

Figure 1: The Alice user interface
without (above) and with (below) a stencil

Stencils-Based Tutorials: Design and Evaluation
Caitlin Kelleher

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
caitlin+@cs.cmu.edu

Randy Pausch
Entertainment Technology Center

Carnegie Mellon University
Pittsburgh, PA, USA

pausch@cmu.edu

ABSTRACT
Users of traditional tutorials and help systems often have
difficulty finding the components described or pictured in
the procedural instructions. Users also unintentionally miss
steps, and perform actions that the documentation’s authors
did not intend, moving the application into an unknown
state. We introduce Stencils, an interaction technique for
presenting tutorials that uses translucent colored stencils
containing holes that direct the user’s attention to the
correct interface component and prevent the user from
interacting with other components. Sticky notes on the
stencil’s surface provide necessary tutorial material in the
context of the application. In a user study comparing a
Stencils-based and paper-based version of the same tutorial
in Alice, a complex software application designed to teach
introductory computer programming, we found that users
of a Stencils-based tutorial were able complete the tutorial
26% faster, with fewer errors, and less reliance on human
assistance. Users of the Stencils-based and paper-based
tutorials attained statistically similar levels of learning.

ACM Classification Keywords: H5.2. Information
interfaces and presentation (e.g., HCI); Graphical User
Interfaces (GUI); Training, help and Documentation.

Keywords: Tutorials; interaction technique; transparent
overlay; user interface design.

INTRODUCTION AND MOTIVATION
Software applications commonly provide either paper or
online tutorials and reference manuals. This documentation
contains sequences of written instructions and images that
illustrate the steps a user should perform to accomplish
specific tasks. Presenting the tutorial in a separate context
from the application it is designed to teach creates
unnecessary problems for novice users.

Many users have difficulty locating the interface
components described or pictured in the instructions [21].
Online documentation creates an additional problem: there
are two versions of the component on the screen, real and
pictorial. Users will often click on the image of a

component in the tutorial rather than on the “real”
component in the interface [21].

Further, the list format in which most paper and online
instructions are presented creates additional problems for
users. Because all instructions for a task are equally
visually appealing, users often lose their place in the
instructions while switching between the instructions and
the application [21]. Based on our user testing, users often
inadvertently skip steps and make mistakes.

Skipped steps, mistakes, and unspecified actions can
hamper the documentation’s ability to teach by moving the
application into an unintended state. Because the user can
put the application into an unintended state, and writing
documentation for all possible states is prohibitively costly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004...$5.00.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

541

users can find themselves in confusing application states
that no longer match the next step of the documentation.

In this paper, we describe Stencils, an interaction technique
for presenting tutorials that, in each step, draws the user's
eye to the correct screen component and prevents the user
from interacting with other components, allowing the user
to concentrate on learning the application or feature (see
Figure 1). We show the Stencils technique at work in Alice
[1], a complex software application designed to teach
introductory computer programming.

To evaluate the Stencils technique, we compared the
performance of users using a paper-based and a Stencils-
based version of the same tutorial. We found that users of
the paper-based and Stencils-based tutorials learned the
tutorial material equally well. However, users of the
Stencils based tutorial completed the tutorial 26% more
quickly, made fewer mistakes in completing the tutorial,
and were less likely to require human assistance to make
progress.
RELATED WORK
There are three relevant areas of related work: the
presentation of procedural instructions, learner-centered
design, and transparent interfaces. We will discuss work in
each of these areas.

Presenting Procedural Instructions
Much of the research on how to present procedural
instructions to users has been performed in the context of
developing better help systems for software applications.
Currently, most applications present procedural instructions
for help systems in a separate window with supplementary
pictures [15, 16]. However, researchers have found this
method to be problematic for users [21]. Users often forget
steps while switching between the instruction window and
the application, have difficulty locating components
pictured in the instruction window, or mistakenly think that
the images of interface elements presented in the
instruction window are fully functioning components [21].
Since most web-based tutorials use a similar format, it is
likely that users of web-based tutorials will encounter
similar problems. While users of printed tutorials are
unlikely to confuse images of interface elements with the
actual interface elements, they may still have difficulty
locating the interface elements or accidentally skip steps.

Efforts to improve on-line presentation of procedural
instructions have centered on two areas: 1) improve the
quality of procedural instructions presented in a separate
context, 2) and find ways to present help in context.

Early work on presenting procedural instructions
demonstrated that adding pictures to textual instructions
helped users complete procedural instructions more
quickly, but did not improve their accuracy [6]. Because of
the dynamic nature of many user interfaces, researchers
have suggested [2, 28] and evaluated [18, 24, 25] using

animated demonstrations to present procedural instructions
to users. Palmiter et al. found that subjects who used an
animated tutorial initially completed test tasks faster than
those who used a text-based tutorial, but users of the
animated tutorial did not retain their learning a week later
[24,25]. Harrison found that users who used animated
tutorials or illustrated textual tutorials learned more quickly
than users who used a non-illustrated textual tutorial [18].
Researchers have concluded that for many types of
software, animated demonstrations will not be broadly
effective for presenting procedural instructions [18, 24].

