
Supplement: Decision Diagram Representations of Selector
Functions∗

Randal E. Bryant
Carnegie Mellon University

December 20, 2019

Notice

The material in this document is supplementary material to publication [3]. This document is being made
available to the public, subject to copyright provisions. You are free to copy and distribute it, but you must
give attribution for any use of this material.

This work was supported, in part, by NSF STARSS grant 1525527.

Overview

For Boolean variables x1, . . . , xn, a selector function is defined as a Boolean function of the form:

f(x1, . . . , xn) =
n∧

i=1

x̃i (1)

where for each value of i, x̃i is a literal, equal to either xi or ¬xi. We encode these literals with a set of
phase values pi, where pi = 1 when x̃i = xi, and pi = 0 when x̃i = ¬xi.
In this document, we consider the complexity of encoding such functions with different types of decision
diagrams (DDs):

• Reduced Ordered Binary Decision Diagrams (BDDs) [4]

• Zero-suppressed Binary Decision Diagrams (ZDDs) [5, 6]

• Chain-reduced Binary Binary Decision Diagrams (CBDDs) [2, 3]

• Edge-Specified-Reduction Binary Decision Diagrams (ESRBDDs) [1]
∗Copyright c© 2020, R. E. Bryant All rights reserved.

1

2

None of the DD types requires more than n+ 2 nodes, including the two leaf nodes. Here we consider the
average-case sizes, assuming the phase values p1, . . . , pn are independent and uniformly distributed. That
is, each phase pi is either 0 or 1 with probability 1/2, and the value of pi is independent from that of any
other phase pj . We also derive the worst-case sizes.

DD Average Worst Case
BDD 1 1

CBDD 3/4 1
ZDD 1/2 1

ESRBDD 1/3 1/2

Table 1: Size coefficients αavg for representing selector functions with different DD types

We derive results showing that each DD type has an average and worst-case size of the form αn+2, where
the coefficients αavg (average) and αwc (worst case) are shown in Table 1. The first three average-case
results are presented in [3]. The results for ESRBDDs are new to this document.

As described in [3], these average sizes are significant when using a DD to represent a set of strings, such
as when representing a dictionary or a set of configurations of a chess board. For strings over some alphabet
A having |A| = r, we can use a binary encoding to represent each symbol using k = dlog2 re Boolean
variables, and we can then represent a string of length m as a selector function with with m · k Boolean
variables. The function representing a set of strings is a disjunction of selector functions, and hence there
can be sharing among nodes in the DD representation. Still, the different coefficients of Table 1 can indicate
that the four different DD types are more or less compact when representing sets of this form.

Benchmark BDD CBDD ZDD ESRBDD
Nodes Nodes Ratio Nodes Ratio Nodes Ratio

Word compact 1,120,437 971,387 0.87 657,969 0.59 484,765 0.43
Word full 1,285,285 1,153,438 0.90 851,555 0.66 520,576 0.41
Password compact 5,704,777 4,542,925 0.80 2,960,478 0.52 2,399,272 0.42
Password full 5,648,670 4,960,446 0.88 3,532,847 0.63 2,410,589 0.43

Table 2: Benchmark results for dictionary representations. Data taken from protect[1]. The size ratios
are relative to BDDs.

Table 2 displays data on the sizes of the DDs generated when representing four dictionaries using binary
codings of the characters. The data are taken from [1]. The table also shows the ratios of sizes relative to
those of BDDs. We see that these results slightly exceed predictions based on the average case results of
Table 1. Several factors could explain why the measured numbers do not match those of Table 1:

• The dictionaries consist of sets of words, not just individual words, and so the DDs encode disjunc-
tions of selector functions.

• There can be a sharing of nodes among the different words, and this sharing may be greater with the
more homogeneously structured BDDs than for other DD types.

3

• The probabilities of the phase values are not independent and are not uniformly distributed.

