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Abstract

Motivation: In many applications, inter-sample heterogeneity is crucial to understanding the complex
biological processes under study. For example, in genomic analysis of cancers, each patient in a cohort
may have a different driver mutation, making it difficult or impossible to identify causal mutations from an
averaged view of the entire cohort. Unfortunately, many traditional methods for genomic analysis seek
to estimate a single model which is shared by all samples in a population, ignoring this inter-sample
heterogeneity entirely. In order to better understand patient heterogeneity, it is necessary to develop
practical, personalized statistical models.
Results: To uncover this inter-sample heterogeneity, we propose a novel regularizer for achieving patient-
specific personalized estimation. This regularizer operates by learning two latent distance metrics – one
between personalized parameters and one between clinical covariates – and attempting to match the
induced distances as closely as possible. Crucially, we do not assume these distance metrics are already
known. Instead, we allow the data to dictate the structure of these latent distance metrics. Finally, we
apply our method to learn patient-specific, interpretable models for a pan-cancer gene expression dataset
containing samples from more than 30 distinct cancer types and find strong evidence of personalization
effects between cancer types as well as between individuals. Our analysis uncovers sample-specific
aberrations that are overlooked by population-level methods, suggesting a promising new path for precision
analysis of complex diseases such as cancer.
Availability: Software for personalized linear and personalized logistic regression, along with code
to reproduce experimental results, is freely available at github.com/blengerich/personalized_
regression.
Contact: epxing@cs.cmu.edu

1 Introduction
A fundamental goal of pan-omic analysis, and a bottleneck for personalized
medicine, is to understand the patterns of differentiation between individuals.
With the advent of projects like The Cancer Genome Atlas1 (TCGA) and
the International Cancer Genome Consortium (ICGC)2, genomic cancer
data are generated at an unprecedented volume. We would like to use these
data to understand patient-specific differences for personalized medicine,

1 cancergenome.nih.giv
2 dcc.icgc.org

but many analysis pipelines discard sample heterogeneity in order to boost
accuracy. Sample heterogeneity is particularly important for cancer, as
cancer is increasingly appreciated as a complex disease in which many
distinct underlying mutations may present with similar phenotypes (Fisher
et al., 2013); even within a single patient, there is increasing evidence of
tumor mosaics composed of distinct cell lines (Marusyk et al., 2012). This
difficulty with complex diseases like cancer motivates us to find new ways
of analyzing data at increasingly small granularities.

Toward this aim, the bioinformatics community has developed
increasingly specific assays (Kumar-Sinha and Chinnaiyan, 2018). From
targeted microarrays, to whole-genome RNA-Seq, to single cell RNA-Seq,
the granularity of data collected by genomic assays has continued to be
refined, to the point that we now possess data points representing the state
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of an individual cell at a single time point, unlocking the potential to study
inter-patient, inter-tissue, and inter-cell variability of complex diseases.

A classic approach to personalization is to assume that we have access
to a large volume of multimodal data (e.g. clinical, genomic, proteomic,
biometric, etc.) on each individual, which is used to build large predictive
models. Given enough data per individual, clinical outcomes and decisions
can be personalized (Pittman et al., 2004; Kumar-Sinha and Chinnaiyan,
2018), and recent work along these lines has leveraged a dizzying array of
complex models including Gaussian processes (Alaa et al., 2016), neural
networks (Lopez-Martinez and Picard, 2017), and tree-based models (Moon
et al., 2007), just to name a few. Despite the successes of these methods,
they are still limited to this ‘one disease–one model’ perspective, in which
a single predictive model—often through model averaging—is built for a
single cohort (e.g. corresponding to patients of a particular disease type).
Furthermore, these complex models are often difficult to interpret and are
not guaranteed to provide correct inference into the underlying biological
drivers of disease.

Unfortunately, in many circumstances, we may only have access to
a limited amount of measurements per individual (e.g. either for cost or
privacy reasons). In this case, it is advantageous to leverage data from
distinct but related cohorts in order to build personalized models for each
individual. For example, in cancer applications we now have access to
large datasets for commonly studied cancers such as breast and lung cancer
through repositories such as TCGA. At the same time, less common cancers
such as of the eye and lymph node, have much less data (Table 1). A true
“pan-cancer” study would combine all of this data, exploiting the similarities
between different types of cancer to improve the accuracy of models for
eye and lymph node cancer. That such similarities exist is well-established
in the literature (e.g. Weinstein et al., 2013). However, in the traditional
‘one disease–one model’ paradigm, data from other cancers play no role;
while this makes sense for diseases which have a single root cause, the
heterogeneity of complex diseases such as cancer renders these methods
inadequate. Leveraging data from multiple cohorts while simultaneously
obtaining distinct models for different diseases and different patients is a
key challenge in personalized medicine.

