Towards a Probabilistic Model of Distributed Reputation Management *

Bin Yu and Munindar P. Singh

Department of Computer Science North Carolina State University Raleigh, NC 27695-7535, USA

{byu, mpsingh}@eos.ncsu.edu

Abstract. A probabilistic model of reputation management is proposed to help agents (users) avoid interaction with non-cooperative participants. Our approach adjusts the ratings of agents based on their observations as well as the testimony from others. Our former work used a scalar value to represent the reputation ratings and combine testimonies using combination schemes from the certainty factor model. One problem is that certainty factors do not represent measures of absolute belief. Rather, they are meant to represent changes in belief. In this paper the mathematical theory of evidence is used to represent and propagate the reputation information in an electronic community. Our specific approach to reputation management leads to a decentralized society in which agents help each other weed out undesirable players.

1 Introduction

The worldwide expansion of network access is driving an increase in interactions among people. We view an electronic community as a social network in which each user is assigned a software agent and software agents help automate the process of word-of-mouth by a series of "referral chains." For example, users pose queries to their agents in the form of Where is the best Chinese restaurant in the Bay Area? The queries by the user are first seen by his agent who decides the potential contacts to whom to send the query. After consultation with the user, the agent sends the query to the agents for other likely people. The agent who receives a query can decide if it suits its user and let the user see that query. In addition to or instead of just forwarding the query to the user, the agent may respond with referrals to other users. If the agent or user wish they can discard the query and never respond to it in any way.

Moreover, the agents assist their users in evaluating the services provided by others, and find the most helpful and reliable parties to deal with. In this manner, the agents build and manage the reputations of other agents. Reputation

^{*} This research was supported by the National Science Foundation under grant IIS-9624425 (Career Award). We are indebted to the anonymous reviewers for helpful comments.

is different from trust. We view trust as a kind of "belief" of one agent about another, and reputation as the "cumulative beliefs" from a group of agents. Previously, we used a scalar value to represent an agent's trust about another and combine testimonies using combination schemes from the certainty factor model [15]. One problem with this work is that certainty factors do not represent measures of absolute belief. Rather, they are meant to represent changes in belief [7]. The drawbacks of the certainty factor models led us to consider alternate approaches. Particularly appealing is the mathematical theory of evidence developed by Arthur Dempster and Glenn Shafer [13].

Before introducing the Dempster-Shafer theory, we attempt to show some simple justification for the approach. In general, an agent A_i does not know with full certainty whether another agent A_j is trustworthy or not, but A_i may be able to estimate the degree of trust about A_j . Dempster-Shafer theory handles this uncertainty explicitly, and with more ease than the Bayesian model [9]. Moreover, some evidence available to agent A_i may neither support A_j 's being a trustworthy or nontrustworthy agent. Dempster-Shafer theory models this "ignorance" naturally, which is cited as a major motivation for the Dempster-Shafer theory [14].

The rest of this paper is organized as follows. Section 2 presents some necessary background on belief, trust and reputation. Section 3 introduces our approach, giving the key definitions and some propagation algorithms in a Trust-Net. Our experimental results are given in section 4. Section 5 presents some related work in reputation management. Section 6 concludes our paper with a discussion of the main results and directions for future research.

2 The Dempster-Shafer Theory of Evidence

A frame of discernment is defined as the whole set of propositions in which each is known to be true. In our example, suppose the frame of discernment Θ contains only T and $\neg T$, where T stands for the trustworthy relationship between any two agents. The Dempster-Shafer theory assigns a number in the range [0,1] to every subset of Θ (excluding the empty set), called basic probability assignment (bpa). And the sum of all the bpa's must equal 1.

Definition 1. If Θ is a frame of discernment, then a function $m: 2^{\Theta} \mapsto [0,1]$ is called a *basic probability assignment* whenever (1) $m(\phi) = 0$, and (2) $\sum_{\hat{A} \subset \Theta} m(\hat{A}) = 1$, where \hat{A} is a subset of Θ .

