, λy′.λz′.z′ 1 (λz′.z′ x′ y′))
T [[snd]] = cl([], x′, x′ (λy′.λz′.z′)) T [[consv]] = cl([x′ 7→ T [[v]]], y′, λz′.z′ x′ y′)

T [[〈v1, v2〉]] = cl([x′ 7→ T [[v1]], y′ 7→ T [[v2]]], z′, z′ 1 (λz′.z′ x′ y′))

T [[(v1, v2)]] = cl([x′ 7→ T [[v1]], y′ 7→ T [[v2]]], z′, z′ x′ y′)

T [[Cl(E, x, e)]] = cl(T [[E]], x, T [[e]])

T [[ClR(E, x, e, y)]] = cl(T [[E]][x 7→ cl(E′[y′ 7→ cl(E′, y′, x′ (λz′.y′ y′ z′))], z′, y′ y′ z′)], y, T [[e]])

where E′ = T [[E]][x′ 7→ cl(T [[E]], x, λy.T [[e]])]

using the abbreviations

0? = (λx′.(pos? x′) T [[false]] ((pos? (neg x′)) T [[false]] T [[true]]))

Y = λx′.(λy′.x′ (λz′.y′ y′ z′)) (λy′.x′ (λz′.y′ y′ z′))

Figure 6: The translation function T from the µML model to the PAL model. The variable name
x′ is assumed to be distict from all others used in the expression being translated.

9

S E C D S′, E′, C ′, D′

S, E, c :: C, D
S

=⇒ c :: S,E,C,D constant

S, E, (λx.e) :: C, D
S

=⇒ cl(E, x, e) :: S,E,C,D lambda

S, E, x :: C, D
S

=⇒ E(x) :: S,E,C,D variable

S, E, (e1 e2) :: C, D
S

=⇒ S,E, e2 :: e1 :: @ :: C,D apply

cl(E′, x, e) :: v :: S, E, @ :: C, D
S

=⇒ nil, E′[x 7→ v], [e], (S,E,C) :: D func-call

c :: v :: S, E, @ :: C, D
S

=⇒ δ(c, v) :: S,E,C,D prim-call

v :: S, E, nil, (S′, E′, C ′) :: D
S

=⇒ v :: S′, E′, C ′, D return

Figure 7: The transitions of the SECD machine. The notation a :: b denotes the element a added
to the front of the list b.

complexity of an A-PAL program is related to the number of state transitions of the SECD machine
and then show that each transition can be implemented within given bounds. For the parallel
simulations of the A-PAL, we introduce a parallel variant of the SECD machine, the Parallel ECD
(P-ECD) machine. The basic idea of the P-ECD machine is that it keeps a set of substates that
can be evaluated in parallel. A state transition causes each substate to convert into either 0, 1, or 2
new substates, so the number of substates will vary over the computation. We show that the work
complexity of a program is exactly equal to the total number of substates processed and that the
step complexity is exactly equal to the number of steps taken by the P-ECD machine. We then
show using an appropriate scheduling how this can be mapped onto various machines with a fixed
number of processors.

We now briefly review the SECD machine. It is a state machine with transition function
S

=⇒,
where states consist of a data stack S of values, an environment E, a control list C of expressions
or the symbol @ (apply), and a “dump” D which is a list of (S,E,C) triples used as a control
stack to return from function calls. To evaluate an expression e, the machine starts in the state
(nil,nil, [e],nil). It halts when S is a singleton and both C and D are nil, with the result being the
singleton value in S. The state transition function is given in Figure 7.

Now we define the cost of the SECD transitions and relate the work cost in the A-PAL model
to that of the SECD machine. The cost of each SECD transition is the constant 1, except for
prim-calls which have cost δw(c, v). Based on the SECD machine, calculating the mapping between
work in A-PAL model and time on a RAM can be split into determining the mapping of work on
the A-PAL to the cost in the SECD machine and then relating this cost that in the RAM. This
includes determining the maximum RAM time taken by each non-prim-call transition.

Lemma 1 If [] ` e λ−→ v; s, w, then the SECD machine evaluates e to v with w cost.

Proof: First, we generalize the lemma to the intermediate states of the SECD machine and prove

that if E ` e λ−→ v; s, w, then the transition sequence (S,E, e :: C,D)
S

=⇒
∗

(v :: S,E,C,D) has
cost w. Then, the proof is by structural induction on the A-PAL evaluation derivation, with a case
analysis on the last rule used in this derivation.

10

CONST, LAM, or VAR: The SECD machine requires one constant, lambda, or variable transition,
and w = 1. The resulting value is the same in both the A-PAL and SECD machine by simple
inspection of the corresponding rules.

APP: By induction and instantiating the intermediate states as needed, we have that

(S,E, e2 :: e1 :: @ :: C,D)
S

=⇒
∗

(v2 :: S,E, e1 :: @ :: C,D)

(v2 :: S,E, e1 :: @ :: C,D)
S

=⇒
∗

(cl(E′, x, e′) :: v2 :: S,E,@ :: C,D)

(nil, E′[x 7→ v2], [e
′], (S,E,C) :: D)

S
=⇒

∗
([v], E′[x 7→ v2],nil, (S,E,C) :: D)

and that these transition sequences are of cost w2, w1, and w3, respectively. To complete the
desired sequence of transitions, we add one func-call transition between the last two previous
sequences and one return transition at the end. Thus, the SECD transition sequence is of
cost w = w1 + w2 + w3 + 2.