Motivated by this new ‘many disease–many model’ paradigm, we
propose a framework to estimate patient-specific models by learning patterns
of differentation between samples. Instead of learning a single model for an
entire cohort, our framework learns a unique model for each patient. The
key is to leverage the fact that although each patient is expected to have
a unique pattern of differentiation, these patterns are not independent of
one another, and are expected to share substantial similarities. Leveraging
this, we can “borrow strength” from the entire cohort to learn a useful
model that is specific to a given patient. To do this, we propose a novel
distance matching regularizer and show how it can be applied to regression
problems. Our main contributions are three-fold:

1. A novel framework for personalized regression via distance matching;
2. We show that this framework can learn patient-specific models without

prior knowledge of patient relatedness;
3. A TCGA pan-cancer study that illustrates the simultaneous similarities

and differences between putative driver mutations of different cancers.

Although our main application will be to regression problems, our goal
is not to simply predict an outcome, but instead to learn the underlying
mechanisms that drive disease and lead to sample heterogeneity. By focusing
our framework on learning patterns of differentiation, we can produce
interpretable models of controllable granularity from patient-specific to
pan-cancer.

Table 1. Number of samples by tissue in TCGA.

Tissue n Tissue n

Breast 1,092 Ovary 376
Lung 1,016 Liver 371
Kidney 885 Cervix 304
Brain 677 Soft Tissue 259
Colorectal 623 Adrenal Gland 258
Uterus 611 Pancreas 177
Thyroid 502 Esophagus 164
Head and Neck 501 Bone Marrow 151
Prostate 495 Eye 80
Skin 468 Lymph Nodes 48
Bladder 408 Bile Duct 36
Stomach 380

2 Related Work
Traditional models assume only one or a few statistical parameters for
a given population. As a simple example, consider the case of linear
regression with response Y and predictors X . Then the typical model
is Y = Xβ + ε, where the parameter β is shared across all individuals.
More generally, mixture models allow for K different parameters βk ,
k = 1 . . . ,K. Another related generalization is multi-task learning (Maurer
et al., 2013). In both mixture modeling and multi-task learning, however,
it is necessary that K ≪ N where N is the total number of samples in
the cohort. By contrast, we are interested in the case K = N , i.e. a single
parameterization for each individual in the cohort. This is what is meant
by personalized regression models.

As it has long been a goal of biologists to understand inter-sample
variation, significant prior work has aimed to estimate model parameters
that vary between samples. Unfortunately, prior work requires either (1) a
small number of sub-groups relative to the number of samples (e.g. mixture
models) (Roth et al., 2014), or (2) known patterns of variation (Song et al.,
2009; Parikh et al., 2011; Kolar et al., 2009), or (3) significant domain
knowledge to constrain the solutions (Xu et al., 2015; Yamada et al., 2016).
Also closely related are random coefficient models, however, traditional
random coefficient models do not allow for sample-specific sparsity patterns.
In the presence of additional covariatesU (often, time or clinical variables),
varying coefficient (VC) models have also been explored extensively (Fan
and Zhang, 1999; Hastie and Tibshirani, 1993; Kolar et al., 2009). In this
VC framework, each regression parameter is modeled as a function of
some external covariates U , i.e. β = f(U). As with other models, VC
models require significant domain knowledge in order to model a suitable
relationship between β and U .

The closest work in spirit to ours is arguably the recent work on sample-
specific network estimation (Kuijjer et al., 2015; Liu et al., 2016). Although
these papers also consider the problem of sample-specific estimation, they
focus on the particular problem of network estimation, and hence are not
directly comparable to the present work.