For example, we must have that $m(\{T\}) + m(\{\neg T\}) + m(\{T, \neg T\}) = 1$. This is similar to a probability assignment except that it is not necessary that the sum of the bpa's assigned to the members of Θ be equal to 1. For example, given the assignment of $m(\{T\}) = 0.8$, $m(\{\neg T\}) = 0$, $m(\{T, \neg T\}) = 0.2$, we have $m(\{T\}) + m(\{\neg T\}) = 0.8 < 1$

When agent A_i is evaluating the trustworthiness of agent A_j , there are two sides of evidence. The first is the services offered by agent A_j . The second is testimonies from other agents. Suppose agent A_i has the latest h responses from

agent A_j , $S_j = \{s_{j1}, s_{j2}, \ldots, s_{jh}\}$. We use the distinct values of $\{0.0, 0.1, \ldots, 1.0\}$ to denote the quality of service (QoS) s_{jk} , $1 \le k \le h$ (the quality of service s_{jk} is equal to 0 if there is no response from agent A_j). Following Marsh [10], we define for each agent an upper and a lower threshold for trust.

Definition 2. For each agent A_i , there are two thresholds ω_i and Ω_i , where $0 \le \omega_i \le 1$, $0 \le \Omega_i \le 1$, and $\omega_i \ge \Omega_i$.

We use $f(x_k)$ to denote the probability that a particular value x_k of quality of services from agent A_j happens, where $x_k \in \{0.0, 0.1, \dots, 1.0\}$. $\sum_{x_k = \omega_i}^1 f(x_k)$ indicates the possibility that agent A_i trusts agent A_j and will cooperate with A_j ; $\sum_{i=0}^{\infty} f(x_k)$ indicates the possibility that agent A_i mistrusts A_j and will defect against A_j .

Definition 3. Given a series of responses from agent A_j , $S_j = \{s_{j1}, s_{j2}, \ldots, s_{jh}\}$, and the two thresholds ω_i and Ω_i of agent A_i , we can get the *bpa* toward agent A_j : $m(\{T\}) = \sum_{x_k = \omega_i}^1 f(x_k)$, $m(\{\neg T\}) = \sum_{0}^{x_k = \omega_i} f(x_k)$, and $m(\{T, \neg T\}) = \sum_{x_k = \Omega_i}^{x_k = \omega_i} f(x_k)$.

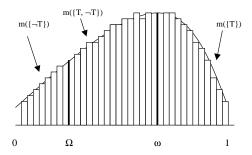


Fig. 1. Probability distribution of QoS of agent A_j

Returning to our original example, for a given subset \hat{A} of Θ , the *belief function* $Bel(\hat{A})$ is defined as the sum of all the belief committed to the possibilities in \hat{A} . For example,

$$Bel(\{T, \neg T\}) = m(\{T\}) + m(\{\neg T\}) + m(\{T, \neg T\}) = 1$$

For individual members of Θ (in this case, T and $\neg T$), Bel and m are equal. Thus

$$Bel(\{T\}) = m(\{T\}) = 0.8$$
, and $Bel(\{\neg T\}) = m(\{\neg T\}) = 0$

A subset \hat{A} of a frame Θ is called a *focal element* of a belief function Bel over Θ if $m(\hat{A}) > 0$. Given two belief functions over the same frame of discernment

but based on distinct bodies of evidence, Dempster's rules of combination enables us to compute a new belief function based on the combined evidence. For every subset \hat{A} of Θ , Dempster's rule defines $m_1 \oplus m_2(\hat{A})$ to be the sum of all products of the form $m_1(X)m_2(Y)$, where X and Y run over all subsets whose intersection is \hat{A} . The commutativity of multiplication ensures that the rule yields the same value regardless of the order in which the functions are combined.

Definition 4. Suppose Bel_1 and Bel_2 are belief functions over the same frame Θ , with basic probability assignments m_1 and m_2 , and focal elements $\hat{A}_1, \ldots, \hat{A}_k$, and $\hat{B}_1, \ldots, \hat{B}_l$, respectively (here ϕ is the empty set). Suppose

$$\sum_{i,j,\hat{A}_i \cap \hat{B}_j = \phi} m_1(\hat{A}_i) m_2(\hat{B}_j) < 1$$

Then the function $m: 2^{\Theta} \mapsto [0,1]$ defined by $m(\phi) = 0$, and

$$m(\hat{A}) = \frac{\sum_{i,j,\hat{A}_i \cap \hat{B}_j = \hat{A}} m_1(\hat{A}_i) m_2(\hat{B}_j)}{1 - \sum_{i,j,\hat{A}_i \cap \hat{B}_j = \phi} m_1(\hat{A}_i) m_2(\hat{B}_j)}$$

for all non-empty $\hat{A} \subset \Theta$ is a basic probability assignment. [13]

