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Abstract. A probabilistic model of reputation management is proposed
to help agents (users) avoid interaction with non-cooperative partici-
pants. Our approach adjusts the ratings of agents based on their obser-
vations as well as the testimony from others. Our former work used a
scalar value to represent the reputation ratings and combine testimonies
using combination schemes from the certainty factor model. One prob-
lem is that certainty factors do not represent measures of absolute be-
lief. Rather, they are meant to represent changes in belief. In this paper
the mathematical theory of evidence is used to represent and propa-
gate the reputation information in an electronic community. Our specific
approach to reputation management leads to a decentralized society in
which agents help each other weed out undesirable players.

1 Introduction

The worldwide expansion of network access is driving an increase in interactions
among people. We view an electronic community as a social network in which
each user is assigned a software agent and software agents help automate the
process of word-of-mouth by a series of “referral chains.” For example, users pose
queries to their agents in the form of Where is the best Chinese restaurant in the
Bay Area? The queries by the user are first seen by his agent who decides the
potential contacts to whom to send the query. After consultation with the user,
the agent sends the query to the agents for other likely people. The agent who
receives a query can decide if it suits its user and let the user see that query. In
addition to or instead of just forwarding the query to the user, the agent may
respond with referrals to other users. If the agent or user wish they can discard
the query and never respond to it in any way.

Moreover, the agents assist their users in evaluating the services provided by
others, and find the most helpful and reliable parties to deal with. In this man-
ner, the agents build and manage the reputations of other agents. Reputation
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is different from trust. We view trust as a kind of “belief” of one agent about
another, and reputation as the “cumulative beliefs” from a group of agents.
Previously, we used a scalar value to represent an agent’s trust about another
and combine testimonies using combination schemes from the certainty factor
model [15]. One problem with this work is that certainty factors do not repre-
sent measures of absolute belief. Rather, they are meant to represent changes in
belief [7]. The drawbacks of the certainty factor models led us to consider alter-
nate approaches. Particularly appealing is the mathematical theory of evidence
developed by Arthur Dempster and Glenn Shafer [13].

Before introducing the Dempster-Shafer theory, we attempt to show some
simple justification for the approach. In general, an agent A; does not know
with full certainty whether another agent A; is trustworthy or not, but 4; may
be able to estimate the degree of trust about A;. Dempster-Shafer theory han-
dles this uncertainty explicitly, and with more ease than the Bayesian model [9].
Moreover, some evidence available to agent A; may neither support A;’s being a
trustworthy or nontrustworthy agent. Dempster-Shafer theory models this “ig-
norance” naturally, which is cited as a major motivation for the Dempster-Shafer
theory [14].

The rest of this paper is organized as follows. Section 2 presents some nec-
essary background on belief, trust and reputation. Section 3 introduces our ap-
proach, giving the key definitions and some propagation algorithms in a Trust-
Net. Our experimental results are given in section 4. Section § presents some
related work in reputation management. Section 6 concludes our paper with a
discussion of the main results and directions for future research.

2 The Dempster-Shafer Theory of Evidence

A frame of discernmentis defined as the whole set of propositions in which each is
known to be true. In our example, suppose the frame of discernment @ contains
only T and —T', where T stands for the trustworthy relationship between any
two agents. The Dempster-Shafer theory assigns a number in the range [0, 1] to
every subset of @ (excluding the empty set), called basic probability assignment
(bpa). And the sum of all the bpa’s must equal 1.

Definition 1. If © is a frame of discernment, then a function m : 2 —
[0,1] is called a basic probability assignment whenever (1) m(¢) = 0, and (2)
Y ice™m(A) =1, where A is a subset of O.