Since many of the problems users encounter when using
traditional on-line help or tutorials are caused or
exacerbated by the separation between the instructions and
the application, other researchers have tried to make help
available in the context of the application. Coachmarks [13]
are markings, typically a circle, cross or check in red or
green, drawn over a component in the interface to attract
the user's attention to the component relevant to the current
step. Sukaviriya et al. [32] animate the cursor over the
interface and replace the typical arrow cursor with
representations of the mouse and keyboard to indicate user
actions. Coach/2 used an animated picture of a mouse that
left a graphical trail and blinked its eyes to show mouse
clicks [29]. Both techniques show the user what interface
components to focus on. However, users may not fully
understand what actions are necessary to accomplish a
given task. We have not found any studies comparing the
performance of subjects using in-context instructions with
that of subjects using more traditional instructions.

While the purpose of procedural instructions is to teach
users new skills, once a user has located the relevant set of
procedural instructions in a help system, the system may
have enough information to perform the instructions for the
user. Current versions of the Windows™ Operating System
[34] include a “Show Me” feature that automatically
performs the steps described in the instruction window
without showing the user how the steps were performed.
Although this type of feature does not help users learn new
functionality, it does give users an option if they are unable
to understand and perform the steps described.

Rather than trying to improve the presentation of
procedural instructions, some researchers have tried to limit
the number and kinds of mistakes that users can make.
Carroll and Carrithers [7] found that users using a
specially-created training version of a word-processing
package learned to use the program more quickly and
performed better on a post-test that measured
comprehension than users using the unmodified version of
the word-processor. In the training system, when users
choose an advanced feature in the training version, the
system responds with a dialog box stating that the chosen
command is not available in the training system. In a later
study, Catrambone and Carroll demonstrated that subjects
who learned to use the Training Wheels version of the

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

542

word-processor with the help of a guided-exploration
training card were able to transfer their knowledge to an
unmodified version of the word-processor [10]. Further,
these subjects were able to perform similar and more
advanced tasks as quickly as or more quickly than users
who learned to use the unmodified version of the word-
processor with the same guided-exploration training card
[10]. While limiting the number and kinds of mistakes
users can make may help them learn new software more
effectively, creating and maintaining separate training
versions of software is extremely labor intensive since
modifications made to the full program must also be made
to the training version of that program.

Learner-Centered Design
Researchers in Learner-Centered software are exploring
ways to create software-based scaffolding, support for
learners as they are learning a new task [30]. While
software-realized scaffolding can take many forms, some
Learner-Centered systems provide scaffolding that is
intended to guide learners through a process such as
creating a simulation or researching a question. Emile, a
system for building physics simulations, implements
process control by enabling menu items that allow users to
access parts of the interface relevant for later stages in
simulation building only after they have completed earlier
stages [17]. TheoryBuilder, a tool for constructing
scientific models, uses reminder messages displayed in
pop-up windows to remind learners to perform parts of the
process they have neglected. Users can request that
TheoryBuilder stop reminding them to complete a given
task by clicking a “Stop reminding me” button displayed
underneath the reminder message [20]. Other systems use
the user interface to suggest the process learners should
follow but do not require learners to follow it [26,33].

Transparency in User Interfaces
Previous work has examined the use of transparency in
interfaces and interaction techniques to solve a variety of
user interface problems.

To make better use of screen real estate, Bartlett created
stipple-based transparent controls that could exist in an
application’s work area without obscuring it [3]. Kramer
proposed the use of translucent, arbitrarily shaped regions
as an alternative to the overlapping windows paradigm that
could more fluidly support design activities [22].

The Stencils technique is most closely related to the work
done by Bier et al on the See-Through Interface: both use a
transparent layer drawn over a user interface to change how
an application responds to interface events such as mouse
clicks [4,5]. A See-Through Interface consists of Toolglass
widgets and Magic Lens filters that appear as though they
are on a sheet of transparent glass in between the mouse
cursor and the user interface [4,5]. A Magic Lens changes
the appearance of the user interface beneath it by applying

a filter, such as magnification to it [4,5]. By moving a
Toolglass widget over a user interface object and clicking
on it, a user can apply that widget’s operation to the
selected object [4,5]. By using their non-dominant hands to
position sheets containing one or more Toolglass widgets
and Magic Lens filters over the user interface and their
dominant hands to control the mouse cursor, users can
select and operate on interface objects in fewer steps and
with less cursor motion [4,5].

Researchers have explored the use of Magic Lenses and
Toolglass widgets in several domains including 3D virtual
worlds [35], augmented reality [23], generating database
queries [14], and debugging user interfaces [19].

