
Using Language Models for Flat Text Queries in XML Retrieval
Paul Ogilvie, Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA USA
{pto,callan}@cs.cmu.edu

ABSTRACT
This paper presents a language modeling system for ranking flat
text queries against a collection of structured documents. The
system, built using Lemur, produces probability estimates that
arbitrary document components generated the query. This
paper describes storage mechanisms and retrieval algorithms for
the evaluation of unstructured queries over XML documents.
The paper includes retrieval experiments using a generative
language model on the content only topics of the INEX testbed,
demonstrating the strengths and flexibility of language modeling
to a variety of problems. We also describe index characteristics,
running times, and the effectiveness of the retrieval algorithm.

1. INTRODUCTION
Language modeling has been studied extensively in standard
Information Retrieval in the last few years. Researches have
demonstrated that the framework provided by language models
has been powerful and flexible enough to provide strong
solutions to numerous problems, including ad-hoc information
retrieval, known-item finding on the Internet, filtering,
distributed information retrieval, and clustering.

With the success of language modeling for this wide variety of
tasks and the increasing interest in studying structured
document retrieval, it is natural to apply the language modeling
framework to XML retrieval. This paper describes and
presents experiments using one way the generative language
model could be extended to model and support queries on
structured documents. We model documents using a tree-based
language model. This is similar to many previous models for
structured document retrieval [1][2][3][6][7][10], but differs in
that language modeling provides some guidance in combining
information from nodes in the tree and estimating term weights.
This work is also similar to other works using language models
for XML retrieval [5][9], but differs in that we also present
context-sensitive language model smoothing and an
implementation using information retrieval style inverted lists
rather than a database.

The next section provides background in language modeling in
information retrieval. In Section 3 we present our approach to
modeling structured documents. Section 4 describes querying
the tree-based language models presented in the previous
section. In Section 5we describe the indexes required to support
retrieval and the retrieval algorithms. We describe the
experiment setup and indexes used for INEX 2003 in Section 6.
Section 7 describes experimental results. We discuss

relationships to other approaches to structured document
retrieval in Section 8, and Section 9 concludes the paper.

2. LANGUAGE MODELS FOR
DOCUMENT RETRIEVAL
Language modeling applied to information retrieval problems
typically models text using unigram language models. Unigram
language models are similar to bags-of-words representations, as
word order is ignored. The unigram language model specifically
estimates the probability of a word given some text. Document
ranking typically is done one of two ways: by measuring how
much a query language model diverges from document language
models [8], or by estimating the probability that each document
generated the query string. Since we use the generative language
model for our experiments, we will not describe the divergence
based approaches here.

2.1 The Generative Language Model
The generative method ranks documents by directly estimating
the probability of the query using the texts’ language models
[13][4][15][16]:

() () ()∏
∈

=
Qw

wqtf
w TT ?P?QP

where Q is the query string, and T? is the language model

estimated for the text, and qtf(w) is the query term frequency of
the term. Texts more likely to have produced the query are
ranked higher. It is common to rank by the log of the generative
probability as it there is less danger of underflow and it
produces the same orderings:

()() () ()∑
∈

=
Qw

wwqtf TT ?Plog?QPlog

Under the assumptions that query terms are generated
independently and that the query language model used in KL-
divergence is the maximum-likelihood estimate, the generative
model and KL divergence produce the same rankings [11].

2.2 The Maximum-Likelihood Estimate of a
Language Model
The most direct way to estimate a language model given some
observed text is to use the maximum-likelihood estimate,
assuming an underlying multinomial model. In this case, the
maximum-likelihood estimate is also the empirical distribution.
An advantage of this estimate is that it is easy to compute. It is
very good at estimating the probability distribution for the

document

title abstract body

section 1 section 2 references

language model when the size of the observed text is very large.
It is given by:

() ()
T

T,
?P T

wfreq
w =

where T is the observed text, freq(w, T) is the number of times
the word w occurs in T, and |T| is the length in words of T . The
maximum likelihood estimate is not good at estimating low
frequency terms for short texts, as it will assign zero probability
to those words. This creates a problem for estimating document
language models in both KL divergence and generative language
model approaches to ranking documents, as the log of zero is
negative infinity. The solution to this problem is smoothing.