The belief function given by m is called the *orthogonal sum* of Bel_1 and Bel_2 and is denoted $Bel_1 \oplus Bel_2$. Let us now look at how beliefs obtained from two separate agents are combined. Suppose

$$m_1(\{T\}) = 0.8, m_1(\{\neg T\}) = 0, m_1(\{T, \neg T\}) = 0.2$$

 $m_2(\{T\}) = 0.9, m_2(\{\neg T\}) = 0, m_2(\{T, \neg T\}) = 0.1$

Then m_{12} is obtained as follows:

	$m_2(\{T\}) \ 0.9$	$m_2(\{T, \neg T\}) \ 0.1$
$m_1(\{T\}) \ 0.8$	$\{T\} \ 0.72$	$\{T\} \ 0.08$
$m_1(\{T, \neg T\}) \ 0.2$	$\{T\} \ 0.18$	$\{T, \neg T\} \ 0.02$

The new belief committed to T is obtained by summing all the components committed to T:

$$m_{12}(\{T\}) = 0.72 + 0.18 + 0.08 = 0.98$$

 $m_{12}(\{\neg T\}) = 0$
 $m_{12}(\{T, \neg T\}) = 0.02$

Next suppose that one piece of the evidence confirms T, while the other disconfirms T. That is, we have the following situation:

$$m_1(\{T\}) = 0.8, m_1(\{\neg T\}) = 0, m_1(\{T, \neg T\}) = 0.2$$

 $m_2(\{T\}) = 0, m_2(\{\neg T\}) = 0.9, m_2(\{T, \neg T\}) = 0.1$

Then m_{12} is obtained as follows:

	$m_2(\{\neg T\}) \ 0.9$	$m_2(\{T, \neg T\}) \ 0.1$
$m_1(\{T\}) \ 0.8$	$\phi \ 0.72$	$\{T\} \ 0.08$
$m_1(\{T, \neg T\}) \ 0.2$	$\{\neg T\} \ 0.18$	$\{T, \neg T\} \ 0.02$

In this case, 0.72 of our belief is committed to the empty set. Since there are no possibilities in this set, the belief in our other sets must be normalized to 1. This yields

	$m_2(\{\neg T\}) \ 0.9$	$m_2(\{T, \neg T\}) \ 0.1$
$m_1(\{T\}) \ 0.8$	$\phi 0$	$\{T\} \ 0.29$
$m_1(\{T, \neg T\}) \ 0.2$	$\{\neg T\} \ 0.64$	$\{T, \neg T\} \ 0.07$

The new belief committed to T is obtained as follows:

$$m_{12}(\{T\}) = 0.29$$

 $m_{12}(\{\neg T\}) = 0.64$
 $m_{12}(\{T, \neg T\}) = 0.07$

3 Our Approach

To better understand the notion of trust in electronic communities, let's discuss the famous prisoners' dilemma [1]. The prisoner's dilemma arises in a non-cooperative game with two agents. The agents have to decide whether to *cooperate* or *defect* from a deal. The payoffs in the game are such that both agents would benefit if both cooperate. However, if one agent were to try to cooperate when the other defects, the cooperator would suffer considerably. This makes the locally rational choice for each agent to be to defect, thereby leading to a worse payoff for both agents than if both were to cooperate.

Clearly, if the agents trusted each other, they could both cooperate and avert the situation where both suffer. Such trust can only build up in a setting where the agents have to repeatedly interact with each other. In our present domain, cooperation can be cast as delivering the desired quality of service. When agents have to engage in multiple interactions with others, it is rational for them to try to cooperate. A reputation mechanism sustains such cooperation, because the good agents are rewarded by society whereas the bad agents are penalized. Both the rewards and penalties from a society are greater than from an individual.

3.1 TrustNet

In our approach, agent A_i evaluates the trustworthiness of agent A_j based on (1) its direct observations of A_j as well as (2) the belief ratings of A_j as given by A_j 's neighbors (We also call the neighbors here as the witnesses of agent A_j). The second aspect makes our approach a social one and enables information about reputations to propagate through the network. A TrustNet encodes how agents estimate the reputation of other agents that they have not met before.

Definition 5. A referral to agent A_j returned from agent A_i is defined as $r_{\langle A_i, A_j \rangle}$, where A_i is the source and A_j the destination of the referral.

Given a set of referrals R, we define a numbering as a bijection that assigns each referral $r_{\langle A_i, A_j \rangle}$ a unique number in $\{1, 2, \ldots, n\}$ according to the sequence of returning from other agents, denoted as r_i , where $1 \le i \le n$.