APPROACH
Stencils is an interaction technique designed to present
tutorial instructions in the application context while
preventing many kinds of errors. Stencils-based tutorials
present users with sequences of full-screen, colored,
transparent overlays (or stencils) containing holes. These
stencils appear visually overlaid upon the active application
interface and intercept mouse and keyboard events. Events
occurring over a hole in the stencil are passed to the GUI
component beneath the hole. This prevents users from
interacting with components covered by the stencil. The
holes in the stencil draw the user’s eye to the component
they should interact with during a given step. Notes on top
of the stencil can supply additional information.

We have created four types of stencil objects for use in
creating tutorials or help instructions.

Navigation bars are automatically added to every stencil.
They provide “next” and “previous” buttons. The
navigation bar also indicates which step the user is
currently performing and displays the total number of steps
in the current task (see Figure 2A). An “Exit Tutorial”
button allows users to close the tutorial at any point.

Holes with attached notes are the most common interface
elements. They provide a hole through which the user can
interact with the underlying application component and an
associated note that the tutorial author can use to provide
necessary information. We draw a red arrow to connect the
note with its associated hole (see Figure 2B).

Frames with attached notes highlight a particular
application component without allowing the user to interact
with it. They are typically used to bring aspects of the
interface to the user's attention. For example, a frame could
point out the results of a completed step. An attached note
provides any necessary explanation (see Figure 2C).

Stand-alone notes are used to provide a motivation or
describe a goal that will take more than a single step. They
are associated only with the stencil, not with any particular
element in the application interface (see Figure 2D).

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

543

One possible problem with tutorial instruction within the
application is that users may confuse interface components
belonging to the tutorial with those that are part of the
application. To prevent this, interface elements associated
with the tutorial have a different visual appearance than
standard GUI elements, always appear on top of the
stencils, and are slightly transparent so the user can see
components in the underlying interface. Based on our user
testing, users do not have difficulty differentiating which
interface elements belong to the help and which ones
belong to the application interface.

Interaction Description
In each step of the tutorial, the interface is covered by a
stencil. Directions for the current step are displayed on
sticky notes. To aid readability, these notes are almost
opaque and are placed by the tutorial author over parts of
the interface that are least relevant to the current step.
However, notes are movable and the user can reposition
them to get a better view of a part of the underlying
interface, if desired. The stencil also contains holes over
any elements of the interface that the user needs to interact
with. Users can perform all necessary actions through the
hole. While the rest of the interface is visible, it is not
accessible: if users click on elements of the interface that
are covered by the stencil, nothing will happen.

Steps in the tutorial are presented one at a time. Users move
to the next step in one of two ways: for steps that require a
simple action such as a mouse click or an enter key, the
stencil will automatically advance to the next step when it
detects the user has performed the correct action; for more
complex steps, the user presses a “next” button to advance
when s/he has completed the step. When users move to the
next step in the tutorial, Stencils checks the current state of

the application against a saved “correct state” to verify that
the user has performed the step correctly. If the user has
made any mistakes, stencils displays both a note stating that
it believes the user has made a mistake and a “back” button
that returns the user to the beginning of the previous step so
that they can try again. If the user has correctly performed
the step, the system advances to the next step in the
stencils-based tutorial.

Occasionally, users want to return to a previous step. To
allow this, we provide a “previous” button as part of the
navigation bar. When a user returns to a previous step,
Stencils takes them to the beginning of that step by undoing
all of the actions they have performed as part of the current
and last steps. To move forward, users must complete the
steps as directed by the tutorial. By undoing changes when
the user goes back a step, Stencils ensures that the state of
the program is always consistent with the tutorial
instructions for that step.

Implementation Issues

Stencils in Alice
Our implementation of Stencils is written using the Java
Swing framework. It uses the glassPane component in
JRootPane to draw the stencil over the existing interface
and intercept all mouse events. Each stencil maintains a list
of holes and components associated with those holes. If a
mouse event occurs inside a hole, the stencil passes the
event to the interface element below; otherwise the stencil
processes the event. Keyboard events are also controlled by
explicitly managing which interface elements in the
underlying application have keyboard focus. Keyboard
events reach an element in the application interface only if
that interface element is associated with a hole that has the
stencil's focus. A focus listener for the stencil’s focused
object prevents the user from moving to another interface
element using the keyboard.

Modifications to Alice
To enable Stencils-based tutorials in Alice [1], chosen
because of its open source status and fairly complex
graphical interface, we had to modify the Alice system to
implement the Stencils Application Interface, a Java
interface that provides system-specific functionality to the
tutorial. This functionality includes the abilities to:
1. Request the position and size of an interface element

given the name of the element.

2. Request the name of the interface element at a
particular position on the screen.

3. Request a string representation of the changes.

4. Ask whether or not two strings representing changes in
the world are equivalent.

5. Undo changes made to the Alice world and the
interface.

Figure 2: Stencil Objects A) Navigation bar B) Hole
with note C) Frame with note D) Stand-alone with

note

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

544

If the layout of the components in Alice changes, Alice
alerts the tutorial by calling methods in the Stencils Update
Interface (a second Java interface), allowing the tutorial to
determine whether any holes or frames in the current
stencil need to shift.