2.3 Smoothing
Smoothing is the re-estimation of the probabilities in a language
model. Smoothing is motivated by the fact that many of the
language models we estimate are based on a small sample of the
“true” probability distribution. Smoothing improves the
estimates by leveraging known patterns of word usage in
language and other language models based on larger samples. In
information retrieval smoothing is very important [16], because
the language models tend to be constructed from very small
amounts of text. How we estimate low probability words can
have large effects on the document scores. In addition to the
problem of zero probabilities mentioned for maximum-
likelihood estimates, much care is required if this probability is
close to zero. Small changes in the probability will have large
effects on the logarithm of the probability, in turn having large
effects on the document scores. Smoothing also has an effect
similar to inverse document frequency [4], which is used by
many retrieval algorithms.

The smoothing technique most commonly used is linear
interpolation. Linear interpolation is a simple approach to
combining estimates from different language models:

() ()∑
=

=
k

i
ii ww

1

?P?P λ

where k is the number of language models we are combining, and

iλ is the weight on the model i? . To ensure that this is a valid

probability distribution, we must place these constraints on the
lambdas:

0,1forand1
1

≥≤≤=∑
=

i

k

i
i ki λλ

One use of linear interpolation is to smooth a document’s
language model with a collection language model. This new
model would then be used as the smoothed document language
model in either the generative or KL-divergence ranking
approach.

2.4 Another Characterization
When we take a simple linear interpolation of the maximum
likelihood model estimated from text and a collection model, we
can also characterize the probability estimates as:

() ()
()



 ∈

=
otherwisew

wifw
w

Tunseen

Tseen
T ?P

T?P
?P

where

() () () ()collectionwww ?P?P1?P TMLETseen ωω +−=

and

() ()collectionww ?P?P Tunseen ω=

This notation distinguishes the probability estimates for cases
where the word has been seen in the text and where the word
has not been seen will be in the sample text. We will use this
notation later when describing the retrieval algorithm, as it
simplifies the description and is similar to the notation used in
previous literature [16]. The simple form of linear interpolation
where ? is a fixed constant is often referred to as Jelinek-
Mercer smoothing.

3. STRUCTURED DOCUMENTS AND
LANGUAGE MODELS
The previous section described how language modeling is used
in unstructured document retrieval. With structured documents
such as XML or HTML, we believe that the information
contained in the structure of the document can be used to
improve document retrieval. In order to leverage this
information, we need to model document structure in the
language models.

We model structured documents as trees. The nodes in the tree
correspond directly with tags present in the document. A
partial tree for a document might look like:

Nodes in the document tree correspond directly to XML tags in
the document. For each document node in the tree, we estimate
a language model. The language models for leaf nodes with no
children can be estimated from the text of the node. The
language models for other nodes are estimated by taking a linear
interpolation of a language model formed from the text in the
node (but not in any of its children) and the language models
formed from the children.

We have not specified how the linear interpolation parameters
for combining language models in the document tree should be
chosen. This could be task specific, and training may be
required. The approach we will adopt in this paper is to set the
weight on a child node as the accumulated length of the text in
the child divided by the accumulated length of the node. By
accumulated length we mean the number of words directly in the
node plus the accumulated length of the node’s children. Setting

the parameters in this manner assumes that a word in a one node
type is no more important than a word in any other node type;
it is the accumulated length of the text in the node that
determines how much information is contained in the node.

We also wish to smooth the maximum likelihood models that are
estimated directly from the text with a collection language
model. In this work, we will combine the maximum likelihood
models with the collection model using a linear interpolation
with fixed weights. The collection model may be specific to the
node type, giving context sensitive smoothing, or the collection
model may be one large model estimated from everything in the
corpus, giving a larger sample size.

When the ? parameters are set proportional to the text length
and a single collection model is used, this results a special case
that is very similar to the models used in [5][9]. The tree-based
language model estimated using these parameter settings will be
identical to a language model estimated by taking a simple linear
interpolation of a maximum likelihood estimate from the text in
the node and its ancestors and a the collection model.

4. RANKING THE TREE MODELS
In a retrieval environment for structured documents, it is
desirable to provide support for both structured queries and
unstructured, free-text queries. It is easier to adapt the
generative language model to structured documents, so we only
consider that model in this paper. It is simpler to support
unstructured queries, so we will describe retrieval for them first.

4.1 Unstructured Queries
To rank document components for unstructured queries, we use
the generative language modeling approach for IR described in
Section 2. For full document retrieval, we need only compute
the probability that the document language model generated the
query. If we wish to return arbitrary document components,
we need to compute the probability that each component
generated the query.