APPC: By induction and instantiating the intermediate states to as needed, we have that

(S,E, e2 :: e1 :: @ :: C,D)
S

=⇒
∗

(v2 :: S,E, e1 :: @ :: C,D)

(v2 :: S,E, e1 :: @ :: C,D)
S

=⇒
∗

(c :: v2 :: S,E,@ :: C,D)

and that these sequences are of cost w2 and w1, respectively. The sequence of transitions is
finished by a prim-call, for a total cost of w = w1 + w2 + δw(c, v2).

�

In the following lemma, ve is the logarithm of the number of independent variable names in an
expression e. In the worst case this is equal to the number of λ-expressions since each could have
its own variable name, but we assume that names are shared among λs where it does not cause
a conflict. In practice ve is a small constant that is independent of the data size—it is easy to
share names in all common data representations. In general, however, it is possible to define data
representations in which ve is a function of the data size, so it is important to keep track of it.

Lemma 2 Each non-prim-call step of an SECD machine on an expression e starting with an empty
environment can be simulated on a RAM in no more than kve time, for some constant k.

Proof outline: All transitions except for environment lookup (E(x)) and environment extension
(E[x 7→ v]) can be implemented with simple list manipulations and take constant time. If the
environment is implemented as a balanced tree, then the environment lookup and extension can be
implemented in time logarithmic in the number of variable names in the environment. This assumes
there is a total order on the variable names, and is a little trickier than expected since environment
modification requires making a copy of the old environment (it cannot be side effected). When
evaluating an expression e with an initially empty environment the number of variables names in
the environment can never exceed ve. �

We note that Lemma 2 is also true for a pointer machine [20, 38, 2] since the simulation does
not require any random access.

11

Theorem 3 If [] ` e λ−→ v; s, w and a RAM can calculate each primitive call δ(c, v) in kveδw(c, v)
time, then v can be calculated from e on a RAM in no more than kvew time, for some constant k.

Proof: Follows from Lemmas 1 and 2. �

For the parallel simulation we introduce the P-ECD machine. Again the simulation can be split
into relating the complexity of the A-PAL to the number of state transitions of the P-ECD, and
then we can bound the time to execute each transition and various parallel machines.

The P-ECD machine consists of a controlling processor and a set of slave processors. The state
of the machine is a pair (Q,M). The first component is an array of substates, each similar to a
SECD state, but without the stack:

Q = [(E1, C1, D1), (E2, C2, D2), . . . , (En, Cn, Dn)].

The second is an array of optional partial results, thus taking the place of the stack:

M = [V1, V2, . . . , Vm],

where each Vi is either has zero (noval) or one (val(v)) partial result.
Each step of the P-ECD machine transforms the current state. To evaluate an expression e, the

machine starts in the state ([(nil, e,nil)], []) and exits with the value of e. A step consists of first
allocating the substates in Q to the slave processors; executing a substate transition on each slave,
each returning 0, 1 or 2 new substates or exiting with a value; and accumulating these substates as
the new array of substates. The entire computation finishes when one slave exits. It is impossible
for more than one processor to exit or for there to be no new substates unless the computation is
exiting.

The substate transition executed on each processor works in three substeps, eval, valf, and
vala, as defined in Figure 8. The eval substep creates intermediate results of evaluation which are
processed by valf and vala into substates. This processing includes coordinating the values obtained
from evaluating functions and arguments, and so the processors must synchronize between these
latter substeps. Array M can be side-effected by the substeps: eval can extend the array, and valf
and vala can update its contents.

We now argue informally why the machine works. The interesting transitions are eval on
applications (e1 e2) and the non-identity valf and vala transitions. This eval transition creates
two new substates to evaluate the function and argument. The index i added to the dump D is
guaranteed to be independent for each substate processed (e.g., the processor ID plus the number
of substates processed in previous steps) and is used as an index into M . Whichever calculation
completes first writes its result into M [i] and returns no substates. Whenever the second calculation
completes, it reads the result from M [i] and initiates the application of v1 to v2. In the case that the
two branches complete on the same step, we guarantee that they both do not believe that the other
is still running by synchronizing between the valf and vala phases. (With an atomic test-and-set,
synchronizing could be avoided.)

An example P-ECD evaluation trace is in Figure 9. It shows the expressions in Q at the
beginning of each step of evaluating (add (add 1 2) (add 3 4)).

Like in the SECD machine, the cost of each eval substep is 1. Furthermore, we assume in
Lemma 4 and Theorem 4 that δw(c, v) is constant for each prim-call, as in the A-PAL model,
in order to simplify descriptions and proofs. The proofs can be generalized to hold without this
assumption.

12

E, c, D
eval
=⇒ res(c,D) constant

E, λx.e, D
eval
=⇒ res(cl(E, x, e), D) lambda

E, x, D
eval
=⇒ res(E(x), D) variable

E, e1 e2, D
eval
=⇒ M [i] := noval; apply

2S((E, e1, (E, i, fn) :: D), (E, e2, (E, i,arg) :: D))
where i is new

E, @(cl(E, x, e), v), D
eval
=⇒ 1S(E[x 7→ v], e,D) func-call

E, @(c, v), D
eval
=⇒ res(δ(c, v), D) prim-call

res(v,nil)
valf
=⇒ Exit(v) exit

res(v, (E, i, fn) :: D)
valf
=⇒ if hasval(M [i]) then 1S(E,@(v, valof(M [i])), D) left-return

else (M [i] := val(v); 0S)

res(v, (E, i,arg) :: D)
vala
=⇒ if hasval(M [i]) then 1S(E,@(valof(M [i], v)), D) right-return

else (M [i] := val(v); 0S)

Otherwise, valf and vala are identities.