Our implementation of Stencils is written in Java and can
be used by any Java application (implementations for other
languages are possible). It includes a basic authoring tool
and the ability to play back Stencils-based tutorials. To use
Stencils, a Java application must implement the Stencils
Application Interface and make appropriate calls to the
Stencils Update Interface to alert the Stencils system to
changes in the layout of the user interface.

Authoring Stencils-based Tutorials
We have created a simple authoring tool for building help
stencils to allow non-programmers to create Stencils-based
tutorials. The authoring tool runs on top of the active
application. Objects are added to the stencil by double
clicking on its surface. By default, this creates a hole with
an attached note. A right click menu allows authors to
create a frame with a note or a stand-alone note rather than
a hole with a note. The author can reposition notes by
dragging them on the surface of the stencil and add
information by typing. Notes are visually attached to their
associated holes or frames with a line that updates when
they are moved.

After creating the necessary holes in a stencil, the author of
a Stencils-based tutorial must perform the actions necessary
to complete the current step. Stencils then requests a Java
String representation of the changes the tutorial author has
made during that step from Alice. These change strings are
saved for every step in the tutorial such that the tutorial can
check users’ work as they complete steps.

Advantages
The Stencils technique has several advantages over
previous work in the presentation of procedural
instructions. Stencils greatly decrease the number and types
of mistakes that a user can make. The visual representation
of the stencil draws the user's eye to the component for the
current step. Each stencil provides a visual indication of
what the user can do in that step, without altering the
appearance of the application below. The Stencils
technique handles complex interactions: pop-up menus
appear on top of the stencil and interface components can
be dragged from one hole to another. Instructions for each
step are superimposed on the interface and displayed a
single step at a time. Consequently, users cannot lose their
place in the instructions or inadvertently skip steps.

LESSONS FROM FORMATIVE EVALUATION
To gain an understanding of whether or not Stencils was
helpful in real applications, we chose to develop and test
Stencils in the context of a complex piece of software.

Alice is a programming environment that allows novice
programmers to create animated 3D virtual worlds by
dragging and dropping command tiles [11,12]. Although it
has been designed for and tested with novice users, Alice is
a relatively complex piece of software with more than 150
clickable interface elements and more than 300 drag-able
elements. While not all of these elements are visible at the
same time and many are placed in inconspicuous locations
in the interface, the Alice interface can still be
overwhelming for beginning users.

While developing the Stencils interaction technique, we
conducted formative evaluations of three versions of a
Stencils-based tutorial with 15 users (7 female), ranging in
age from 18 to 60. Users were asked to work through short
tutorial segments while talking aloud. The tutorial segments
included navigating through the interface, selecting menu
options, creating new interface elements, and dragging and
dropping interface elements. The primary lessons we
learned were:

1. Visually reinforce the stencil as an overlay on top of the
interface

We found that it was important to make holes and notes
appear slightly 3-dimensional. Without a hint of 3-
dimensionality, users sometimes concluded that the
interface was simply tinted blue. With a shadow drawn at
the holes to indicate depth and under the notes so they
visually float above the stencil, users seemed to understand
that the stencil was a layer on top of the existing interface.

2. Bring changes that occur underneath the stencil to users’
attention.

Simple actions, such as changes in selection, sometimes
cause changes in parts of the interface that are underneath
the stencil. Because the notes and stencils direct users’
attention to particular regions of the interface, users are less
likely to notice changes in other parts of the interface. If a
particular step directs users to perform an action that will
cause a visual change in an area of the interface not
exposed by a hole, the next step in the tutorial should use a
frame to highlight that change.

3. When completing simple actions, such as mouse clicks or
single keystrokes, users expect the tutorial to automatically
advance.

We observed that while users seem to prefer to control the
pacing of complex actions, they expect the tutorial to
automatically advance to the next step when they perform
simple actions, particularly mouse clicks. Surprisingly, our
evaluations indicated that users were not confused by the
tutorial sometimes auto-advancing and sometimes requiring
manual advancement.

4. It is necessary to do at least minimal checks to ensure
that users have done the right thing.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

545

While the Stencils technique prevents many kinds of errors,
it is still possible for users to make errors. Since future
steps may rely on elements that are created in past steps, it
is crucial to verify that elements used in future steps are
created and not deleted.

5. The underlying application needs to alert the tutorial to
changes in the layout of the interface.

Some actions the user takes may cause elements in the
interface to shift. If any of these elements have holes or
frames over them, these shifts may result in holes or frames
over the incorrect parts of the interface.

6. For sequences of steps that have holes over the same
screen components, shifting the location of the notes
provides a cue that users have moved to the next step.

For many users, the change in position of the notes from
one step to the next is a cue that they have advanced to the
next step. When one step asks the user to manipulate the
same interface elements as the previous step, and the notes
do not change location, users may conclude that the tutorial
did not advance and inadvertently skip a step.