Further investigation would be required to fully quantify these phenomena. For here, it suffices that they
indicate a general trend of BDDs, CBDDs, ZDDs, and ESRBDDs being progressively more compact.

BDDs

0* 1*

S1 S2

Figure 1: State machine for BDD node generation. The forward phase string is processed starting at the
initial state (solid circle). Each state marked with an asterisk indicates that a node must be generated.

The size of the BDD representation of a selector function is straightforward: there must be a nonleaf node
for each level i, as well as two leaf nodes.

This simple case allows us to introduce a state machine representation for generating the DD nodes of a
selector function, as illustrated in Figure 1. Define the forward phase string p as p = p1 p2 · · · pn. Gener-
ating the BDD starts at the initial state (solid circle) in Figure 1. It then processes the string, transitioning
from the current state to the (unique) state labeled by pi on each step i. Those states that are labeled by an
asterisk (‘*’) denote ones that require a new DD node.

We can also view the state machine of Fig. 1 as a Markov chain, where each arc denotes a transition
probability of 1/2. Transitions among the states S1 and S2 can then be represented by the transition matrix:

TBDD =

[
1/2 1/2
1/2 1/2

]
(2)

The set of steady-state probabilites for the two states is then the unique value ~s such that: 1) si ≥ 0 for
all i, 2)

∑
i=1,n si = 1, and 3) T~s = ~s. In this case, one can easily see that s1 = s2 = 1/2, and

since both states require generating a BDD node, the average number of nodes generated per level will be
αavg = 1/2 + 1/2 = 1.

The worst-case result of αwc = 1 is straightforward—every BDD representation of a selector function must
have n+ 2 nodes.

CBDDs

When chain suppression is applied to BDDs, a consecutive set of phase values pi, pi+1, . . . , pi+k equal
to 0 can be encoded as a single node have top level t = i and bottom level b = i + k. This property is

4

0* 1*

0

S1 S2

S3

Figure 2: State machine for CBDD node generation. The additional state S3 denotes a position where
chain reduction applies.

represented by the state machine of Figure 2. The additional state S3 encodes the processing of the substring
pi+1 · · · pi+k—no nodes are generated.

The transition matrix for the corresponding Markov chain is:

TCBDD =

 1/2 1/2 1/2
1/2 0 0
0 1/2 1/2

 (3)

The steady-state probabilities for this matrix have s2 = 1/2 and s1 = s3 = 1/4. The average number of
nodes generated per level will therefore be αavg = 1/2 + 1/4 = 3/4.

The worst-case result of αwc = 1 can be seen when pi = 1 for all i. Only state S2 will be visited during the
generation process.

ZDDs

0 1*

S1 S2

Figure 3: State machine for ZDD node generation. Only state S2 requires generating a node.

The zero suppression rule of ZDDs avoids the need to have a node at level i when pi = 0. We can therefore
represent the node generation process with the state machine shown in Figure 3. It is identical to the one
for BDDs, except that transitions to state S1 do not require generating a node. The steady-state probabilities
will be s1 = s2 = 1/2, and the average number of non-leaf nodes generated per level will be αavg = 1/2.

5

a. Sparse 1s

Phase

1

0

0

1

0

0

0

0

DD

1

State

S4

S1

S1

S4

S1

S1

S1

S1

H

H

H

b. Sparse 0s

Phase

0

1

1

0

1

1

1

1

DD

1

State

S3

S2

S2

S3

S2

S2

S2

S2

L

L

L

c. Mixed 1s and 0s

Phase

1

1

0

0

0

1

1

0

DD

1

State

S2

S4

S1

S1

S3

S2

S2

S3

S

L

H

L

Figure 4: ESRBDD selector function representation examples. Each edge is labeled as high zero-
suppressed (H), low zero-suppressed (L), or short (S)

The worst-case result of αwc = 1 can be seen when pi = 1 for all i. Only state S2 will be visited during the
generation process.

ESRBDDs

ESRBDDs have edges with four different labels:

S The edge is between nodes at adjacent levels, or it is the initial edge to a node at level 1.