Figure 8: Transitions on the substates of the P-ECD. The notation M [i] := z denotes writing z
into the ith element of M . The s1; s2 notation signifies sequentially executing s1 and then s2.

Step expressions in Q |Q|
1 (add (add 1 2) (add 3 4)) 1
2 (add (add 1 2)), (add 3 4) 2
3 add, (add 1 2), add 3, 4 4
4 add 1, 2, add, 3 4
5 add, 1, @(add,3) 3
6 @(add,1), @(add3,4) 2
7 @(add1,2) 1
8 @(add,3) 1
9 @(add3,7) 1

Work: 19

Figure 9: P-ECD example evaluation using the expression (add (add 1 2) (add 3 4)).

13

Lemma 3 For all expressions e, if there exists a value v such that [] ` e λ−→ v; s, w, then v is
calculated from e using exactly s steps of a P-ECD machine. Furthermore, the P-ECD calculation
processes exactly w states.

Proof: We prove that the number of steps taken by the P-ECD machine is s by induction on the

structure of the A-PAL evaluation derivation. The induction hypothesis is that if E ` e λ−→ v; s, w
and the P-ECD machine at step t is in a state (Q,M) such that substate (E, e,D) is in Q, then an
instance of the eval substep of step t+ s− 1 results in res(v,D).

CONST, LAM, or VAR: The current eval substep results in res(v,D). By the profiling semantics,
s = 1, so the hypothesis is true.

APP: By the eval rules, two substates (E, e1, D1) and (E, e2, D2) are created after one step. By
the induction hypothesis, e1 completes after s1 steps, and e2 completes after s2 steps. If
the calculation for e1 completes before the calculation for e2 (i.e., s1 < s2), then when e2
completes, (E,@(v1, v2), D) is in the array of substates at step t + 1 + s2. Otherwise, when
e1 completes, (E,@(v1, v2), D) is in the array of substates at step t + 1 + s1. Therefore,
(E′,@(cl(E, x, e), v2), D) is in the array of substates at step t + 1 + max(s1, s2). At the
beginning of the next step, t + 2 + max(s1, s2), the substate (E[x 7→ v], e,D) is in the array
of substates. By the induction hypothesis, an instance of the eval substep of step (t + 2 +
max(s1, s2)) + s3 − 1 results in res(v,D). Since the profiling semantics shows that s =
2 + max(s1, s2) + s3, this gives the desired results.

APPC: The argument is the similar to the previous rule, except that at the beginning of step
t+ 1 + max(s1, s2) the substate (E,@(c, v2), D) is in the array of substates, and an instance
of the eval substep results in res(v,D).

Now we show that the cost of the calculation is not more than w. The proof is by induction on
the A-PAL derivation.

CONST, LAM, or VAR: Exactly one P-ECD step is needed for each of these A-PAL rules, and
this step has a cost of w = 1.

APP: By induction, the values of e1, e2, and e′ are calculated in not more than w1, w2, and w3

cost, respectively. In addition, one func-call eval substep, of cost 1, is taken prior to the
evaluation of e′. Thus, the cost is less than w = w1 + w2 + w3 + 2.

APPC: By induction, the values of e1 and e2 are calculated in not more than w1 and w2 cost,
respectively. In addition, one prim-call eval substep, of cost δw(c, v2), is taken to complete the
evaluation of the application’s value. Thus, the cost is not more than w = w1+w2+δw(c, v2).

�

We now need to show how to simulate the P-ECD machine on a PRAM and butterfly network.
For the butterfly we assume that for p processors we have p lg p switches and p memory banks,
and that memory references can be pipelined through the switches. On such a machine each of p
processor can access (read or write) n elements in O(n+ log p) time with high probability [23, 28].

14

The O(log p) time is due to latency through the network. We also assume the butterfly network has
simple integer adders in the switches, such that a prefix-sum computation can execute in O(log p)
time. A separate prefix tree, such as on the CM-5, would also be adequate. For the hypercube
we assume a multiport hypercube in which on each time step messages can cross all wires, and for
which there are separate queues for each wire. This model is quite similar to butterfly and has the
same bounds for simulating shared memory. However, we do not need to assume that the switches
have integer adders.

Lemma 4 If each primitive call δ(c, v) can be calculated on one processor in constant time, then
one step of the P-ECD machine with m states can be processed on a p processor machine within
the following time bounds:

k · ve · (dm/pe+ log p) CREW PRAM
k · ve · (dm/pe+ (log log p)3) CRCW PRAM
k · ve · (dm/pe+ log∗ p) randomized CRCW PRAM (w.h.p.)
k · ve · (dm/pe+ log p) randomized Butterfly (w.h.p.)

Proof: For the simulation we keep the substates returned by each step in an array. If this substate
array is of length n, each processor is responsible for n/p elements of the array (i.e., processor i is
responsible for the elements [in/p, . . . , (i + 1)n/p − 1]). We assume each processor knows its own
processor number, so it can calculate a pointer to its section of the array. For the CREW and
butterfly simulations the length of the array is exactly m, the number of substates. For the CRCW
PRAM simulations the array can have holes in it that don’t contain states, as explained below.
These holes are marked, and we guarantee that the total length of the array is at most km for some
constant k. This means that each processor is responsible for at most km/p elements.

The simulation of a step consists of the following substeps:

1. Locally evaluating the substates using the eval transition in Figure 8. This requires access-
ing shared memory for reading but requires no communication among the substates. Each
transformed substate can be written back into the array location from which it was read.