METHOD
We implemented the lessons learned during formative
evaluation, and conducted a study to compare the
performance of users given Stencils-based and paper-based
versions of the same tutorial.

Participants
Twenty-two Cadette Girl Scouts representing three troops
from the Pittsburgh area participated in our study. The girls
ranged in age from 12 to 16 years, with 18 of the 22 being
between 12 and 13. When asked to rate their skill with
computers, 5 chose “very good”, 14 girls chose “good”, 2
chose “fair”, and 2 chose “poor or nonexistent”. Of the 22
girls, one had prior programming experience, and 7 had
experience creating webpages. The study was conducted
during three one-day, four-hour workshops (one for each
troop). Participants were paid for their participation.

We chose to evaluate the stencils-based tutorial with girls
because this study is a part of a larger project to create a
programming system that gives middle school aged girls a
positive introduction to computer programming. We
believe that if we can make the tutorial work for middle
school girls, who tend to have less computer experience
and less confidence in their computer skills than boys of the
same age [30], it will work for many other groups of users.
Additionally, we included several infrequent computer
users between 40 and 60 in our formative evaluations to
ensure that this technique also works for older novice users.

Preparation of Experimental Materials
The paper and Stencils-based tutorials guide users through
a sequence of changes to three Alice worlds. The textual
directions to users are the same in both conditions.

Paper-based Tutorial
In the paper version of the tutorial, directions are presented
beside a picture of the GUI component the user needs to
interact with for that step. Because users often have
difficulty locating components on screen, the pictures of
each component include enough screen context to allow
users to easily identify which of the five regions of the
Alice interface, their target component lies in (see Figure
3). To allow users to check whether or not they have
correctly completed the steps in the tutorial, we have
included images that show what the relevant parts of the
Alice interface should look like at several points throughout
the tutorial

Figure 3: Paper tutorial instructions (below) with
corresponding Alice interface (above)

Figure 4: Tutorial step illustrated in Figure 3 as seen
by a user of the Stencils-based tutorial.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

546

Stencils-based Tutorial
In the stencils-based version of the tutorial, directions are
presented on yellow Post-it™ style notes on the surface of
the stencil. Holes in the surface of the stencils draw users’
attention to components they need to interact with during
the current step of the tutorial. Since our early user testing
showed that users often do not notice interface changes that
happen below the stencil, the tutorial uses frames to draw
users’ attention to changes that they have made. When
users press the next button or the stencil auto-advances to
the next step, it checks to make sure that the user has
performed all actions necessary for the current step and has
not performed extraneous actions.

Procedure
The study took place during three four-hour Alice
workshops and used a two-group between-subjects design.
Participants were randomly assigned to use either the paper
or stencils-based tutorial. To minimize the effects of
differences in computer experience or academic potential
among the three troops, an equal number of participants
from each troop were assigned to the paper-based and
stencils-based tutorial conditions. Both the paper-based and
stencils-based conditions consisted of 3 participants from
troop 1, 3 participants from troop 2, and 5 participants from
troop 3, for a total of 11 participants in each condition.

During the workshop, participants completed three tasks:
the tutorial, a post-tutorial survey, and a quiz designed to
measure tutorial learning. The quiz required participants to
perform tasks taught in the tutorial in order to answer
multiple-choice questions about an Alice world they had
never seen. Participants needed to perform a variety of
actions including: playing the world, finding and calling
methods, navigating through the gallery of 3D objects
supplied with Alice, adding 3D objects to their worlds, and
editing predefined methods.

There were no time limits for completing the tutorial, post-
tutorial survey and quiz. Participants were instructed not to
help each other, but were told that they could ask the
experimenter for help with the tutorial, if necessary. The
experimenter provided help only when requested.

Data Collection
To enable us to study users’ performance on both the
tutorial and the quiz, we recorded users’ actions in two
ways. We instrumented the Alice program to record any
changes that users made to the current Alice world. To
record actions users took that did not result in changes to
the current Alice world, we used a locally developed
logging program that saves screen captures and records all
mouse and keyboard events. We used the screen shots and
event logs to reconstruct videos of the users’ computer
screens as they completed the tutorial and quiz.

Using both the Alice logs and the videos of users’ computer
screens, we produced transcripts of all actions the users

took while completing the tutorial and quiz. In addition, we
recorded the amount of time spent on each tutorial and the
quiz.

Dependent Measures
To compare the success of participants using the stencils-
based and paper-based versions of the tutorial, we use error
rate, elapsed time, and number of requests for help. To
evaluate learning, we use the number of correct answers on
the quiz and the elapsed time in completing the quiz.