Definition 6. Let Q be a query from agent A_i . Assume that after l referrals, agent A_j returns a service. The entire referral chain in this case would be $\langle A_i, A_{i+1}, \ldots, A_{j-1}, A_j \rangle$, where l is the length of the referral chain.

When searching for a potential witness in a social network, usually the further removed a witness is from the requester, the less likely the witness will respond. Similarly, the more steps away from the requester, the less accurate of the referrals provided. In our experiment we set a bound of 6 for the length of any referral chain.

Definition 7. In order to evaluate the trustworthiness of agent A_g , the requester agent A_r may construct a TrustNet TN which is defined as a directed graph $TN(\Lambda, R, Ar, Ag)$, where Λ is a finite set of agents $\{A_1, \ldots, A_N\}$, and R is a set of referrals $\{r_1, \ldots, r_n\}$.

So given a series of referrals $\{r_1, r_2, \ldots, r_n\}$, the requester agent A_r will append each referral r_i to the TrustNet TN. In our experiment we use an adjacency list to represent the TrustNet. The adjacency list consists of an array adj of N lists, one for each agent in TN. For each $A_i \in \Lambda$, the adjacency list $adj(A_i)$ contains the name and its belief functions towards each agents A_j such that there is a referral r_k from A_i to A_j , where $1 \le k \le n$.

3.2 Incorporating Testimonies from Different Witnesses

Traditional approaches either ignore the social aspects altogether or employ a simplistic approach that directly combines the ratings assigned by different sources. However, such approaches do not consider the trustworthiness of the witnesses themselves. Clearly, the weight assigned to a rating should depend on the reputation of the rater.

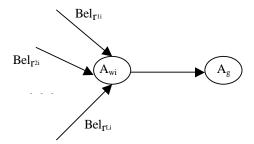


Fig. 2. The reputation of the witness A_{w_i}

Suppose agent A_r wants to evaluate the trustworthiness of agent A_g . $\{w_1, \ldots, w_k\}$ are a group of witnesses towards agent A_g . For any witness w_i , $\{r_{1i}, \ldots, r_{Li}\}$ are a series of referrals to the witness w_i . $Bel_{r_{li}}(\{T_{w_i}\})$, $Bel_{r_{li}}(\{\neg T_{w_i}\})$ and $Bel_{r_{li}}(\{T_{w_i}, \neg T_{w_i}\})$ are belief ratings to w_i by the referral r_{li} .

Definition 8. Suppose in a TrustNet $TN(\Lambda, R, A_r, A_g)$, agent A_{w_i} is one of the witnesses of agent A_g and $\{r_1, r_2, \ldots, r_L\}$ are a series of referrals to agent A_{w_i} (Figure 2). Then the cumulative belief for agent A_{w_i} is computed as

$$Bel_{r_i} = Bel_{r_{1i}} \oplus Bel_{r_{2i}} \oplus \ldots \oplus Bel_{r_{Li}}$$

and the reputation of the witness A_{wi} is defined as

$$\Gamma(A_{w_i}) = Bel_{r_i}(\{T_{w_i}\})$$

Input: Given a series of referrals $\{r_1, r_2, ..., r_n\}$, and for each referral $r_{\langle Ai, Aj \rangle}$, there is a *bpa* assigned to agent A_i by agent A_i .

Output: The *bpa* of agent A_g given by each witness A_{wi} , and the reputation of witness A_{wi} .

- (Forward) For each referral r_(Ai, Ai), append it to the end of adj(A_i) if exists, otherwise initialize adjacency list A_i and append it to adj(A_i).
- 2. (**Backward**) Reverse the TrustNet TN, and find the node A_g in the reversed TrustNet, for each node in $adj(A_g)$, we name it as one of the witness A_{wi} .
- 3. For each witness A_{wi} , find a list of agents in $adj(A_{wi})$ in the reversed TrustNet and compute the reputation of A_{wi} using *Dempster's rule of combination*.
- 4. Return the bpa of agent A_g given by each witness A_{wi} , and the reputation of A_{wi} .

Fig. 3. Testimony propagation algorithm

We now show how testimonies from different agents can be incorporated into the belief rating by a given agent.