2. Evaluating the valf and vala transitions. This requires a synchronization between the two
transitions. Each processor first uses the valf transitions for all the substates for which
it is responsible. The processors then synchronize, and then each processor uses the vala
transitions.

3. Creating a new substate array for the next step. After the substep transitions, each array
element contains zero, one, or two substates (0S, 1S, or 2S), and these must be distributed
into the new array.

We need to show that each of these steps can be executed in the given bounds. The first step
requires the time it takes to process n/p substates. The eval transition is similar to the eval for
the serial SECD machine. The only real difference is the apply transition. Each of the other state
transition require the ve time that was required in the serial machine and can have at most ve
memory references. The apply transition can also be executed in these bounds since it just requires
an additional memory write. We can generate the independent i’s simply by using the array index
for the substate added to an offset which gets reset on each round. None of the memory references
require concurrent writes. The time for the first substep on the CREW and CRCW PRAM is

15

therefore n/p. The time on the butterfly is m/p + lg p since the memory references require a lg p
latency through the network. The second step can also be executed in the same bounds.

The third step requires generating a new substate array. Each transitioned substate of the old
array contains zero, one, or two substates, which need to be distributed into a new array for the
next step. For the CREW PRAM and butterfly this can be done by executing a prefix-sum on
the number of new substates and using the result as an offset into the new array. In both cases
for p processors the prefix sum and writing into the new array can run in O(m/p + log p) time.
This will give a new array that is exactly the length of the number of new substates. On the
CRCW PRAM the distribution into the new array can be done more efficiently using a solution to
the linear approximate compaction problem [22]: given an array of n cells, m of which contain an
object, place the m objects in distinct cells of an array of size km for some constant k. The idea is
to first allocate two new positions for each substate, mark the substates that will remain (neither
for 0S, one for 1S, and both for 2S) and then do an approximate compaction. Since the result
array is a constant times larger than the total number of remaining states, we will maintain the
invariant mentioned earlier. Gil, Matias, and Vishkin [13] have shown that the linear approximate
compaction problem can be solved on a p processor CRCW PRAM (arbitrary) in O(n/p+log∗ p)
expected time (using a randomized solution). Hagerup [15] has shown that the problem can be
solved deterministically in O(n/p+ (log log p)3) time.

When we add the times for the three substeps, we get the stated bounds for each of the machines.
�

Theorem 4 If [] ` e λ−→ v; s, w, and each primitive call δ(c, v) can be calculated on one processor
in constant time, then v can be calculated from e on a CREW PRAM with p processors within
kve(w/p+ s log p) time, for some constant k. Analogous results are true for the other models.

Proof: The proof uses Brent’s scheduling principle [7]. We prove it for the CREW PRAM,
but the other proofs are almost identical. We assume that each step of the P-ECD processes wi

substates. We know from Lemma 3 that
∑i<s

i=0wi = w. We also know from Lemma 4 that it will
take k′ve(dwi/pe+log p) to process step i (note that we have introduced k′ so that it is not confused
with the k in this theorem). The total time to process all states is then

T =

i<s∑
i=0

k′ve(dwi/pe+ log p)

< k′ve

i<s∑
i=0

(wi/p+ 1 + log p)

< k′ve((

i<s∑
i=0

wi/p) + s(1 + log p))

< k′ve(w/p+ s(1 + log p))

< 2k′ve(w/p+ s log p))

< kve(w/p+ s log p))

where we have set k = 2k′. �

16

5 Simulating a PRAM on an A-PAL

In this section we consider simulating a PRAM on an A-PAL. The simulation we use gives the
same results for the EREW, CREW, and CRCW PRAM as well as for the multiprefix [29] and
scan models [4]. The simulation is optimal in terms of work for all the PRAM variants since there
is a lower bound of O(logM) work required for each random access (this is the same as for pointer
machines [2]). Since we don’t know how to do better for the weaker models, we will base our results
on the most powerful model, the CRCW PRAM with unit time multiprefix sums (MP PRAM).

Theorem 5 A program that runs in time t on a p processor MP PRAM using m memory can be
simulated on the A-PAL model with s = kst logm log p, and w = kwp logm, for some constants ks
and kw.

Proof: We will simulate a PRAM based on state transitions on the state (C,M,P) where C is the
code, M is the memory, and P is state for all the processors (i.e., registers and program counter).
We assume C, M , and P are stored as balanced binary trees and that (p = |P |) ≤ (m = |M |),
and |C| ≤ m. Each state transition corresponds to a step of the PRAM, and the processors will
be strictly synchronous. Register-to-register instructions can be implemented with s = O(log p),
and w = O(p), and concurrent reads with s = O(logm), and w = O(p logm). This just requires
traversing the appropriate trees. The writes are the only interesting instruction to implement,
and can be implemented by sorting the write requests from the processors by address and then
recursively splitting the requests at each node of the M tree as we intert them. Since we have
p requests, the sort of the requests can be implemented in s = O(log2 p), and w = O(p log p) as
discussed in the next section. We assume the sorted requests, which we call the write-tree, start
out balanced and are sorted from left to right in the tree. To implement a concurrent write or
multiprefix, we combine nodes in the write-tree that have the same address. Since the addresses
are sorted this can be done in s = O(log p) and w = O(p).