Tutorial Errors
Because we are primarily interested in mistakes that could
make users unable to progress, we counted three types of
errors: skipped steps, incorrect selections that caused
changes to which elements are displayed in the user
interface, and incorrect actions that caused changes to the
Alice world. Any actions not described in the tutorial that
caused a change to either the interface or the Alice world
were counted as errors. However, if a user started an action
and canceled it without making a change to the interface or
the world, that action was not counted as an error.
Additionally, if a user made an error but immediately
corrected it (e.g. choosing the wrong item from a menu and
immediately changing it to the correct one), it was also not
counted as an error.

Elapsed Time
The elapsed times for the tutorial and quiz were measured
beginning when the user opened the file for a given tutorial
and ending when they began to load the next file (e.g.
clicked on the File menu) or closed the Alice program.

Results
We used unpaired t-tests to compare the performance of
participants using the stencils and paper-based tutorials.

Tutorial Performance
We found that users of the stencils-based tutorial made
fewer errors and took 26% less time than users of the
paper- based tutorial. Users of the stencils-based tutorial
skipped fewer steps (p = 0.012), made fewer erroneous
changes to the Alice worlds presented in the tutorial (p =
0.023) and to the user interface (p = 0.069). In addition to
making fewer mistakes, users of the stencils tutorial were
26% faster in completing the tutorial (p = 0.057): the mean
time for completion of the stencils tutorial was 47 minutes,
22 seconds; the mean time for completion of the paper-
based tutorial was 59 minutes, 22 seconds. Users of the
stencils-based tutorial also were less likely to require
human assistance to make progress on the tutorial (p =
0.08). The average number of errors and the distribution of
error counts are shown in Table 1.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

547

Table 1: Average number of errors and distribution of users’ error counts for Paper and Stencils-based test groups.

Quiz Performance
There was no significant difference between the
performance of users of the stencils-based and paper-based
tutorials on a post-tutorial quiz. Users of the paper-based

tutorial answered an average of 5.00 out of 6 questions
correctly and users of the stencils-based tutorial answered
an average of 4.82 correctly (p = .746).

There was also no significant difference in the amount of
time necessary for the users of the stencils-based and paper
tutorial to complete the post-tutorial quiz. Users of the
stencils-based tutorial took an average of 20 minutes, 17
seconds to complete the quiz where users of the paper-
based tutorial completed the quiz in an average of 18
minutes, 24 seconds (p = .721). These averages are based
on the completion times for users who performed all steps
in Alice necessary to answer the quiz questions (stencils 8
users, paper 6 users).

Survey Results
In a survey about the tutorial given after users had
completed the tutorial but before they had started the quiz,
we found that users of the stencils tutorial were more
confident that they completed the steps in the tutorial
correctly (stencils 4.55, paper 3.64 on a 5 point scale p =
0.029). However, users of the paper tutorial were more
confident that they could build a world in Alice after
completing the tutorial than the stencils-based users were
(stencils 3.55, paper 4.18 on a 5 point scale, p = 0.051).

DISCUSSION
The Stencils technique is a potential alternative for
presenting tutorials. Based on our data, it allows users to
attain the same level of learning in a substantially shorter
period of time, with fewer errors, and less reliance on
human intervention to make progress.

One of our initial concerns with the Stencils approach was
that users might move through the tutorial quickly and
without understanding what they were learning. While the

users of the Stencils tutorial did complete the tutorial more
quickly, they appear to have done so without sacrificing
learning. Both the paper-based and Stencils-based tutorial
groups performed similarly in the number of correct
answers and the amount of time it took to complete the
quiz.

The increased speed of the users of the Stencils-based
tutorial is probably due, at least in part, to the fact that
Stencils presents the tutorial instructions in the context of
the application. While paper-based tutorials require less
context-switching than many online-tutorials presented in a
separate window, in a given step the users of the paper-
based tutorial had to find their place in the paper tutorial,
read the directions, find the appropriate components on
screen, and determine what the directions wanted them to
do. Users of the Stencils-based tutorial needed only to
determine what the directions wanted them to do.

While the Stencils technique seems to improve
performance on the tutorial, the users of the Stencils-based
tutorial had lower confidence in their ability to create their
own Alice world after completing the tutorial. This is of
concern, particularly for populations of computer users who
may have lower confidence levels from the outset, such as
middle school girls. One potential explanation for this is
that Stencils, while preventing many errors, may give users
the impression that they need help to interact with the
underlying application. This is an unexpected, subtle effect
that requires additional research to understand.

One of the most significant potential advantages of the
Stencils technique is that users learning from a Stencils-
based tutorial required less human assistance than those
using a more traditional paper-based tutorial. Employees in
most businesses require at least some training on software.
Making software training less reliant on human teachers
has huge potential cost savings.

We believe that Stencils will be of greatest benefit in
interfaces that are highly spatial and primarily point-and-
click with some typing.