Definition 9. For agent A_r , the reliability of a testimony e_i from agent A_{w_i} about agent A_g is computed as

$$\begin{array}{c} Bel_{e_{i}}(\{T_{A_{g}}\}) = \Gamma(A_{w_{i}})Bel_{w_{i}}(\{T_{A_{g}}\});\\ Bel_{e_{i}}(\{\neg T_{A_{g}}\}) = \Gamma(A_{w_{i}})Bel_{w_{i}}(\{\neg T_{A_{g}}\});\\ Bel_{e_{i}}(\{T_{A_{g}}, \neg T_{A_{g}}\}) = 1 - Bel_{e_{i}}(\{T_{A_{g}}\}) - Bel_{e_{i}}(\{\neg T_{A_{g}}\}) \end{array}$$

where $Bel_{w_i}(\{T_{A_g}\})$ and $Bel_{w_i}(\{\neg T_{A_g}\})$ are the belief ratings to agent A_g given by witness A_{w_i} .

Therefore, agent A_r will update its belief rating of agent A_g as follows:

Definition 10. Given a set of testimonies $\Delta = \{e_1, e_2, \dots, e_H\}$, agent A_r will update its trust value of agent A_g as follows

$$Bel_{A_r} = Bel_{A_r} \oplus Bel_{e_1} \oplus \ldots \oplus Bel_{e_H}$$

and the updated reputation of agent A_q is

$$\Gamma(A_g) = Bel_{A_r}(\{T_{A_g}\})$$

Figure 3 summarizes the process of testimony propagation. The requester agent A_r will update its trust upon the testimony from each witness.

4 Experimental Results

In our simulation, we treat the agent and user simply as just the agent. Each agent has an *interest* vector, an *expertise* vector, and several *neighbor* models. In general, the neighbor models depend on how many agents know the given agent, how many agents it knows, which community it belongs to, and so on. In our case, the neighbor models kept by an agent are the given agent's representation of the other agents' expertise and belief rating. We introduce a probability between 0 and 1 to model the responsiveness of each agent A_i , called *responsiveness factor*, and denoted as $F(A_i)$. Agent A_i will generate an answer from his *expertise* vector upon a query with the probability $F(A_i)$ even when there is a good match between the query and his expertise vector.

In each simulation cycle, we randomly designate an agent to be the "requester agent." The queries are generated as vectors by perturbing the interest vector of the requester agent. When an agent receives a query, it will try to answer it based on its expertise vector, or refer to other agents it knows. The originating agent collects all possible referrals, and continues the process by contacting some of the suggested referrals. At the same time, it changes its models for other agents.

Our experiments are based on the simulation testbed we have developed so far in the expertise location setting (The only difference is in the referring process: a referral is given only if the referral agent places some trust in the agent being referred.), which involves between 20 and 60 agents with interest and expertise vectors of dimension 5. Each agent keeps the latest 10 responses from another agent if there are more than 10 responses. The agents are limited in the number of neighbors they may have - in our case the limit is 4. However, each agent may keep track of more peers than his neighbors (others will be put in his *cache*). Periodically he decides which peers to be kept as neighbors, i.e., which are worth remembering.

4.1 Metrics

We now define some useful metrics in which to intuitively capture the results of our experiments.

Definition 11. Suppose there are L agents who know agent A_i (we say that agent A_j knows agent A_i if and only if agent A_i is a neighbor of agent A_j .), and $\{r_1, r_2, \ldots, r_L\}$ are a series of referrals to agent A_i . Then the cumulative belief of agent A_i is computed as

$$Bel_r = Bel_{r_1} \oplus Bel_{r_2}, \dots, \oplus Bel_{r_L}$$

and the reputation of agent A_i is defined as $\Gamma(A_i) = Bel_r(\{T_{A_i}\})$. If L = 0 then $\Gamma(A_i) = 0$.

Definition 12. The average reputation of a group of agents is defined as:

$$\Pi = 1/N \sum_{i=1}^{N} \Gamma(A_i),$$

where N is the total number of agents in the group.

4.2 Bootstrapping

In the first simulation we evaluate the convergence speed of the algorithm. One has 60 agents with uniformly distributed responsiveness factors. Each agent starts with some random interest vectors, expertise vectors and 4 neighbors. For any two agents A_i and A_j , $Bel_{A_i}(\{T_{A_j}\}) = Bel_{A_i}(\{\neg T_{A_j}\}) = 0$, $Bel_{A_i}(\{T_{A_j}, \neg T_{A_j}\}) = 1$ in the beginning. Then agents send queries, referrals, and responses to one another, all the while learning about each others' interest and expertise vectors. We assume that one has reached equilibrium when the average reputation of one agent converges to its real responsiveness factor.