For example, we must have that m({T'}) + m({-T}) + m({T,—T}) = 1. This
is similar to a probability assignment except that it is not necessary that the
sum of the bpa’s assigned to the members of © be equal to 1. For example, given
the assignment of m({T'}) = 0.8, m({-T}) = 0, m({T,—-T}) = 0.2, we have
m({T}) +m{-T}) =08<1

When agent A; is evaluating the trustworthiness of agent A;, there are two
sides of evidence. The first is the services offered by agent A;. The second is
testimonies from other agents. Suppose agent A; has the latest h responses from



agent A;, S; = {sj1,8;2,---,8jn}- We use the distinct values of {0.0,0.1,...,1.0}
to denote the quality of service (QoS) s;i,1 < k < h (the quality of service s
is equal to 0 if there is no response from agent A;). Following Marsh [10], we
define for each agent an upper and a lower threshold for trust.

Definition 2. For each agent A;, there are two thresholds w; and (2;, where
OswlS].,OSQzS].,andszQZ

We use f(zy) to denote the probability that a particular value zj, of quality of
services from agent A; happens, where z; € {0.0,0.1,...,1.0}. E;k:wi fzg)
indicates the possibility that agent A; trusts agent A; and will cooperate with
Aj Eé’“:m f(zr) indicates the possibility that agent A; mistrusts A; and will
defect against A;.

Definition 3. Given a series of responses from agent A;, S; = {sj1,sj2,.-,Sjn}
and the two thresholds w; and 2; of agent A;, we gan get the bpa toward agent
1 — 0
Aj: m({T}) = 35—, (@), m({-T}) = 320" 7" f(ax), and m({T,-T}) =
Tp—=W;
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Fig. 1. Probability distribution of QoS of agent A;

Returning to our original example, for a given subset A of O, the belief func-

tion Bel(A) is defined as the sum of all the belief committed to the possibilities
in A. For example,

Bel({T,-T}) = m({T}) + m({-T}) + m({T, -T}) =1

For individual members of @ (in this case, T' and —T'), Bel and m are equal.
Thus

Bel({T}) = m({T}) = 0.8, and Bel({~T}) = m({=T}) = 0

A subset A of a frame O is called a focal element of a belief function Bel over
O if m(A) > 0. Given two belief functions over the same frame of discernment



but based on distinct bodies of evidence, Dempster’s rules of combination enables
us to compute a new belief function based on the combined evidence. For every
subset A of O, Dempster’s rule defines m; EBmg(A) to be the sum of all products
of the form m; (X)my(Y'), where X and Y run over all subsets whose intersection
is A. The commutativity of multiplication ensures that the rule yields the same
value regardless of the order in which the functions are combined.

Definition 4. Suppose Bel; and Bel; are belief functions over the same frame
©, with basic probability assignments m; and mg, and focal elements Ay, ..., Ag,
and By,..., By, respectively (here ¢ is the empty set). Suppose

Sij AsnBy—s M1 (A)ma(B;) < 1
Then the function m : 2© + [0, 1] defined by m(¢) = 0, and

A Zi,j,AinB"j:A m1(Ai)ma(B;)
m( )_ lfzi’j,,&inﬁj:qs m1(A;)ma(Bj)

for all non-empty A C O is a basic probability assignment. [13]

The belief function given by m is called the orthogonal sum of Bel; and Bels
and is denoted Bel; ® Bel,. Let us now look at how beliefs obtained from two
separate agents are combined. Suppose

m1({T}) = 0.8, mi({-T}) =0, my({T,-T}) =0.2
m2({T}) = 0.9, ma({-T}) =0, ma({T,-T}) =0.1

Then mi» is obtained as follows:

ma({T'}) 0.9]ms({T, =T}) 0.1
mi({T1) 08 |{T} 0.2 [{T} 0.08
mi({T,—T}) 02[{T} 0.18 [{T,—-T} 0.02

The new belief committed to T is obtained by summing all the components
committed to T":

m12({T}) = 0.72 + 0.18 + 0.08 = 0.98
mi2({-T}) =0
mlz({T, —|T}) =0.02

Next suppose that one piece of the evidence confirms T, while the other
disconfirms T'. That is, we have the following situation:

mi({T}) = 0.8, my ({~T}) = 0, my ({T,~T}) = 0.2
ma({T}) = 0, ma({=T}) = 0.9, ma({T,-T}) = 0.1