We now consider the insertion of the sorted requests into the M tree. It will be based on a
recursive routine modify(M,W) which takes a memory tree M with a range of addresses along
with associated values and a write-tree W with locations to modify in the M tree along with new
values. We assume all locations in W are contained in M . We also assume for M that the addresses
and associated values are stored at the leaves, that the addresses are ordered from left-to-right, and
that the internal nodes contain the value of the greatest address in the left branch. For W we keep
the minimum and maximum addresses along with the write-tree such that we can access these in
constant work and steps. To insert W into M we first check if M is a single node, in which case W
must also be a single node and we simply modify the value and return. Otherwise we check if all
the addresses in W go down just one of the branches of the M tree. If all addresses go down one
branch we just call modify recursively on that branch of M with the same W and put the result
back together with the other branch of M when the call returns. If W belongs on both branches
of M , we split W based on the address stored at the node in M and call modify in parallel on the
two children of M and the two split parts of W . This algorithm works since all addresses in the
original write-tree will eventually find their way to the appropriate leaf of the M tree and modify
that leaf.

We now consider the total work and steps required. The splitting of W into two trees based
on a key can be implemented in s = w = O(log p) by just following down to the appropriate leaf
splitting along the way (this is a simplified version of the in range operation discussed in the next

17

section). Since the M tree is of depth lgm, the total step complexity is bound by O(log p logm).
To prove the bounds on the work, we observe that it cannot take more than O(p log p) work to split
the tree into p pieces of size 1 since each split will take O(log p) work and there will be p − 1 of
them. This means the total work done on splitting the original write-tree is bound by O(p log p).
The only other work is the check at each node of the M tree of whether we have to split or send all
values down to one or the other branches. The maximum work done for these checks is O(p logm)
since there can be at most p separate chains (one per leaf of the write-tree) each which is at most
as deep as the M tree (O(logm)). The total work is therefore O(p(log p+ logm)) = O(p logm). �

6 Bounds for Merging and Sorting

In this section we give algorithms for merging and sorting for the A-PAL model. It is easy to show
lower bounds for both problems of s = lg n, where n is the size of the data since it is only possible
to fork at most two parallel calls on each step. The lower bounds for work are the same as the
sequential lower bounds for the problems—O(n) for merging and O(n lg n) for sorting.

We consider the problem of merging two ordered sequences. We give an algorithm with optimal
complexity s = O(log n), and w = O(n), where n is the length of the result. The algorithm
determines n/ lg n splitters that partition the result exactly and uses these splitters to extract the
appropriate subsequences of the two inputs, appending the results. Note that algorithms based on
partitioning each input sequence into equal sized blocks, such as the PRAM algorithm of Shiloach
and Vishkin [35], cannot be directly implemented efficiently on the A-PAL model. This is because
it is hard without side-effects to do the patching between the two sequences. Also note that given
a solution of the ranking problem (each element in a has its rank in b and vice versa), it remains
nontrivial to solve the merging problem work efficiently in the A-PAL. In the PRAM models it is
trivial because of the ability to use random access.

For our algorithm we store ordered sequences in a tree structure with all values kept at the
leaves. Each internal node holds pointers to its two children, the size of the sequence (the number
of leaves below it), and the maximum value of any leaf below it. The order of the sequence is
given by the left-to-right traversal of the tree. We denote the depth of sequence a with D(a). The
algorithm uses the following subroutines:

map (f, a)
Takes a function f and a sequence [a0, a1, . . . , an−1] and returns [f(a0), f(a1), . . . , f(an−1)]. The
complexity is s = O(D(a) + maxi<n

i=0 s(f(ai))), and w = O(
∑i<n

i=0 w(f(ai))).

iseq (start, end, stride)
Returns an integer sequence starting at start, up to but not including end with stride stride. The
complexity is s = O(log l), and w = O(l), where l = (end− start)/stride.

in range (a, v0, v1)
Takes an ordered sequence a = [a0, a1, . . . , an−1] and returns an ordered subsequence of a with all
elements such that v0 ≤ ai < v1. To implement it, we execute a binary-tree search for v0 in a
and drop the left branch whenever we take a right during the search. We then do a binary search
on the result with v1 and drop the right branch whenever we take a left. The code is shown in
Appendix A. The work and step complexities are both O(D(a)), and the result is at most the same

18

/* a and b are the two input sequences stored as trees

i is the start of the region to extract

j is the end of the region to extract */

fun extract (s1,s2,i,j) =

let v1 = kth_smallest (i,s1,s2)

v2 = kth_smallest (j,s1,s2)

in serial_merge(in_range (s1,v1,v2),in_range (s2,v1,v2))

end

fun parallel_merge (s1,s2) =

let n = + (size s1) (size s2)

p = iseq (0,n,lg n) /* Create the sequence 0, lg n, 2lg n, ... */

b = map ((fn i => extract (s1,s2,i,+ i (lg n))),

p) /* Apply extract to each region of length lg n */

in flatten b

end

Figure 10: Code for merging.

depth as the source.

kth smallest (k, a, b)
Given two ordered sequences a and b, this returns the kth smallest value from the combination of
the two sequences. It is implemented using a dual binary search in which, on each step, we go down
a branch from one of the two sequences. The code is shown in Appendix A, and its complexity is
s = w = O(D(a) +D(b)).

serial merge (a, b)
Serially merges the two ordered sequence and returns a balanced ordered sequence. s = w =
O(|a|+ |b|).

Theorem 6 Two ordered sequences a and b, each stored as a balanced tree, can be merged in the
A-PAL model with complexities s = O(log n), and w = O(n), where n is the size of the result. The
result is returned as a balanced tree.