Consider the following example. Assume agent A_1 is a cooperative agent with a responsiveness factor 0.75, and agent A_{60} is a non-cooperative agent with a responsiveness factor 0.25. Their initial average reputations are zero. After 2,000 simulation cycles, we found that the average reputation of agent A_1 increased to a high level, and the average reputation of agent A_{60} increased to a low level. The average reputation of the whole group agents increased rapidly in the beginning, but slowed down later. Figure 4 confirms our hypothesis.

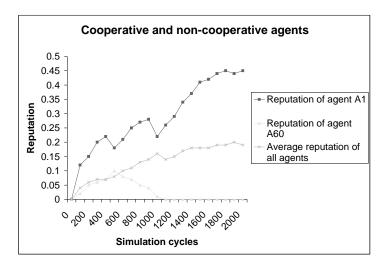


Fig. 4. Reputations of cooperative and non-cooperative agents in the bootstrapping stage

4.3 Reputation Buildup

Clearly, a social network will not remain stable for long, because agents will continually introduce and remove themselves from the network. In the second simulation, we show that a new agent A_{61} who joins the electronic community at the simulation cycle 2000, behaves cooperatively with a responsiveness factor 1 until he/she reaches a high reputation value, and then starts abusing his/her reputation by decreasing his/her responsiveness factor to 0.25. Thus, his average reputation starts dropping because of his/her non-cooperative behavior (Figure 5).

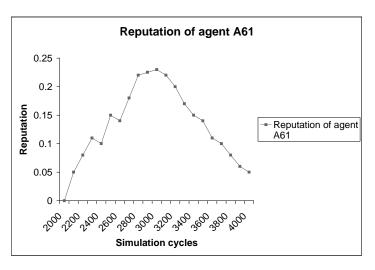


Fig. 5. Reputation buildup and crash of a new agent

4.4 Community Size

Usually there is a better chance to select a partner in a large (virtual) city of 300,000 people than in a small town of 3,000 people. On the other side, it is much easier to collect "bad" testimonies in a small town. We conjecture that the average reputation of an agent in a smaller group should change faster than that in a larger community.

Given two groups of agents, group1 and group2, with the number of agents 20 and 60, respectively. Suppose agent $A_{group1-1}$ and agent $A_{group2-1}$ are two cooperative agents in the beginning with the responsiveness factors 1. After a series of simulation cycles, i.e., 2,000, both of them decrease their responsiveness factor to 0.25. Thus, their average reputation starts dropping because of their non-cooperative behaviors. Figure 6 shows that the average reputation of agent $A_{group1-1}$ drops faster since it is in a smaller community.

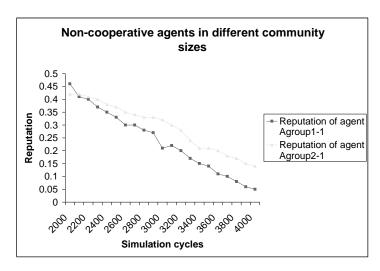


Fig. 6. Non-cooperative agents in different community sizes

5 Related Work

OnSale Exchange and eBay are important practical examples of reputation management. OnSale allows its users to rate and submit textual comments about sellers. The overall reputation of a seller is the average of the ratings obtained from his customers. In eBay, sellers receive feedback (+1,0,-1) for their reliability in each auction and their reputation is calculated as the sum of those ratings over the last six months. In OnSale, the newcomers have no reputation until someone rates them, while on eBay they start with zero feedback points. Both approaches require users to explicitly make and reveal their ratings of others. As a result, the users lose control to the central authority.

Some prototype approaches are relevant. Weaving a web of trust [8], and Kasbah [16] require that users give a rating for themselves and either have a central agency (direct ratings) or other trusted users (collaborative ratings). A central system keeps track of the users' explicit ratings of each other, and uses these ratings to compute a person's overall reputation or reputation with respect to a specific user. These systems require preexisting social relationships among the users of their electronic community. It is not clear how to establish such relationships and how the ratings propagate through this community.