3 Model
We are interested in learning which features X ∈ RP are relevant for
predicting a phenotype Y ∈ R such as disease status. At the same time,
we assume we have access to clinical covariates U ∈ Ω1 × ⋯ ×ΩK for
each individual, which are allowed to be arbitrary—unordered or ordered,
categorical or continuous, and even with missing values. Throughout, we let
N denote the total number of patients in the cohort and use superscripts to
identify samples. Thus, Y (i), X(i), and U(i), denote the data for sample
i and β(i) is the personalized regression parameter for the ith sample.
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3.1 Distance matching

To recover personalized model parameters β(i) without a priori knowledge
of how samples are related, we assume that there are unknown distance
(pseudo-)metrics dβ and dU such that dβ(β(i), β(j)) ≈ dU (U(i), U(j)).
That is, similarity in parameters is related to similarity in covariates,
however, the nature of this similarity is unobserved, unknown, and may not
correspond to usual notions of distance such as Euclidean distance. This is
closely related to the notion of distance metric learning introduced by Xing
et al. (2003). Existing work along these lines in the personalized estimation
literature typically assumes that either (a) The metrics are Euclidean, or (b)
The pairwise similarities are known (Xu et al., 2015; Yamada et al., 2016).

To learn these latent distance metrics, we model them as follows:

dβ(x, y) = ζ⟨φβ , [dβ1(x1, y1), . . . , dβP (xP , yP )]⟩, (1a)

dU (x, y) = ⟨φU , [dU1
(x1, y1), . . . , dUK (xK , yK)]⟩, (1b)

where ⟨⋅, ⋅⟩ denotes the dot product of two vectors and dβp (p = 1, . . . , P )
are user-specified metrics between scalars and dUk (k = 1, . . . ,K) are
user-specified metrics between covariates. Note that here we do not require
these distance metrics to be differentiable. This allows for a wide variety
of distance metrics, such as the discrete metric dUk(x, y) that equals one
if x = y and is zero otherwise. This allows our framework to handle the
realistic situation of categorical covariates without ordering. The parameters
φβ and φU represent unknown linear transformations of these “simple”
distances into more useful latent distance metrics given by (1a) and (1b)
with scale ζ > 0.

Define pairwise distance vectors for each i, j by

∆
(i,j)
β

= [dβ1(β
(i)
1 , β

(j)
1 ), . . . , dβP (β

(i)
P , β

(j)
P )] (2a)

∆
(i,j)
U = [dU1

(U
(i)
1 , U

(j)
1 ), . . . , dUK (U

(i)
K , U

(j)
K )] (2b)

Since the covariate values in U are fixed, ∆
(i,j)
U is also fixed, whereas

∆
(i,j)
β

is not fixed since the values of β(i) and β(j) will change during
training. For simplicity, we take dβp(x, y) = ∣x− y∣ (p = 1, . . . , P ) in the
remainder of this paper.

Now define the following distance matching regularizer:

%
(i)
γ (dβ , dU ) =

γ

2
∑
j≠i

(dβ(β
(i), β(j)) − dU (U(i), U(j)))

2

=
γ

2
∑
j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩)

2
.

(3)

This regularizer attempts to match the pairwise distances between covariate
values to the pairwise distances in the learned regression parameters. Let
f be a loss function, e.g. least squares for regression or logistic loss for
classification. Define a sample-specific objective by

L
(i)

(β(i);dβ , dU )∝f(X(i), Y (i), β(i)) + ρβ
λ
(β(i)) + %

(i)
γ (dβ , dU ).

Summing these, we obtain the complete objective function:

L(β, φβ , φU , ζ)∝
N

∑
i=1

L
(i)

(β, dβ , dU ) + ψβα(dβ) + ψ
U
υ (dU ).

where γ trades off sensitivity to prediction of the response variable against
sensitivity to sample distances, f(X(i), Y (i), β(i)) is the prediction loss
for sample i, ρβ

λ
∶ RP → R≥0 regularizes β(i) with strength set by λ, and

ψβα, and ψUυ regularize the distance functions dβ , dU with strengths set
by α, υ, respectively.

3.2 Parametrization and initialization

Since the program (4) is nonconvex and the number of free parameters is
large, some care must be taken to avoid degenerate solutions. We constrain
the `1 norm of both φβ and φU to be equal to 1 and put all scaling into
a single scale parameter ζ. In addition, we require that each entry of φU
and φβ is non-negative, ensuring non-negative distances between samples.
Placing appropriate priors on φβ and φU , we arrive at the final program
we wish to optimize:

min
β,φβ ,φU ,ζ

L(β, φβ , φU , ζ) such that ∥φβ∥1 = 1, ∥φU ∥1 = 1,

and φβ ≥ 0, φU ≥ 0,

and ζ ≥ 0.