Then mi» is obtained as follows:

ma({=T}) 0.9]ms({T,-T}) 0.1
mi({T}) 0.8 |4 0.72 {T}0.08
mi({T,-T}) 0.2|{-T} 0.18 [{T,-T} 0.02




In this case, 0.72 of our belief is committed to the empty set. Since there are
no possibilities in this set, the belief in our other sets must be normalized to 1.
This yields

ma({-=T}) 0.9[ma({T, —T7) 0.1
mi({T}) 0.8 |0 {T}0.29
ma({T,—T}) 02[{-T} 0.64 |{T, T} 0.07

The new belief committed to T is obtained as follows:

mlz({T}) =0.29
mlz({—lT}) = 0.64
mlz({T, —|T}) = 0.07

3 Owur Approach

To better understand the notion of trust in electronic communities, let’s dis-
cuss the famous prisoners’ dilemma [1]. The prisoner’s dilemma arises in a non-
cooperative game with two agents. The agents have to decide whether to coop-
erate or defect from a deal. The payoffs in the game are such that both agents
would benefit if both cooperate. However, if one agent were to try to cooperate
when the other defects, the cooperator would suffer considerably. This makes
the locally rational choice for each agent to be to defect, thereby leading to a
worse payoff for both agents than if both were to cooperate.

Clearly, if the agents trusted each other, they could both cooperate and avert
the situation where both suffer. Such trust can only build up in a setting where
the agents have to repeatedly interact with each other. In our present domain,
cooperation can be cast as delivering the desired quality of service. When agents
have to engage in multiple interactions with others, it is rational for them to try
to cooperate. A reputation mechanism sustains such cooperation, because the
good agents are rewarded by society whereas the bad agents are penalized. Both
the rewards and penalties from a society are greater than from an individual.

3.1 TrustNet

In our approach, agent A; evaluates the trustworthiness of agent A; based on
(1) its direct observations of A; as well as (2) the belief ratings of A; as given
by A;’s neighbors (We also call the neighbors here as the witnesses of agent A;).
The second aspect makes our approach a social one and enables information
about reputations to propagate through the network. A TrustNet encodes how
agents estimate the reputation of other agents that they have not met before.

Definition 5. A referral to agent A; returned from agent A; is defined as
T(A;,A;), Wwhere A; is the source and A; the destination of the referral.

Given a set of referrals R, we define a numbering as a bijection that assigns
each referral r(4, 4, a unique number in {1,2,...,n} according to the sequence
of returning from other agents, denoted as r;, where 1 < i < n.



Definition 6. Let ) be a query from agent A;. Assume that after [ refer-
rals, agent A; returns a service. The entire referral chain in this case would
be (Ai, Ait1,.--,Aj_1,A;), where [ is the length of the referral chain.

When searching for a potential witness in a social network, usually the fur-
ther removed a witness is from the requester, the less likely the witness will
respond. Similarly, the more steps away from the requester, the less accurate of
the referrals provided. In our experiment we set a bound of 6 for the length of
any referral chain.

Definition 7. In order to evaluate the trustworthiness of agent A/, the re-
quester agent A, may construct a TrustNet TN which is defined as a directed
graph TN (A, R, Ar, Ag), where A is a finite set of agents {A;,...,Ax}, and R
is a set of referrals {rq,...,ry}.

So given a series of referrals {ry,rs,...,r,}, the requester agent A, will ap-
pend each referral r; to the TrustNet T'V. In our experiment we use an adjacency
list to represent the TrustNet. The adjacency list consists of an array adj of N
lists, one for each agent in TN. For each A; € A, the adjacency list adj(A;) con-
tains the name and its belief functions towards each agents A; such that there
is a referral 71, from A; to A;, where 1 <k < n.

