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Introduction 
The human immune system protects against a 
diverse set of antigens by dynamically 
generating an antibody to pair with each 
potential antigen.  As shown in Figure 1, 
immunoglobulin diversity is generated 
through a two stage process: (1) V(D)J 
recombination followed by (2) somatic 
hypermutation.

Unfortunately, the targeting of somatic 
hypermutation is poorly understood.  
Controlled through a balance of error-prone 
(through cytosine deamination by activation 
induced deaminase) and high-fidelity DNA 
repair, somatic hypermutation preferentially 
targets some Ig loci[1], known as 
hypervariable regions.  However, there is 
currently no generative model of the 
distribution of hypervariable regions, leading 
to difficulty understanding immune 
responses.
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Materials and Methods 

The motivation for this project is 4-fold:
1.  To unearth characteristics of somatic hypermutation targeting.
2.  To generate a dataset for further investigation of somatic hypermutation.
3.  To increase accuracy of antigen and immune response models.
4.  To advance toward a comprehensive and dynamic anti-viral software by advancing 

requisite computational models of immune responses.

First, as no publicly available datasets have been developed for this purpose, a dataset 
of somatic hypermutation rates had to be constructed.  Using the Stanford_S22 
dataset[2] (a standard for benchmarking the performance of human antibody gene 
alignment tools) that consists of 13,153 sequence reads and over 3,000,000 base pairs, 
hypermutation rates were calculated. After calculating the most closely aligned 
germline recombination, each base pair was compared to the corresponding germline 
location to identify mutations.  Mutations were recorded as 1, conserved nucleotides as 
0.  This created a dataset of over 3,000,000 base pairs annotated by hypermutation rate.

To discover motifs associated with non-hypervariable regions, the non-hypervariable 
regions were extracted.  These regions were defined as segments at least 5 base pairs 
long with no mutations, along with the surrounding 10 base pairs. DREME[3] was 
then used to identify putative motifs enriched in the non-hypervariable regions.

To label V/D/J segments, a conditional random field (implemented by CRF++) was 
used.  After training on a synthetic dataset, it was tested for accuracy and 
generalizability on the Stanford_S22 dataset. While training the conditional random 
field was computationally intensive (O(TM2)), using the trained model to label 
sequences is efficient (O(M)).  Thus, the use of the conditional random field allowed 
for extensive statistical tests (implemented in Python) to be performed on labeled 
sequences, of which a few significant results are shown in the Results section.

Results 
While hypervariable regions have 
been extensively studied for motifs, 
the complementary non-hypervariable 
regions have not.  By analyzing non-
hypervariable regions for common 
nucleotide patterns, 19 significant (e-
value < 0.0001) motifs were 
discovered. The 4 with highest 
enrichment are displayed in Table 1.  
The number and significance of these 
motifs suggest that there may be 
protective factors that bind to prevent 
hypermutation.

Furthermore, hypermutation rate was 
found to vary significantly with 
segment type.  As seen in Figure 2, 
hypermutation rates for D and J 
segments are stable over the length of 
the segment.  In contrast, 
hypermutation rates in V segments 
follow a distinct pattern with 4 peaks.  
These peaks appear to correspond to 
previously identified Complementarity 
Determining Regions(CDR) 1, 2, and 
3[4]. This interpretation might suggest 
that the previously identified CDR1 is 
actually composed of two smaller 
CDRs.

Finally, statistical analysis suggests 
quantitative differences between the 
three segments types.  As shown in 
Table 2, the mean running average of 
hypermutation rates is highest in D 
segments.  Though this difference is 
not large, coupled with a reduced 
standard deviation, it may be enough 
to improve state-of-the-art 
probabilistic identification of segment 
boundaries.
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Conclusions 

There are three main findings of interest for future work.  First, a dataset has been built 
to facilitate analysis of hypermutation rates.  Second, 19 motifs have been identified as 
putative causes of non-hypervariable regions, suggesting potential for targeted 
experiments.  Finally, significant differences in the distribution of hypermutation rates 
have been observed between segment types.  Work is currently being done to combine 
these observations with probabilistic methods to improve predictions of gene segment 
boundaries and immune response modeling in general.  This will enable future 
advances in fields as diverse as personalized medicine and anti-viral software.
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Motif E-Value 
4.2e-972

2.7e-414

7.5e-301

2.1e-199

Table 1. Nucleotide motifs discovered to be enriched 
in non-hypervariable regions.  E-value is a measure 
of the strength of the signal, values less than 0.0001 
are generally considered to be significant [2].
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Segment Type Mean Running 
Average of 
Hypermutation Rates 

Standard Deviation 
of Hypermutation 
Rates 

V 0.750959 0.149849 

D 0.785855 0.075827 

J 0.761050 0.132611 

Figure 2.  Hypermutation rates by base position for 
each segment.  Rates shown are the average of 
13153 sequence reads.

Table 2. Statistics for the hypermutation rates of each 
type of segment. Running averages are of length 9.

Figure 1. The mechanisms of V(D)J 
recombination and somatic hypermutation. 
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