(4)

where inequality here is interpreted component-wise.
After normalization, the model (4) has (N + 1)P + K + 1 free

parameters to be learned from N samples, which may seem significantly
over-parameterized. Notwithstanding, although the technical details are
beyond the scope of this short article, we can show that the distance matching
regularizer (3) is able to constrain the personalized parameters β̂(i) so that
they do not deviate too far from a population regression estimation β̂pop,
unless a substantial decrease in the loss can compensate for such deviations.
Since (4) is a nonconvex program, proper initialization is crucial, and this
gives us a practical strategy for initializing the personalized parameters:
After solving for a population estimator β̂pop, we initialize all β̂(i) = β̂pop.
This initialization is important because the initial point is be a central point
about which the personalized parameters are centered. As a result, our
choice of regularizer allows for sample-specific personalization effects
while preventing overfitting. This is a very desirable property for analysis
of biological data: Suppose our data consists of microarray data from a
diverse cohort of cancer patients. Each of these patients have experienced
a series of mutations away from a healthy state; however, it is unlikely that
they have experienced the same set of mutations. We would then like a
personalized model to recover parameter values that are concentrated near
a central model corresponding to a healthy state. This is precisely what
distance matching does.

3.3 Missing values

When there is a missing value in the covariate data, we set the distance
between this value and all others to zero. This underestimates the distance
between samples, biasing the solution toward retaining a central population
estimator rather than personalizing the models based on missing features.

3.4 Prediction

Although our main focus is on inference for a fixed sample cohort, given a
new test pointX , we can create a new model without re-running the learning
algorithm on the entire dataset by averaging the personalized parameters of
theK nearest models in the training set. This allows us to make predictions
and inferences for new patients efficiently. Conveniently, since we have
already learned a distance metric which we can use to accurately measure
distance between samples, we can use this in the nearest neighbour search.
Details are given in Algorithm 1. For linear regression, p(x, β) = ⟨x, β⟩.
For logistic regression, p(x, β) = exp(⟨x,β⟩)

1+exp(⟨x,β⟩)
.

4 Optimization
We seek to minimize (4) by first estimating a traditional regression estimator
such as the Lasso or OLS, and then gradually relaxing the personalized
regression models away from this population model. For simplicitly, we
describe the procedure as centered about a single population estimator,
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Algorithm 1 Inference Procedure

Require: Test point (X(test), U(test)), predictive model p(⋅, ⋅), number
of neighbors N_neighbors
distances← {dU (U(test), U(i)) ∶ i ∈ [1, . . . ,Ntrain]}

neighbors← sort(distances)[0 ∶ N_neighbors]
β(test) ←mean({β(i) ∶ i ∈ neighbors})

return p(X(test), β(test))

however, the method trivially extends to initialization about a mixture
model. After setting hyperparameters γ, α, and υ (λ is dictated by the
population estimator), we optimize by coordinate gradient descent with
the following subgradients (note here that Y (i) is a scalar value, and X(i)

and β(i) are both p-vectors):

∂L(i)

∂β(i)
= f ′(Y (i),X(i), β(i)) + ρ′(β(i))

+ γ∑
j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩)ζ

∂

∂β(i)
⟨φβ ,∆

(i,j)
β

⟩

(5a)

∂L(i)

∂φβ
= γ∑

j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩)ζ∆

(i,j)
β

+ ψ′β(φβ)

(5b)

∂L(i)

∂φU
= γ∑

j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩)(−∆

(i,j)
U ) + ψ′U (φU )

(5c)

∂L(i)

∂ζ
= γ∑

j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩)⟨φβ ,∆

(i,j)
β

⟩ + ψ′ζ(ζ)

(5d)

where f ′(⋅, ⋅, ⋅), ρ′(⋅), ψ′β(⋅), andψ′U (⋅) are subgradients of the predictive

model f(⋅, ⋅, ⋅) and the regularizers ρβ
λ
(⋅), ψβα(⋅), and ψUυ (⋅), respectively.

The update to β(i) is dependent on the distance metric chosen for
parameter values. For dβm(x, y) = ∣x − y∣, (5a) becomes

∂L(i)

∂β(i)
=f ′(Y (i),X(i), β(i)) + ρ′(β(i))

+ γ∑
j≠i

(ζ⟨φβ ,∆
(i,j)
β

⟩ − ⟨φU ,∆
(i,j)
U ⟩) sign(β(i) − β(j))φβ

where the sign(⋅) function is applied element-wise. Finally, to ensure that
each coordinate of φ is non-negative (i.e. distances cannot be negative),
we project the updated value of φ into the non-negative reals. This is
summarized in Algorithm 2. Each iteration of the naïve optimization
procedure has computational time complexity in O(N2PK) where P
is the number of features, K is the number of covariates, and N is the
number of samples. This can be reduced to O(NPK) by defining a
constant-size set of neighbors for each sample and only calculating pairwise
distances within neighborhoods, as illustrated in Algorithm 2. The use of
these neighborhoods naturally extends this procedure to optimization of
personalized models centered around mixture models.