3.2 Incorporating Testimonies from Different Witnesses

Traditional approaches either ignore the social aspects altogether or employ
a simplistic approach that directly combines the ratings assigned by different
sources. However, such approaches do not consider the trustworthiness of the
witnesses themselves. Clearly, the weight assigned to a rating should depend on
the reputation of the rater.

Bel ri

Fig. 2. The reputation of the witness A,

Suppose agent A, wants to evaluate the trustworthiness of agent Ag. {wy,...,w}
are a group of witnesses towards agent A,. For any witness w;, {ry;,...,rr:}
are a series of referrals to the witness w;. Bely,({Tw,;}), Bely,({-Tw;}) and
Bel,,,({Tw;, "Tw,;}) are belief ratings to w; by the referral ry;.



Definition 8. Suppose in a TrustNet TN (A, R, A, A,), agent A,,; is one of the
witnesses of agent A, and {ri,r2,...,rr} are a series of referrals to agent A,
(Figure 2). Then the cumulative belief for agent A, is computed as

Bel,, = Bel,,; ® Bel,,, ® ... ® Bel,,,
and the reputation of the witness A,,; is defined as

F(A’wi) = Beln’({Twi})

Input: Given a series of referrals {rq, 1o, ..., rn}, and for each referral rai, ajg
thereis a bpa assigned to agent A; by agent A;.

Output: The bpa of agent Ag given by each witness Ay, and the reputation of
witness Ay,

1. (Forward) For each referral ra;, ajn @ppend it to the end of adj(A;) if exists,
otherwise initialize adjacency list A; and append it to adj(A)).

2. (Backward) Reversethe TrustNet TN, and find the node Agin the reversed
TrustNet, for each node in adj(Ag), we name it as one of the witness Ay,

3. For each witness Ay, find a list of agents in adj(Awi) in the reversed
TrustNet and compute the reputation of Ay using Dempster’s rule of
combination.

4. Return the bpa of agent Ag given by each witness Ay, and the reputation
of Auvi.

Fig. 3. Testimony propagation algorithm

We now show how testimonies from different agents can be incorporated into
the belief rating by a given agent.

Definition 9. For agent A,, the reliability of a testimony e; from agent A,,
about agent A, is computed as

Bel.,({T4,}) = T'(Au,)Belu, ({T4,});
Belo,({~Ta.}) = I'(Au,) Bely, (T, });
Bel.,({T4,,~T4,}) = 1 - Bel.,({Ta, }) - Bel.,{Ta,})

where Bely, ({T'a,}) and Bely, ({—T'a,}) are the belief ratings to agent A, given
by witness A,,.

Therefore, agent A, will update its belief rating of agent A, as follows:

Definition 10. Given a set of testimonies A = {ej,e3,...,en}, agent A4, will
update its trust value of agent A, as follows

Bels, = Bela, ® Bel,, ® ... ® Bel,,



and the updated reputation of agent A, is
I'(Ag) = Bela,({Ta,})

Figure 3 summarizes the process of testimony propagation. The requester
agent A, will update its trust upon the testimony from each witness.

4 Experimental Results

In our simulation, we treat the agent and user simply as just the agent. Each
agent has an interest vector, an expertise vector, and several neighbor models. In
general, the neighbor models depend on how many agents know the given agent,
how many agents it knows, which community it belongs to, and so on. In our case,
the neighbor models kept by an agent are the given agent’s representation of the
other agents’ expertise and belief rating. We introduce a probability between 0
and 1 to model the responsiveness of each agent A;, called responsiveness factor,
and denoted as F'(A;). Agent A; will generate an answer from his expertise
vector upon a query with the probability F(4;) even when there is a good
match between the query and his expertise vector.