 # of Users making n Errors

Average #
Errors per
User 0 errors 1-2 errors 3-4 errors 5-6 errors 6-10 errors >10 errors

skipped steps 3.82 0 users 3 users 5 users 1 user 2 users 0 users

interface errors 4.55 5 1 1 2 0 2

world errors 5.09 1 5 4 0 1 0 Pa
pe

r

help requests 0.727 7 3 1 0 0 0

skipped steps 1.27 5 users 3 users 2 users 1 users 0 users 0 users

interface errors 1.36 4 5 2 0 0 0

world errors 1 6 4 1 0 0 0

St
en

ci
ls

help requests 0.08 10 1 0 0 0 0

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

548

CONCLUSION
The Stencils technique suggests a method for displaying
tutorial and help instructions in the context of the
application, avoiding many of the problems created by
having tutorial instructions either on paper or in a separate
window. Based on our experiences developing Stencils, we
provide guidelines for how to make systems like Stencils
work for users. A user study comparing the performance of
users given a Stencils-based tutorial with that of users
given a paper-based version of the same tutorial
demonstrated that users of the Stencils tutorial were faster,
made fewer errors, required less help from human teachers,
and learned the material covered in the tutorial as well as
the users of the paper tutorial.

FUTURE WORK
While our preliminary evaluation of the Stencils technique
is encouraging, our study focused on the behavior of a
small number of users representing a narrow demographic
and using a single software application. To verify that the
Stencils technique is generally useful, additional studies
should be performed to determine the success of Stencils-
based tutorials with diverse user groups and applications.

In addition to suggesting a need for more widespread
testing, our experiences user testing Stencils as well as
prior work in both Learner-Centered Design and software
documentation suggest possible ways to improve the
Stencils technique.

In the post-tutorial survey, we found that users of the
Stencils-based tutorial were less confident in their ability to
create an Alice world than users of the paper-based tutorial.
One possible explanation for this result is that the support
Stencils provides does not decrease as users become more
skillful. In Learner-Centered Design, an important property
of scaffolding (educational supports for learners) is that it
fades over time. An important direction for the future
development of Stencils is the design and evaluation of a
version of Stencils that fades support as users gain
familiarity with certain tasks. Providing support that fades
over time may help users to develop the confidence that
they can build Alice worlds without assistance.

Currently, Stencils encourages users to learn the system (by
completing the tutorial) before creating their own worlds.
Prior research has found that many users are reluctant to
devote time exclusively to learning a software system
[8,10]. Instead, many want to learn the system as they
pursue specific end-goals, such as writing a business letter
or computing sales statistics [8]. Users will often scan
tutorials and user manuals looking for relevant tasks rather
than working through them from beginning to end, as their
author intended [8, 27]. To support users learning a system
while pursuing their own goals, Carroll et al. created the
Minimal Manual, which provided users with instructions
for typical goals new users have [8,9]. In the context of a
word processor, typical goals might be “typing something”

or “printing something” [8,9]. By providing steps for small
goals, the Minimal Manual enabled users to learn tasks
immediately relevant to their larger goals. Studies found
that this approach enabled users to learn a system more
quickly than a commercial manual [9,10]. Future versions
of Stencils should include support for guiding users through
tasks within the context of their current worlds. For
example, a user who wants to make a particular character in
their world disappear should be able to bring up a tutorial
that will walk them through the process of making that
particular character in their current world disappear. To
enable this kind of interaction, in-context Stencils tutorials
will need to allow users to specify a context (e.g. particular
characters or objects in their world).

ACKNOWLEDGMENTS
We would like to thank Cliff Forlines for his discussion and
ideas on early versions of Stencils, our colleagues in the
Squeak Research Group (now at Viewpoints Research
Institute) for providing a rich research environment in
which to develop the initial concept behind Stencils, and
our colleagues in the Stage 3 Research Group at Carnegie
Mellon for their ideas and support as we implemented and
experimented with stencils. Additionally, we would like to
thank our anonymous reviewers for their helpful comments
and insights.

REFERENCES
1. Alice. http://www.alice.org
2. Baecker, R., Showing Instead of Telling. In Proc. Of

SIGDOC 2002, ACM Press (2002), 10-16.
3. Bartlett, J. Transparent Controls for Interactive

Graphics. WRL Technical Note TN-30, Digital
Equipment Corporation, Palo Alto, CA, July 1992.

4. Bier, E., Stone, M., Pier, K. et al. Toolglass and Magic
Lenses: The See-Through Interface. In Proc Computer
Graphics and Interactive Techniques 1993. ACM Press
(1993), 73-80.

5. Bier, E. Stone, M. Fishkin, K. et al. A Taxonomy of
See-Through Tools. In Proc CHI 1994. ACM Press
(1994), 358-364.

6. Booher, H.R., Relative comprehensibility of pictorial
information and printed words in proceduralized
instructions. Human Factors 17, 3 (1975), 266-277.

7. Carroll, J. and Carrithers, C. Training Wheels in a User
Interface. Communications of the ACM 27, 8 (1984),
800-806

8. Carroll, J. and Rosson, M. The Paradox of the Active
User. In J.M. Carroll (Ed.), Interfacing Thought:
Cognitive Aspects of Human-Computer Interaction.
MIT Press, Cambridge, 1987.