X The skipped levels should be treated as don’t cares.

H The skipped levels should be high-zero suppressed. That is, the function will yield 0 if any of the skipped
variables are assigned value 1.

L The skipped levels should be low-zero suppressed. That is, the function will yield 0 if any of the skipped
variables are assigned value 0.

6

When representing a selector function, there are no edges with label X. Restricting the labels to S and H
would yield a ZDD representation. Label L introduces a case where a level with phase value pi = 1 need
not have a node at that level.

Figure 4 illustrates the ESRBDD for three example selector functions. When drawing DDs, we do not show
the leaf with value 0 nor any edges to it. The lo edge from a node is shown as a dashed line, and the hi edge
is shown as a solid line.

Figure 4a illustrates the case where the phases with value 1 are sparse, i.e., no two adjacent levels have
phase 1. The ESRBDD structure matches that of a ZDD, with nodes only at the levels with phase value
0. The edges are labeled H, including the edge to the root, to indicate that the skipped levels are high-
zero suppressed. Conversely, when the phases with value 0 are sparse (4b), the representation can take
advantage of low-zero suppression to avoid any node at a level with phase 1. When the function has a mix
of consecutive 1s and consecutive 0s (4c), a different pattern emerges. Here, a node occurs at the lowest
level of each run to indicate the phase change.

0 1

0* 1*

S1 S2

S3 S4

Figure 5: State machine for ESRBDD node generation. Nodes are generated when processing the reverse
of the phase string. The two zero-suppression rules yield symmetrical cases where no new DD node is
required.

These patterns are captured by the state machine of Figure 5. Since the reduction rules are applied from
the leaf nodes upward, the state-machine representation of this process must consider the reversed phase
string pR = pn pn−1 · · · p1. The three examples of Figure 4 also indicate the states that would occur when
processing the phase values from the bottom up. For a string with sparse 1s (4a), only states S1 and S4 are
encountered. Similarly, generating the DD when processing a string with sparse 0s (4b) encounters only
states S2 and S3. With a mix of 1s and 0s (4c), transitioning from a series of consecutive 0s to 1 (resp., 1s
to 0) involves a transition from S1 to S4 (resp., S2 to S3), generating a new node.

The transition matrix for the corresponding Markov chain is:

TESRBDD =


1/2 0 1/2 1/2
0 1/2 1/2 1/2
1/2 0 0 0
0 1/2 0 0

 (4)

7

The steady-state probabilities for this matrix have s1 = s2 = 1/3 and s3 = s4 = 1/6. The average number
of nodes generated will per level will therefore be αavg = 1/6 + 1/6 = 1/3

Unlike the other DD types, the worst-case analysis for ESRBDDs is nontrivial. We can see that a string
consisting of n/2 alternations of 0 and 1 will yield a ESRBDD with n/2 + 2 nodes, either transitioning
between states S1 and S4 or between states S2 and S3, depending on pn. Indeed, this pattern is the worst
case, since there are no self loops for the two states that require generating a node, and there are no transitions
between these states. We therefore conclude the αwc = 1/2 for ESRBDDs.

References

[1] J. Babar, C Jiang, G. Ciardo, and A. Miner. Binary decision diagrams with edge-specified reductions.
In Tools and Algorithms for the Construction and Analysis of Systems, volume 11428 of Lecture Notes
in Computer Science, pages 303–318, 2019.

[2] R. E. Bryant. Chain reduction for binary and zero-suppressed decision diagrams. In Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 10805 of Lecture Notes in Computer
Science, pages 81–98, 2018.

[3] R. E. Bryant. Chain reduction for binary and zero-suppressed decision diagrams. Journal of Automated
Reasoning, 2020.

[4] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[5] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In Proceed-
ings of the 30th ACM/IEEE Design Automation Conference, pages 272–277, June 1993.

[6] Shin-ichi Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic
Publishers, 1995.