In each simulation cycle, we randomly designate an agent to be the “requester
agent. ” The queries are generated as vectors by perturbing the interest vector of
the requester agent. When an agent receives a query, it will try to answer it based
on its expertise vector, or refer to other agents it knows. The originating agent
collects all possible referrals, and continues the process by contacting some of
the suggested referrals. At the same time, it changes its models for other agents.

Our experiments are based on the simulation testbed we have developed so far
in the expertise location setting (The only difference is in the referring process:
a referral is given only if the referral agent places some trust in the agent being
referred.), which involves between 20 and 60 agents with interest and expertise
vectors of dimension 5. Each agent keeps the latest 10 responses from another
agent if there are more than 10 responses. The agents are limited in the number
of neighbors they may have - in our case the limit is 4. However, each agent may
keep track of more peers than his neighbors (others will be put in his cache).
Periodically he decides which peers to be kept as neighbors, i.e., which are worth
remembering.

4.1 Metrics

We now define some useful metrics in which to intuitively capture the results of
our experiments.

Definition 11. Suppose there are L agents who know agent A; (we say that
agent A; knows agent A; if and only if agent A; is a neighbor of agent A4;.), and
{ri,72,...,7L} are a series of referrals to agent A;. Then the cumulative belief
of agent A; is computed as

Bel, = Bel,, ® Bel,,,...,®Bel,,



and the reputation of agent A; is defined as I'(A;) = Bel.({T4,}). If L = 0 then

I'(4;) =0.

Definition 12. The average reputation of a group of agents is defined as:

I=1/NYY, I'(4),

where N is the total number of agents in the group.

4.2 Bootstrapping

In the first simulation we evaluate the convergence speed of the algorithm. One
has 60 agents with uniformly distributed responsiveness factors. Each agent
starts with some random interest vectors, expertise vectors and 4 neighbors. For
any two agents A; and A;, Bela,({T4;}) = Bela,({~Ta,}) =0, Bela,({Ta;,~Ta,;})
1 in the beginning. Then agents send queries, referrals, and responses to one an-
other, all the while learning about each others’ interest and expertise vectors.
We assume that one has reached equilibrium when the average reputation of one
agent converges to its real responsiveness factor.

Consider the following example. Assume agent A; is a cooperative agent with
a responsiveness factor 0.75, and agent Agg is a non-cooperative agent with a
responsiveness factor 0.25. Their initial average reputations are zero. After 2,000
simulation cycles, we found that the average reputation of agent A, increased to
a high level, and the average reputation of agent Agq increased to a low level. The
average reputation of the whole group agents increased rapidly in the beginning,

but slowed down later. Figure 4 confirms our hypothesis.
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Fig. 4. Reputations of cooperative and non-cooperative agents in the bootstrapping

stage



4.3 Reputation Buildup

Clearly, a social network will not remain stable for long, because agents will
continually introduce and remove themselves from the network. In the second
simulation, we show that a new agent Ag; who joins the electronic community
at the simulation cycle 2000, behaves cooperatively with a responsiveness factor
1 until he/she reaches a high reputation value, and then starts abusing his/her
reputation by decreasing his/her responsiveness factor to 0.25. Thus, his average
reputation starts dropping because of his/her non-cooperative behavior (Figure
5).

Reputation of agent A61

0.25 ~
0.2 4

0.15 A

-= Reputation of agent
A61

0.1+

Reputation

0.05 A

0 T — —

O O O O ®©© OO
CELLELL L LSS
DS i S S VR gl O SN

Simulation cycles

Fig. 5. Reputation buildup and crash of a new agent

4.4 Community Size

Usually there is a better chance to select a partner in a large (virtual) city of
300,000 people than in a small town of 3,000 people. On the other side, it is
much easier to collect “bad” testimonies in a small town. We conjecture that
the average reputation of an agent in a smaller group should change faster than
that in a larger community.