Proof: The code for merging is given in Figure 10. The call to iseq returns a sequence of integers
that evenly partition the result into n/ lg n parts. The calls to extract then extract exactly lg n ele-
ments each, except for the last which might extract fewer. The complexity for each call to extract

is s = w = O(log n) since that is the bound for each of the subcalls. The flatten instruction
simply flattens the nested sequence into a sequence. Using the equation for the complexity of map,
the total complexity is s = O(log n), and w = O(n). �

We note that the total number of variables in the merge program is independent of the size of
the input data such that ve is constant. This matters when we map the program onto the various
machine models.

Using the merge described above, it should be clear that mergesort can be implemented with
s = O(log2 n), and w = O(n log n). It is possible to sort in s = O(log n), and w = O(n2) by
counting for each key how many of the other keys are less than it, or equal and to the left in

19

the tree. This gives the rank position of each element in the final tree, which can then be use to
select out the element that belongs at each position in the final tree. The question is remains,
however, of whether can sort work efficiently with s = o(log2 n)? In the EREW PRAM, Cole’s
sort sorts in O(log n) time with n processors [8]. This algorithm cannot be used directly since it
requires random access. Goodrich and Kosaraju showed how this bound could also be achieved
in the EREW parallel pointer machine (PPM) [14]. It does not seem however that this algorithm
can be modified to work in the A-PAL model either. The problem is that the algorithm requires
side-effects (e.g., doubly linked lists), which our model does not allow. We should also point out
that in the PPM it is possible to create a DAG that emulates an AKS network and sorts in the
same bounds. Again this seems unlikely for the A-PAL.

7 Related Work

Several researchers have used cost-augmented semantics for automatic time analysis of serial pro-
grams [3, 33, 34, 39]. This work was concerned with serial running time, and since they were
primarily interested in automatically analyzing programs rather than defining complexity, they
each altered the semantics of functions to simplify such analysis. Furthermore, none related their
complexity models to more traditional machine models, although since the languages are serial this
should not be hard.

Roe [31, 32] and Zimmermann [40, 41] both studied profiling semantics for parallel languages.
Roe formally defined a profiling semantics for an extended λ-calculus with lenient evaluation. In
his semantics, the two subexpressions of a special let expression plet x = e1 in e2 evaluate in parallel
such that the evaluation of an occurrence of x in e2 is delayed until its value is available. To define
when this is the case, he augmented the standard denotational semantics with the time that each
expression begins and ends evaluation. He did not show any complexity bounds resulting from
his definition or relate this model to any other. Zimmerman introduced a profiling semantics for a
data-parallel language for the purpose of automatically analyzing PRAM algorithms. The language
therefore almost directly modeled the PRAM by adding a set of PRAM-like primitive operations.
Complexity was measured in terms of time and number of processors, as it is measured for the
PRAM. It was not shown, however, whether the model exacly modeled the PRAM. In particular
since it is not known until execution how many processors are needed, it is not clear whether the
scheduling could be done on the fly.

Hudak and Anderson [16] suggest modeling parallelism in functional languages using an ex-
tended operational semantics based on partially ordered multisets (pomsets). The semantics can
be though of as keeping a trace of the computation as a partial order specifying what had to be
computed before what else. Although significantly more complicated, their call-by-value semantics
are related to the A-PAL model in the following way. The work in the A-PAL model is within a
constant factor of the number of elements in the pomset, and the steps is within a constant factor
of the longest chain in the pomset. They did not relate their model to other models of parallelism
or describe how it would effect algorithms.

Previous work on formally relating language-based models (languages with cost-augmented
semantics) to machine models is sparse. Jones [18] related the time-augmented semantics of simple
while-loop language to that of an equivalent machine language in order to study the effect of
constant factors in time complexity.

The work-step paradigm has been used for many years for informally describing parallel algo-

20

rithms [36, 19]. It was first included in a formal model by Blelloch in the VRAM [5]. The NESL
language [6], a data-parallel functional language, includes complexity measures based on work and
steps and has been used for describing and teaching parallel algorithms. Skillicorn [37] also in-
troduced cost measures specified in terms of work and steps for a data-parallel language based on
the Bird-Meertens paradigm. In both cases the languages were not based on the pure λ-calculus
but instead included array primitives. Also neither formally showed relationship of their models to
machine models. Part of the motivation of the work described in this paper was to formalize the
mapping of complexity to machine models and to see how much parallelism is available without
adding data-parallel primitives.

Dornic, et al. [10] and Reistad and Gifford [30] explore adding time information to a functional
language type system. But for type inference to terminate, only special forms of recursion can be
treated, such as those of the Bird-Meertens formalism.

There has been much work on comparing machine models within traditional complexity theory.
The most closely related is that of Ben-Amram and Galil [2], who show that a pointer machine
incurs logarithmic overhead to simulate a RAM. The pointer machine [20, 38] is similar to the
SECD machine in that it addresses memory only through pointers, but it lacks direct support for
implementing higher-order functions. We borrow from them the parameterization of models over
incompressible data types and operations. Paige [25] also compares models similar to those used
by Ben-Amram and Galil.

Goodrich and Kosaraju [14] introduced a parallel pointer machine (PPM), but this is quite
different from our model since it assumes a fixed number of processors and allows side effecting of
pointers. Another parallel version of the SECD machine was introduced by Abramsky and Sykes [1],
but their SECD-m machine was non-deterministic and based on the fair merge.

8 Conclusions

This paper has discussed a complexity model based on the λ-calculus and shown various simulation
results. A goal of this work is to bring a closer tie between parallel algorithms and functional
languages. We beleive that language-based complexity models, such as the ones suggested in this
paper, could be a useful way for describing and thinking about parallel algorithms directly, rather
than always needing to translate to a machine model.