Algorithm 2 Optimization

Require: step size a, intializations βpop, φ0beta, φ0U , ζ0, covariate
distances ∆U , training data X,Y , hyperparameters γ, α, υ
βi ← βpop ∀i ∈ [1, ...,Ntrain]

φβ ← φ0β
φU ← φ0U
ζ ← ζ0

while not converged do
dφβ ← ψ′β(φβ)

dφU ← ψ′U (φU )

for i ∈ {1, . . . ,N} do
dβ[i]← f ′(Y (i),X(i), β(i)) + ρ′(β(i))

for j ∈neighbors[i] do
g ← γ(ζ⟨φβ , δ

(i,j)
beta

⟩ − ⟨φU ,∆
(i,j)
U ⟩)

dβ[i]← dβ[i] + g⟨φβ , sign(β
(i) − β(j))⟩

dφβ ← dφβ + g(β
(i) − β(j))

dφU ← dφU − g∆
(i,j)
U

dζ ← g⟨φbeta, δ
(i,j)
β

⟩

end for
end for
for i ∈ {1, . . . ,N} do
β(i) ← β(i) − a ∗ dβ[i]

end for
φβ ← softmax(φβ − adφβ)

φU ← softmax(φU − adφU )

ζ ←max(0, ζ − adζ)

end while
return β,φβ , φU , ζ

4.1 Linear Regression

As an example application, let us instantiate the model (4) for personalized
linear regression with Lasso regularization by

f(Y (i),X(i), β(i)) =
1

2
(Y (i) − ⟨X(i), β(i)⟩)2

f ′(Y (i),X(i), β(i)) = −(Y (i) − ⟨X(i), β(i)⟩)X(i)

ρβ
λ
(β(i)) = λ∥β(i)∥1.

4.2 Logistic Regression

Similarly, we instantiate personalized logistic regression with response
variables Y (i) ∈ {0,1} and Lasso regularization by

f(Y (i),X(i), β(i)) = log (1 + exp(⟨X(i), β(i)⟩)) − Y (i)X(i)β(i)

f ′(Y (i),X(i), β(i)) = (
exp(⟨X(i), β(i)⟩)

1 + exp(⟨X(i), β(i)⟩)
− Y (i))X(i)

ρβ
λ
(β(i)) = λ∥β(i)∥1.

5 Simulation Study
To test the performance of personalized regression, we measure the recovery
of personalized parameters on simulated data. For fixed X ∈ RN×P , we
generate sample-specific effect size vectors β(i) ∼ Unif(0,1) and
sample Y (i) ∈ {0,1} according to a logistic regression model. The
covariatesU(i) are generated by projectingβ(i) intoK < P dimensions by
multi-dimensional scaling. This produces covariates that are related to the
personalized regression coefficients in a highly nonlinear, nonparametric
manner. Recovery of the ground truth effect size vectors for fixed P = 10

variables and K = 3 covariates is depicted in Figure 1. In general, the
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Fig. 1. Recovery of regression parameters for the simulated data described in Section 5.
Values indicate the mean error of the personalized parameter matrix normalized to the
performance of the population estimator and averaged over 20 data generation processes,
with error bars to denote the variance. The personalized model struggles at extremely low
sample sizes but quickly surpasses the performance of the baseline models.

personalized model outperforms other baselines except when the sample
size is small, which is to be expected.

6 Sample-Specific Pan-Cancer Analysis
Here, we investigate the potential for personalized cancer analysis. We use
gene expression (RNA-Seq) quantification data from The Cancer Genome
Atlas (TCGA). This dataset compiles data from 37 projects spanning 36
disease types in 28 primary sites. After pruning for missing values, this
dataset contains 9663 profiles for 8944 case and 719 matched control
samples; we divide this set into 75% training data and 25% testing. While
this full dataset is sizable, previous analyses have been hampered by the
small number of samples for each particular cancer sub-type (e.g., there
are only 36 cases present in the bile duct cancer dataset). Because our
framework of personalized regression allows models to share information
across diverse settings, we are able to jointly analyze the cancer subtypes
while still recovering subtype-specific characteristics. The number of
samples available from each dataset was shown in Table 1.