9. Carroll, J., Smith-Kerker, P., Ford, J., and Mazur, S.
The Minimal Manual. IBM RC 11637, 1986.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

549

10. Catrambone, R. and Carroll, J. Learning a Word
Processing System with Training Wheels and Guided
Exploration. In Proc CHI/GI 1987, ACM Press (1987),
169-174.

11. Conway, M., Audia, S., Burnette, T., et al. Alice:
lessons learned from building a system for novices. In
Proc CHI 2000, ACM Press (2000), 486-493.

12. Dann, W., Cooper, S. and Pausch, R. Learning to
Program with Alice: Beta Version. Pearson Prentice
Hall, Upper Saddle River, NJ, USA, 2005.

13. Designing Coachmarks.
http://www.developer.apple.com/techpubs/mac/AppleG
uide/AppleGuide-24.html

14. Fishkin, K. and Stone, M. Enhanced Dynamic Queries
via Movable Filters. In Proc CHI 1995. ACM Press
(1995), 415-420.

15. Goodall, S. Online Help: A Part of Documentation. In
Proc SIGDOC 1992, ACM Press (1992), 169-174

16. Goodall, S. Online Help in the Real World. In Proc.
SIGDOC 1991, ACM Press (1991), 21-29.

17. Guzdial, M. Software-Realized Scaffolding to Facilitate
Programming for Science Learning. Interactive
Learning Environments 4, 1 (1995), 1-44.

18. Harrison, S. A Comparison of Still, Animated, or
Nonillustrated On-Line Help with Written of Spoken
Instructions in a Graphical User Interface. In Proc CHI
1995, ACM Press (1995), 82-89.

19. Hudson, S., Rodenstein, R., and Smith, I. Debugging
Lenses: A New Class of Transparent Tools for User
Interface Debugging. In Proc UIST 1997, ACM Press
(1997), 179-187.

20. Jackson, J., Krajcik, J. and Soloway, E. The Design of
Guided Learner-Adaptable Scaffolding in Interactive
Learning Environments. In Proc CHI 1998, ACM Press
(1998), 187-194.

21. Knabe, K. Apple Guide: A Case Study in User-Aided
Design of Online Help. In Proc CHI 1995, ACM Press
(1995), 286 – 287.

22. Kramer, A. Translucent Patches. In Proc UIST 1994,
ACM Press (1994), 121-130.

23. Looser, J., Billinghurst, M., and Cockburn, A. Through
the Looking Glass: The User of Lenses as an Interface
Tool for Augmented Reality Interfaces. In Proc

Computer Graphics and Interactive Techniques. ACM
Press (2004), 204-211.

24. Palmiter, S. and Elkerton, J. An Evaluation of Animated
Demonstrations for Learning Computer-based Tasks. In
Proc. CHI 1991, ACM Press (1991), 257-263.

25. Palmiter, S., Elkerton, J., and Baggett, P. Animated
demonstrations vs. written instructions for learning
procedural tasks: A preliminary investigation.
International Journal of Man-Machine Studies, 34
(1991), 687-701.

26. Quintana, C., Eng, J., Carra, A. et al. Symphony: A
Case Study in Extending Learner-Centered Design
through Process Space Analysis. In Proc of CHI 1999,
ACM Press (1999), 473-480.

27. Rieman, J. A Field Study of Exploratory Learning
Strategies. Transactions on Computer-Human
Interaction 3, 3 (1996). 189-218.

28. Schneiderman, B. Direct manipulation: A step beyond
programming languages. IEEE Computer 16, 8 (1983),
57-69.

29. Selker, T., Barber, R., and Kelley, R. Effective,
Selective Presentation of Help Material in a Graphical
Environment: Experience with COACH/2, a graphical
adaptive help system. IBM Tech Report, 1996.

30. Shashaani, L. Gender-Differences in Computer
Experience and its Influence on Computer Attitudes.
Journal of Educational Computing Research 11, 4
(1994), 347-367.

31. Soloway, E., Guzdial, M., and Hay, K. Learner-
Centered Design: The Challenge for HCI in the 21st
Century. Interactions 1, 2 (1994), 36-48.

32. Sukaviriya, P., Isaacs, E., and Bharat, K. Multimedia
Help: A Prototype and an Experiment. Ext. Abstracts
CHI 1992, ACM Press (1992), 433-434.

33. Wallace, R. Soloway, E., Krajcik, J. et al. ARTEMIS:
Learner-Centered Design of an Information Seeking
Environment for K-12 Education. In Proc CHI 1998,
ACM Press (1998), 195-202.

34. Windows Family. http://www.windows.com.
35. Viega, J., Conway, M., Williams, G., and Pausch, R. 3D

Magic Lenses. In Proc UIST 1996, ACM Press (1996),
51-58.

CHI 2005 ׀ PAPERS: Educational & Help Systems April 2–7 ׀ Portland, Oregon, USA

550