This paper leaves several open questions. These questions include

• In the introduction we mentioned that a call-by-speculation implementation of normal-order
evaluation might allow for improved step bounds for various problems. In particular it allows
for pipelined execution. Does this help, and on what problems?

• Is it possible to sort in s = o(log2 n), and w = O(n log n)?

• Can the bounds for simulating the A-PAL on a PRAM be improved? The bounds for the
butterfly network are tight.

• Our simulations are memory inefficient. Can good bounds be placed on the use of memory?

• Because of lack of random-access, can the A-PAL model be simulated more efficiently than the
PRAM on machines that have less powerful communication (e.g., fixed-topology networks,

21

parallel I/O models, or the LOGP model [9]), and can the complexity model be augmented
to capture the notion of locality for these machines?

References

[1] Samson Abramsky and R. Sykes. Secd-m: A virtual machine for applicative programming.
In Jean-Pierre Jouannaud, editor, 2nd International Conference on Functional Programming
Languages and Computer Architecture, number 201 in Lecture Notes in Computer Science,
pages 81–98, 1985.

[2] Amir M. Ben-Amram and Zvi Galil. On pointers versus addresses. Journal of the ACM,
39(3):617–648, July 1992.

[3] Bror Bjerner and Sören Holmström. A compositional approach to time analysis of first or-
der lazy functional programs. In 4th International Conference on Functional Programming
Languages and Computer Architecture. Springer-Verlag, September 1989.

[4] Guy Blelloch. An L1 User’s Manual (Version 1.2: Draft), November 1989.

[5] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[6] Guy E. Blelloch. NESL: A nested data-parallel language (version 2.6). Technical Report
CMU-CS-93-129, School of Computer Science, Carnegie Mellon University, April 1993.

[7] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–206, 1974.

[8] Richard Cole. Parallel merge sort. In Proceedings Symposium on Foundations of Computer
Science, pages 511–516, October 1986.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proceedings 4th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

[10] Vincent Dornic, Pierre Jouvelot, and David K. Gifford. Polymorphic time systems for estimat-
ing program complexity. ACM Letters on Programming Languages and Systems, 1(1):33–45,
March 1992.

[11] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A Report on the Sisal Language
Project. Journal of Parallel and Distributed Computing, 10(4):349–366, December 1990.

[12] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings
ACM Symposium on Theory of Computing, pages 114–118, 1978.

[13] J. Gil, Yossi Matias, and Uzi Vishkin. Towards a theory of nearly constant time parallel
algorithms. In Proceedings Symposium on Foundations of Computer Science, pages 698–710,
October 1991.

[14] Michael T. Goodrich and S. Rao Kosaraju. Sorting on a parallel pointer machine with appli-
cations to set expression evaluation. In 30th Annual Symposium on Foundations of Computer
Science, pages 190–195, November 1989.

22

[15] T. Hagerup. Fast deterministic processor allocation. In SODA, 1993.

[16] Paul Hudak and Steve Anderson. Pomset interpretations of parallel functional programs. In 3rd
International Conference on Functional Programming Languages and Computer Architecture,
number 274 in Lecture Notes in Computer Science, pages 234–256. Springer-Verlag, September
1987.

[17] Paul Hudak and Eric Mohr. Graphinators and the Duality of SIMD and MIMD. In ACM
Conference on Lisp and Functional Programming, pages 224–234, July 1988.

[18] Neil D. Jones. Constant time factors do matter (extended abstract). In 25th ACM Symposium
on Theory of Computing, pages 602–611, 1993.

[19] R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In
J. Van Leeuwen, editor, Handbook of Theoretical Computer Science — Volume A: Algorithms
and Complexity. MIT Press, Cambridge, Mass., 1990.

[20] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison-Wesley Publishing Company, Reading, MA, 1968.

[21] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320, 1964.

[22] Yossi Matias and Uzi Vishkin. Converting high probability into nearly-constant time—with
applications to parallel hashing. In Proceedings ACM Symposium on Theory of Computing,
pages 307–316, May 1991.

[23] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic simulations of prams by
parallel machines with restricted granularity of parallel memory. Acta Informatica, 21:339–
374, 1984.

[24] Rishiyur S. Nikhil. ID Version 90.0 Reference Manual. Computation Structures Group Memo
284-1, Laboratory for Computer Science, Massachusetts Institute of Technology, July 1990.

[25] Robert Paige. Real-time simulation of a set machine on a RAM. In W. Koczkodaj, editor,
International Conference on Computing and Information, volume 2, pages 68–73, 1989.

[26] S. L. Peyton Jones. Parallel Implementations of Functional Programming Languages. The
Computer Journal, 32(2):175–186, 1989.

[27] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Computer
Science, 1:125–159, 1975.

[28] Abhiram G. Ranade. How to emulate shared memory. In Proceedings Symposium on Founda-
tions of Computer Science, pages 185–194, 1987.

[29] Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, Department
of Computer Science, New Haven, CT, 1989.

[30] Brian Reistad and David K. Gifford. Static dependent costs for estimating execution time. In
ACM Conference on LISP and Functional Programming, pages 65–78, July 1994.

23

[31] Paul Roe. Calculating lenient programs’ performance. In Simon L Peyton Jones, Graham Hut-
ton, and Carsten Kehler Holst, editors, Functional Programming, Glasgow 1990, Workshops
in computing. Springer-Verlag, August 1990.

[32] Paul Roe. Parallel Programming using Functional Languages. PhD thesis, Department of
Computing Science, University of Glasgow, February 1991.