We subsample genes based on annotations in the COSMIC Catalogue
of Somatic Mutations in Cancer (Forbes et al., 2014), so that there is exactly
one putatively causal gene for each 5 non-annotated genes. This resulting in
P = 4123 features when an intercept term is added. We train each logistic
regression model to predict the case/control status of each sample with `1
regularization to perform variable selection in order to study which genes
are relevant for classification. Our baseline models include: `1-regularized
logistic regression model trained on all pan-cancer data (“Population”),
`1-regularized logistic regression model trained on each primary tissue
type (“Tissue-Population”), `1-regularized mixture model with the number
of clusters equal to the number of tissue types in the pan-cancer dataset
(“Mixture”), a logistic regression model with parameters that follow a
linear varying coefficients model (“VC”), and the mixed model recently
proposed by Hayeck et al. 2015.

In addition to the RNA-seq data, we used the following 14 covariates:
disease type, primary tumor site, age of the patient at diagnosis, year of
birth of the patient, the number of days to sample collection, gender of
the patient, race of the patient, percent of neutrophil infiltration, percent
monocyte infiltration, percent normal cells, percent tumor nuclei, percent
lymphocyte infiltration, percent stromal cells, and percent tumor cells in

the sample. These covariates span a range of different types, including both
continuous and discrete values; for continuous-valued covariates, we use
the `1 distance function, for discrete-valued covariates, we use the discrete
distance metric. For the VC model, unordered discrete covariates such
as primary tissue must be converted into one-hot vectors. This procedure
increases the number of covariate features to 64, underscoring the benefit
of our model’s ability to directly use the 14 unordered, discrete covariates
without modification.

To predict case/control status of each sample, we implemented the
personalized logistic regression model with Lasso regularization described
in Section 4.2. We selected λ in the population estimator by 10-fold cross-
validation on the training set. This value of λ is held fixed between the
population estimator and the personalized estimator. Next, we set γ so that
the loss due to the distance matching regularizer is similar in magnitude to
the prediction loss. Finally, we set υ and α so that the loss due to distance
metric regularization is one order of magnitude smaller than the logistic
classification loss. This heuristic represents our uncertainty in the form
of personalization for cancer; we prefer to rely on the data than to set a
rigid form of personalization. Empricially, we observe robustness in the
solutions up to an order of magnitude change in these hyperparameters.
By inspecting the variables (mRNA transcripts) selected by this method,
we find that personalized regression identifies (1) individualized genetic
aberrations, (2) interpretable patterns of differentiation, and (3) patient
sub-typing that is more meaningful than clustering based on covariate data.

6.1 Predictive Accuracy

To verify accuracy of the model, we first examine the classification loss
of the case/control status target. Although our main goal is to study the
selection of important genes for this task, the overall classification error is a
convenient benchmark for sanity checking the learned models. Training and
testing error values are shown in Table 2 with testing error rates calculated
using n_neighbors = 3, as described in Algorithm 1. For the Tissue-
Population model, we report the sample-weighted mean performance of the
tissue-specific models. We see that the predictive accuracy for both training
and testing sets is meaningfully improved by this method of personalization.
We expect a low training error by virtue of the large number of parameters
in the personalized models; the low testing error indicates that personalized
patterns of differentiation are generalizable throughout the patient cohort
and that the learned distant metrics are effective at finding related samples
at test-time.

Table 2. Classification Errors

Model Train Error (%) Test Error (%)

Population 6.9 6.8
Tissue-Population 6.5 6.8
Mixture 6.7 6.8
VC 7.5 8.7
LMM 7.0 7.1
Personalized 6.3 6.7

6.2 Personalization Effects

We also examine the learned distance metrics for contributions to
personalization by each covariate. The linear form of the distance metric
makes interpretation of φU straightforward by inspection of the loadings
(Figure 2). As expected, the disease and primary tissue site of the sample
have the heaviest influence on personalization, confirming our intuition that
the variation between cell types is highest in cells of distinct differentiations.
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Fig. 2. Contribution of each covariate to the learned personalization distance in the pan-
cancer dataset. We see that, as expected, this method learns to upweight differences in
disease type and primary site, along with other demographic features.