Much theoretical work has been done in how to learn strategies of agents and how to react to a variety of behaviors [2, 12]. These approaches build on the success of Axelrod's experiments with round-robin tournaments of agent strategies in the Iterated Prisoner's Dilemma, where each strategy had to play against all other strategies [1]. Work in social psychology, however, has shown that selecting the right partners to play yields a better game performance compared to spending the same effort on *how* to play the game itself [6]. Especially in the context of open systems, there is at least some good chances to find an alternative partner.

Marsh presents a formalization of the concept trust [10]. His formalization considers only an agent's own experiences and doesn't involve any social mechanisms. Hence, a group of agents cannot collectively build up a reputation for others. A more relevant computational method is from *Social Interaction Frame-Work* (SIF) [11]. In SIF, an agent evaluates the reputation of another agent based on direct observations as well through other *witnesses*. However, SIF does not describe how to find such witnesses, whereas in the electronic communities, deals are brokered among people who probably have never met before.

There has been much work on social abstractions for agents, e.g., [3,5]. The initial work on this theme studied various of relationships among agents. There have been some studies of the aggregate behavior of social systems that is relevant to some of our tasks. More recent work on these themes has begun to look at the problems of deception and fraud [4]. However, the proposed approach goes significantly beyond their approach in the kinds of representations of trust, propagation algorithms, and formal analysis.

6 Conclusion

Trust and reputation management are becoming hot topics in agents and multiagent systems. Although we present our results in the context of electronic communities, our approach applies to multiagent systems in general. Most current multiagent systems assume benevolence, meaning that the agents implicitly assume that other agents are trustworthy and reliable. With the growth of network services, agents may find themselves confronted with deception and fraud. Approaches for explicit reputation management can help the agents finesse their interactions depending on the reputations of the other agents. The ability to deal with selfish, antisocial, or unreliable agents can lead to more robust multiagent systems.

Our present approach adjusts the ratings of agents based on their interactions with others. However, it does not fully protect against spurious ratings generated by malicious agents. It relies only on there being a large number of agents who offer honest ratings to override the effect of the ratings provided by the malicious agents. In future work, we plan to study the special problems of lying and rumors as well as of community formation. We also want to study the evolutionary situations where groups of agents consider rating schemes for other agents. The purpose is not only to study alternative approaches for achieving more efficient communities, but also to test if our mechanism is robust against invasion and, hence, more stable.

References

- 1. Robert Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
- David Carmel and Shaul Markovitch. Exploration and adaptation in multiagent system: A model-based approach. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 606-611, 1997.

- Cristiano Castelfranchi. Modelling social action for AI agents. Artificial Intelligence, 103:157–182, 1998.
- 4. Cristiano Castelfranchi and Rino Falcone. Principle of trust for MAS: cognitive anatomy, social importance, and quantification. In *Proceedings of Third International Conference on MultiAgen t Systems*, pages 72–79, 1998.
- Les Gasser. Social conceptions of knowledge and action: DAI foundations and open systems semantics. Artificial Intelligence, 47:107–138, 1991.
- Nahoko Hayashi and Toshio Yamagishi. Selective play: choosing partners in an uncertain world. Personality and Social Psychology Review, 2:276-289, 1998.
- 7. David Heckerman. Probabilistic interpretations for MYCIN's certainty factors. In *Uncertainty in Artificial Intelligence*, pages 167–196, 1986.
- 8. Rohit Khare and Adam Rifkin. Weaving a web of trust. World Wide Web, 2(3):77–112, 1997.
- Henry E. Kyburg. Bayesian and non-bayesian evidential updating. Artificial Intelligence, 31:271–293, 1987.
- P. Steven Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department of Computing Science and Mathematics, University of Stirling, April 1994
- 11. Michael Schillo, Petra Funk, and Michael Rovatsos. Using trust for detecting deceitful agents in artificial societies. *Applied Artificial Intelligence*, 14:825–848, 2000.
- 12. Sendip Sen. Reciprocity: a foundational principle for promoting cooperative behavior among self-interested agents. In *Proceedings of the second International Conference on Multiagent Systems*, pages 315–321, 1996.
- 13. Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.
- 14. Glenn Shafer. Probability judgement in artificial intelligence and expert systems. Statistical Science, 2:3–44, 1987.
- 15. Bin Yu and Munindar P. Singh. A social mechanism of reputation management in electronic communities. In *Proceedings of Fourth International Workshop on Cooperative Information Agents*, pages 154–165, 2000.
- 16. Giorgos Zacharia and Pattie Maes. Trust management through reputation mechanisms. *Applied Artificial Intelligence*, 14:881–908, 2000.