Given two groups of agents, groupl and group2, with the number of agents
20 and 60, respectively. Suppose agent Agroupi—1 and agent Agpoup2—1 are two
cooperative agents in the beginning with the responsiveness factors 1. After a
series of simulation cycles, i.e., 2,000, both of them decrease their responsiveness
factor to 0.25. Thus, their average reputation starts dropping because of their
non-cooperative behaviors. Figure 6 shows that the average reputation of agent
Agroupi—1 drops faster since it is in a smaller community.
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Fig. 6. Non-cooperative agents in different community sizes

5 Related Work

OnSale Exchange and eBay are important practical examples of reputation man-
agement. OnSale allows its users to rate and submit textual comments about
sellers. The overall reputation of a seller is the average of the ratings obtained
from his customers. In eBay, sellers receive feedback (+1, 0, —1) for their reliabil-
ity in each auction and their reputation is calculated as the sum of those ratings
over the last six months. In OnSale, the newcomers have no reputation until
someone rates them, while on eBay they start with zero feedback points. Both
approaches require users to explicitly make and reveal their ratings of others. As
a result, the users lose control to the central authority.

Some prototype approaches are relevant. Weaving a web of trust [8], and
Kasbah [16] require that users give a rating for themselves and either have a
central agency (direct ratings) or other trusted users (collaborative ratings). A
central system keeps track of the users’ explicit ratings of each other, and uses
these ratings to compute a person’s overall reputation or reputation with respect
to a specific user. These systems require preexisting social relationships among
the users of their electronic community. It is not clear how to establish such
relationships and how the ratings propagate through this community.

Much theoretical work has been done in how to learn strategies of agents and
how to react to a variety of behaviors [2, 12]. These approaches build on the suc-
cess of Axelrod’s experiments with round-robin tournaments of agent strategies
in the Iterated Prisoner’s Dilemma, where each strategy had to play against all
other strategies [1]. Work in social psychology, however, has shown that selecting
the right partners to play yields a better game performance compared to spend-
ing the same effort on how to play the game itself [6]. Especially in the context of
open systems, there is at least some good chances to find an alternative partner.



Marsh presents a formalization of the concept trust [10]. His formalization
considers only an agent’s own experiences and doesn’t involve any social mech-
anisms. Hence, a group of agents cannot collectively build up a reputation for
others. A more relevant computational method is from Social Interaction Frame-
Work (SIF) [11]. In SIF, an agent evaluates the reputation of another agent based
on direct observations as well through other witnesses. However, SIF does not
describe how to find such witnesses, whereas in the electronic communities, deals
are brokered among people who probably have never met before.

There has been much work on social abstractions for agents, e.g., [3,5]. The
initial work on this theme studied various of relationships among agents. There
have been some studies of the aggregate behavior of social systems that is rele-
vant to some of our tasks. More recent work on these themes has begun to look
at the problems of deception and fraud [4]. However, the proposed approach
goes significantly beyond their approach in the kinds of representations of trust,
propagation algorithms, and formal analysis.

6 Conclusion

Trust and reputation management are becoming hot topics in agents and mul-
tiagent systems. Although we present our results in the context of electronic
communities, our approach applies to multiagent systems in general. Most cur-
rent multiagent systems assume benevolence, meaning that the agents implicitly
assume that other agents are trustworthy and reliable. With the growth of net-
work services, agents may find themselves confronted with deception and fraud.
Approaches for explicit reputation management can help the agents finesse their
interactions depending on the reputations of the other agents. The ability to deal
with selfish, antisocial, or unreliable agents can lead to more robust multiagent
systems.

Our present approach adjusts the ratings of agents based on their interactions
with others. However, it does not fully protect against spurious ratings generated
by malicious agents. It relies only on there being a large number of agents who
offer honest ratings to override the effect of the ratings provided by the malicious
agents. In future work, we plan to study the special problems of lying and rumors
as well as of community formation. We also want to study the evolutionary
situations where groups of agents consider rating schemes for other agents. The
purpose is not only to study alternative approaches for achieving more efficient
communities, but also to test if our mechanism is robust against invasion and,
hence, more stable.
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