Next in importance toφU are demographic and clinical features, which may
be interpreted as a coarse-grained view of the patient’s SNPs. Important
molecular markers of cancer subtype appear to be (a) percent of neutrophil
infiltration, (b) percent monocyte infiltration, and (c) percent stromal cells,
confirming clinical findings these phenotypic characteristics as indicative
of molecular subtypes, especially in breast cancers (Livasy et al., 2006;
Isella et al., 2015; Dennison et al., 2016).

6.3 Accurate Recovery of Personalized Parameters

Personalized regression selects variables on a sample-specific level. Such
fine-grained analytic power, unobscured by cohort averaging, enables more
accurate recovery of important features than is possible by population-scale
models. As a result, the number of variables selected for each sample-
specific model is much lower than the number of variables selected by the
population estimator (Figure 3, top). In addition, the number of samples
for which each variable is selected follow a long-tailed distribution in
which a few genes are selected for many samples, but many genes are
selected for a few samples (Figure 3, bottom). The set of common gene
selections represents well-studied oncogenes that are common to many
types of cancer while the infrequently selected genes may correspond to
less common oncogenes.

To investigate this possibility of many infrequently selected oncogenes,
we further examine the oncogene distribution by rank of variable. Ranks
are calculated by ordering the sums of the magnitudes of each coefficient
along the sample axis (for population models, this is simply the magnitude
of the coefficient associated with that variable). In this way, the rank
captures both the number of samples for which the variable was selected
and the magnitude of the implied effect size. As shown in Figure 4, the
overlap between selected genetic markers and the annotations in COSMIC
(Forbes et al., 2014) is improved by the process of personalization. We
see that the highly ranked oncogenes are efficiently selected by nearly
all methods, but the performance of the baseline models lags as the rank
diminishes. In particular, although the Tissue-Population models that are
learned independently using only samples from a given tissue tend to select
highly ranked genes that are also annotated in COSMIC, the performance
in the long-tail of infrequently selected genes is less competitive compared
to the personalized model. This confirms the intuition that personalization
is the most useful in this latter regime.

To test whether this increase in oncogene selection is due to novel
identification of genetic processes, we perform enrichment analysis of the
ranked lists of genes. Reported in Table 3 are the most significant Gene
Ontology (GO) terms from a ranked enrichment test using Panther 13.1
(Mi et al., 2017) on the Panther GO-SLIM Biological Process dataset (Mi
and Thomas, 2009) with a cutoff of p < 0.05 for the Bonferroni-corrected
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Fig. 3. The sample-specific variable selection of personalized regression results in models
with fewer selected variables than those selected by population-level models. (Top)
Histogram of the number of variables selected for each patient by personalized regression.
Vertical red lines indicate the number of variables selected by the Tissue-Population model
trained on a single cancer type. Personalized models achieve similar or improved predictive
performance with fewer selected genes. (Bottom) Histogram of the number of samples for
which each gene is selected.
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Fig. 4. Overlap of selected variables with annotated oncogenes (best viewed in color).
Results for each tissue-specific model are displayed in dashed gray lines, with the sample-
weighted mean displayed in a solid black line. We see that the personalized models select
oncogenes at higher ranks than do the baseline methods, especially for the long tail of low
rank oncogenes.

p-values. The genes selected by personalized models are enriched with
similar GO terms compared to the baseline models, which is expected
since the gene ontology is largely comprised of well-studied annotations
from large cohorts as opposed to harder to detect personalized effects.
This validates our hypothesis that the improved performance of variable
selection is not due to identification of a single group of genes, but rather
is due to the identification of many sample-specific effects.

6.4 Discovery of Molecular Subtypes

The pattern of selection of genes is of particular interest for clinical
application. As seen in Figure 5, there are a number of common oncogenes
that are repeatedly selected throughout many cancer types, including
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Table 3. Enrichment Analysis of Complete Variable Rankings