[33] Mads Rosendahl. Automatic complexity analysis. In 4th International Conference on Func-
tional Programming Languages and Computer Architecture. Springer-Verlag, September 1989.

[34] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University of
London, Imperial College, September 1990.

[35] Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. Journal of Algorithms, 2(1):88–102, 1981.

[36] Yossi Shiloach and Uzi Vishkin. An O(n2 log n) parallel Max-Flow algorithm. J. Algorithms,
3:128–146, 1982.

[37] David B. Skillicorn and W. Cai. A cost calculus for parallel functional programming. To
appear in the Journal of Parallel and Distributed Computing.

[38] Robert E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets.
J. Comput. System Sci., 18:110–127, 1979.

[39] Philip Wadler. Strictness analysis aids time analysis. In 15th ACM Symposium on Principles
of Programming Languages, January 1988.

[40] Wolf Zimmermann. Automatic worst case complexity analysis of parallel programs. Technical
Report TR-90-066, International Computer Science Institute, December 1990.

[41] Wolf Zimmermann. Complexity issues in the design of functional languages with explicit
parallelism. In International Conference on Computer Languages, pages 34–43, 1992.

A Code for Merging

datatype ’a oseq = leaf of ’a | node of int * ’a * ’a oseq * ’a oseq

fun left_trim (node (n,v,l,r),v0) =

if > v0 (maxval l) then left_trim (r,v0) else mnode (left_trim (l,v0),r)

| left_trim (leaf v,v0) = leaf v

fun in_range (s,v0,v1) = right_trim (left_trim (s,v0),v1)

fun kth_smallest (k,leaf v1,leaf v2) =

if > v2 v1 then if = k 0 then v1 else v0

else if = k 0 then v0 else v1

| kth_smallest (k,leaf v1,node (n2,v2,l2,r2)) =

if > v2 v1 then if > k n2

then kth_smallest (+ k (-n2),leaf v1,r2)

24

else kth_smallest (k,leaf v1,l2)

else if > n2 k

then kth_smallest (k,leaf v1,l2)

else kth_smallest (+ k (-n2),leaf v1,r2)

| kth_smallest (k,node (n1,v1,l1,r1),leaf v2) =

kth_smallest (k,leaf v2, node (n1,v1,l1,r1)) =

| kth_smallest (k,node (n1,v1,l1,r1),node (n2,v2,l2,r2)) =

if > v2 v1 then if > k (+ n1 n2)

then kth_smallest (k,node (n1,v1,l1,r1),l2)

else kth_smallest (+ k (-n1),r1,node (n2,v2,l2,r2))

else if > k (+ n1 n2)

then kth_smallest (k,l1,node (n2,v2,l2,r2))

else kth_smallest (+ k (-n1),node (n1,v1,l1,r1),r2)

fun merge_sort a =

if > 2 (length a) then a

else let mid = /2 (length a)

in parallel_merge (merge_sort (subseq (0,mid,a)),

merge_sort (subseq (mid,length a,a)))

B Array Extensions to the A-PAL model

In this appendix we extend the A-PAL model with a set of constants and expressions for manipu-
lating arrays.

c ∈ Constants ::= . . . | ~v | put | elt | len | index

e ∈ Expressions ::= . . . |map e1 e2

where ~v ranges over arrays [v1, . . . , vn] for any n ≥ 0. The primitive put allows concurrent writes,
as

put [11, 33, 66, 22, 55] [3, 5, 3] [333, 777, 999]

evaluates to
[11, 33, 333, 22, 777] or [11, 33, 999, 22, 777].

The values in the third array are put into the first array according to the indices of the second
array, with conflicts resolved arbitrarily here. The other primitives extract an element of an array
(elt), find the length of an array (len), and create an index array (index). A map expression
maps a function e1 element-wise over e2. These additions are sufficient for most needs.

The following two rules describe map. The function to be mapped (e1) and the argument (e2)
are evaluated in parallel. Then the value of the function, either a closure (MAP) or a constant
(MAPC), is applied in parallel to the elements of the value of the argument, which should be an
array.

E ` e1
λ−→ cl(E′, x, e′); s1, w1 E ` e2

λ−→ ~v′; s2, w2

E′[x 7→ v′i] ` e′
λ−→ vi; s

′
i, w
′
i ∀i ∈ {1, . . . , |~v|}

E `map e1 e2
λ−→ ~v; max(s1, s2) + max

|~v|
i=1 s

′
i + 1, w1 + w2 +

∑|~v|
i=1w

′
i + 1

(MAP)

25

E ` e1
λ−→ c; s1, w1 E ` e2

λ−→ ~v′; s2, w2 δ(c, v′i) = vi ∀i ∈ {1, . . . , |~v|}

E `map e1 e2
λ−→ ~v; max(s1, s2) + 1, w1 + w2 +

∑|~v|
i=1 δw(c, v′i) + 1

(MAPC)

δ(put, ~v) = put~v δw(put, ~v) = 1

δ(put~v,~i) = put~v,~i δw(put~v,~i) = 1

δ(put~v,~i,
~v′) = ~v[~v′/~i] δw(put~v,~i,

~v′) = |~i|
δ(elt, ~v) = elt~v δw(elt, ~v) = 1
δ(elt~v, i) = vi δw(elt~v, i) = 1
δ(len, ~v) = |~v| δw(len, ~v) = 1

δ(index, i) = [0, . . . , i− 1] δw(index, i) = i

To extend the P-ECD machine to work on this model would require adding the capability of
creating multiple states on each step, the ability to do a non-constant amount of work for each
state (and balance it), and the ability to synchronize among multiple states at the completion of
the map.

26

