15-745 Class Project Proposal

Brendan Meeder, Jamie Morgenstern, Richard Peng

April 13, 2011

1 Group Info

Brendan Meeder (bmeeder@cs.cmu.edu)
Jamie Morgenstern (jamiemmt@cs.cmu.edu)
Richard Peng (richard.peng@gmail.com)

2 Project Webpage

http://www.cs.cmu.edu/~bmeeder/15745/proposal.html

3 Project Description

We propose implementing and benchmarking a classifier for ordering and se-
lection of dependent LLVM code passes. Many optimizations we would like
to make at compile-time are dependent upon the other optimizations we make
during compilation. For example, if one performs dead code elimination before
common subexpression elimination, one would expect the results to be quite
different from performing the optimizations in the reverse order. We would
like to analyze these dependencies: given the set of optimizations implemented
within LLVM, which subsets are heavily dependent upon one another? Does it
always make sense to perform these optimizations in a particular order, or does
the ordering within these dependent bundles depend upon features of the code
we’re compiling? Does the ordering of the highly dependent bundles matter?

There are several components to such a project: dependent subsets of the
optimizations must be chosen for analysis, determining and extracting relevant
features of code for compilation, training a classifier to choose an ordering of
passes to run on code given the features, and testing the classifier on new code.

First, we will need to choose which subsets of transformations in LLVM we
will bundle together. A first cut will be to examine those sets that “look depen-
dent” (e.g., one can imagine that mem2reg and memcpyopt will be dependent).
A more ambitious goal would be to formally measure some notion of depen-
dency between passes by benchmarking code comiled with different collections
of optimization.



Next, our group will decide which features of code seem most relevant in
determining which ordering of passes to run on the code. We expect iterature
to be helpful in this search: papers which first implemented these passes often
describe informally what properties of code will reap the most benefit from
the transformation. Once we’ve decided which features will be useful in our
classification, we will need to build a feature extractor to profile code and obtain
these features (time spent in loops, average length of execution path, cache
misses, etc).

Next, building and training a classifier (either based on logistic regression
or clustering) or finding an off-the-shelf classifier to use with our feature ex-
tractor. We plan to extract features and benchmark based on either the SPEC
benchmarks or some more realistic code.

Finally, we plan to test our classifier in one of two ways. Depending upon the
necessary training data, we can either use cross validation (training on some 75%
of the benchmarks and testing on the remaining 25%) or train on some other
benchmarking code.

A 75% goal is to build a feature extractor, and generate a classifier which
suggests orderings of optimizations which performs not too much worse than
the “-O1” optimizations in general, and in certain instances outperforms them.

A 100% goal would be to successfully build a feature extractor and generate
a classifier which beats the speedups that the “-O1” or “-02” flags provide.

A 125% goal would be to look at JIT compilation, and do some analysis of
which optimizations actually save time when compilation time is a part of run-
time. We expect this to be difficult; and this is left as an additional component
to the project if we finish early.

4 Logistics
4.1 Plan of Attack and Schedule

In the next week, we will work out which subsets of optimizations we will con-
sider for the purposes of this project, and decide which features will be relevant
for profiling code with respect to these passes. By 3/23, we will have a plan of
attack for how we will collect the features from code via profiling.

For the next week (the last week in March), we will write the feature extrac-
tor and begin extracting features from the code we plan to use for training and
testing our classifier.

The first week in April will have us running the feature extracting, making
modifications as necessary to the way we are collecting the features if the first
plan was too costly with respect to compile-time.

The second week in April, we will write the classifier and train it on the
collected feature data. This is where we hope to be for the midway milestone.

The remaining time will be for catching up (if any of the above takes longer
than expected), testing the classifier, writing the paper, and optionally consid-
ering JIT tradeoffs as an extension.



4.2 Milestone

By April 17th, we would like to have our features extracted from all the training
and testing data (the SPEC2000 benchmarks). This will require the following
to have been completed:

1. Select dependent passes

2. Select relevent features regarding these passes

w

. Design profiling passes to collect these features

4. Profile or training and test code

If this is successful, we will be training our classifier either just before or just
after the deadline for the milestone report.

4.3 Literature Search

[1] addressed a similar problem of finding the set of passes that optimizes code
performance. The related problem of reducing compilation time by selecting a
useful set of passes was the main focus of [3]. The list of features listed on page
22 of [3] will also act as a starting point for our initial passes for identifying
features of the program. However, techniques such as the ones used in [2] to
automatically finding features might also be worth exploring.

4.4 Resources Needed

1. Access to Matlab for running machine learning algorithms.

2. Compiler benchmark suites. SPEC is the default one we will consider. We
are also planning on finding additional benchmarks or libraries (BLAS and
LAPACK, for example) that we can write a wrapper around and make
performance measurements.

3. Additional machines. Brendan has access to some of the cluster machines
in GHC, so we can run non-hardware based measurements (cache hit-
rate in a simulator, for example) on all of these machines. Additionally,
we can pick a set of machines that have the same specifications and run
experiments on them when other users are not using the machine.

4.5 Getting Started

We have looked into the two papers mentioned in the literature search. Addi-
tionally, we have all taken the machine learning course and feel as though this
gives us adaquate preparation for setting up a good ML experiment, under-
standing the ML tools available to us, and interpreting the results.



References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learn-
ing to focus iterative optimization. In In Proceedings of the International
Symposium on Code Generation and Optimization (CGO, pages 295-305,
2006.

[2] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature gen-
eration for machine learning based optimizing compilation. In Proceedings of
the Tth annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’09, pages 81-91, Washington, DC, USA, 2009.
IEEE Computer Society.

[3] Gennady Pekhimenko. Machine learning algorithms for choosing compiler
heuristics, 2008.