Model Biological Process P-value

Population
mRNA Processing 2.06e-8

DNA Metabolic Process 3.18e-6
Organelle Organization 3.86e-2

Tissue-Population

mRNA Processing 3.09e-9
Metabolic Process 3.26e-5

Transcription, DNA-Dependent 9.61e-5
DNA metabolic process 5.9e-3

Mixture

mRNA processing 1.45e-8
DNA Metabolic process 1.96e-5

transcription, DNA-dependent 2.62e-4
organelle organization 7.32e-3

VC None NA

LMM DNA metabolic process 2.02e-2

Personalized
mRNA processing 5.83e-6
metabolic process 1.1e-3

DNA metabolic process 3.15e-2

FOXA1, HOXC13, and FCGR2B. This set combines with a sparse selection
of a number of oncogenes specific to each cancer type. These cancer types
span surface-level characteristics such as tissue type. Interestingly, we also
see a small set of rarely selected oncogenes that are consistently selected for
a cluster of about 300 patients (outlined in Figure 5). This set of oncogenes
is highly over-represented for the GO biological process term “Modulation
of Chemical Synaptic Transmission" (Bonferroni corrected p-values of
2.32e-2), which includes genes ATP1A2, SLC6A4, ASIC1, GRM3, and
SLC8A3. These genes code for ion-transport processes, which have long
been seen in vivo as an important system in thyroid cancer (Filetti et al.,
1999) and in vitro from leukemic cells (Morgan et al., 1986), but only
recently been appreciated as a functional marker across many different
cancer types (Scafoglio et al., 2015).

Figure 6 depicts a tSNE projection of the learned effect vector for each
sample, colored by the primary tumor site. While the samples appear to
form clusters, and the case samples are separated from the control samples
by a large margin, again these clusters do not appear to correspond to any
individual covariate. This complexity of personalization underscores the
need for learned distant metrics to capture relationships corresponding to
molecular characterization of tumors.

To identify molecular subtypes, we cluster the parameter embeddings
using the HDBSCAN algorithm and perform an enrichment analysis of
each cluster’s variable selection in an analogous manner to the procedure
described in Section 6.3. The top 3 over-enriched leaf terms from the
GO biological process dataset are shown in Table 4. We see that the
different clusters of models correspond to different biological processes.
For instance, cluster 3 is enriched for several terms associated with
extracellular interactions, while cluster 2 emphasizes terms associated
with nucleotide modification via splicing and repair. These results suggest
that the clusters discovered by personalized regression may correspond to
clinically meaningful molecular subtypes.

7 Conclusions and Future Work
In this work, we have presented a framework for estimating sample-specific
regression models via the introduction of a novel regularizer that matches
distance in covariate values to distance in regression parameters. We have
demonstrated the effectiveness of this paradigm for sample-specific tumor
analysis by gene selection on a pan-cancer dataset. Much work remains

Table 4. Enrichment Analysis of Tumor Clusters

Cluster Biological Process P-value

1
Symbiont Process 2.62e-3

Regulation of Cellular Catabolic Process 1.96e-2
Protein Modification Process 3.43e-2

2

DNA repair 3.21e-12
RNA splicing, via Transesterification

3.64e-7
Reactions with Bulged Adenosine as Nucleophile

DNA Replication 1.00e-6

3
Symbiont Process 1.4e-3

Antigen Processing and Presentation of Peptide Antigen 1.06e-2
Antigen Processing and Presentation of Exogenous Antigen 1.08e-2

4
DNA Metabolic Process 3.83e-8

DNA repair 1.68e-6
Regulation of Cellular Macromolecule Biosynthetic Process 5.06e-6

5
Plasma Membrane Bounded Cell Projection Morphogenesis 1.45e-2

Neuron Projection Development 3.02e-2

6
mRNA Catabolic Process 8.78e-4

Gene Expression 6.02e-4
Macromolecule Biosynthetic Process 3.32e-2

7 None N/A

8
Generation of Precursor Metabolites and Energy 4.75e-5

Oxidation-Reduction Process 4.52e-5
Citrate Metabolic Process 9.84e-3

9
DNA Metabolic Process 3.96e-10

Cellular Response to DNA Damage Stimulus 5.57e-9
Protein Complex Subunit Organization 1.41e-4

10
DNA Metabolic Process 7.15e-8

ncRNA Metabolic Process 1.33e-4
Chromatin Organization 8.27e-4

11
Negative Regulation of Phosphorylation 3.74e-2

Hematopoietic or Lymphoid Organ Development 4.46e-2

to be done in the application of this method to cancer analysis. We are
particularly interested in the potential to uncover novel molecular subtypes
that correspond to shared mutational patterns of tumors, especially for
analysis of the long tail of understudied genetic factors. In addition, we
would like to apply this paradigm of sample-specific estimation to more
complicated models. With the increasing number of biological assays for
precise granularity buoyed by the rising tide of genomic data availability, we
anticipate sample-specific modeling to continue to increase in importance
and relevance to the bioinformatics community.
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