Allowing the system to return arbitrary document components
may result in the system stuffing the results list with many
components from a single document. This behavior is
undesirable, so a filter on the results is necessary.

One filter we employ takes a greedy approach to preventing
overlap among components in the results list. For each result, it
will be thrown out of the results if there is any component
higher in the ranking that is an ancestor or descendent of the
document component under consideration.

4.2 Structured Queries
Our previous paper on this subject [11] discusses how some
structural query operators could be included in the model. We
do not currently support any of these operators in our system,
so we will not discuss in depth here. However, we will note
that the retrieval framework can support most desired structural
query operators as relatively easy to implement query nodes.

4.3 Prior Probabilities
Given relevance assessments from past topics, we can estimate
prior probabilities of the document component being relevant
given its type. Another example prior may depend on the length
of the text in the node. A way t o incorporate this information is
to rank by the probability of the document node given the
query. Using Bayes rule, this would allow us incorporate the
priors on the nodes. The prior for only the node being ranked
would be used, and the system would multiply the probability
that the node generated the query by the prior:

() ()

())N(P?QP

P(Q))N(P?QPQNP

N

N

∝

=

This would result in ranking by the probability of the document
component node given the query, rather than the other way
around.

5. STORAGE AND ALGORITHMS
This section describes how we support structured retrieval in
the Lemur toolkit. We first describe the indexes built to
support retrieval. Then we describe how the indices are used
by the retrieval algorithm. We also present formulas for the
computation of the generative probabilities we estimate for
retrieval.

5.1 Index Support
There are two main storage structures in Lemur that provide the
support necessary for the retrieval algorithm. Lemur stores
inverted indexes containing document and node occurrences and
document structures information.

5.1.1 Inverted Indexes
The basic idea to storing structured documents in Lemur for
retrieval is to use a modified inverted list. Similar to storing
term locations for a document entry in an inverted list, we store
the nodes and the term frequencies of the term in the nodes in
the document entries of the inverted list. The current
implementation of the structured document index does not store
term locations, but could be adapted to store term locations in
the future.

The inverted lists are keyed by term, and each list contains the
following:

• document frequency of the term
• a list of document entries, each entry containing

o document id
o term frequency (count of term in document)
o number of nodes the term occurs in
o a list of node entries, each entry containing

§ node id
§ term frequency (count of term in node)

When read into memory, the inverted lists are stored in an array
of integers. The lists are stored on disk using restricted-variable
length compression and delta-encoding is applied to document
ids and node ids. In the document entry lists, the documents
entries are stored in order by ascending document id. The node

entry lists are similarly stored in order by increasing node id.
Document entries and node entries are only stored in the list
when the term frequency is greater than zero. Access to the
lists on disks is facilitated with an in-memory lookup table for
vocabulary terms.

There is also an analogous set of inverted lists for attribute
name/value pairs associated with tags. For example, if the
document contained the text

 <date calendar=“Gregorian”>,

the index would have an inverted list keyed by the triple
date/calendar/Gregorian. The structure and information stored
in the inverted lists for the attribute name/value pairs is identical
to those in the inverted lists for terms.

5.1.2 Document Structure
The document structure is stored compressed in memory using
restricted variable length compression. A lookup table keyed
by document id provides quick access to the block of
compressed memory for a document. We choose to store the
document structure in memory because it will be requested
often during retrieval. For each document, a list of information
about the document nodes is stored. For each node, we store:

• parent of the node
• type of node
• length of the node (number of words)

Since this list of information about the document structure is
compressed using a variable length encoding, we must
decompress the memory to provide efficient access to
information about nodes. When the document structure for a
document is being decompressed, we also compute:

• accumulated length of the node (length of text directly in
the node + accumulated length of children)

• number of children of the node
• a list of the node’s children

This decompression and computation of other useful
information about the document structure is computed in time
linear to the number of nodes in the document being
decompressed.

5.2 Retrieval
We construct a query tree to process and rank document
components. A typical query tree is illustrated below. The leaf
nodes of the query tree are term nodes which read the inverted
lists for a term off of disk and create result objects for document
components containing the term. The term nodes are also
responsible for propagating the term scores up the document
tree. The sum node merges the result lists returned by each of
the term nodes, combining the score estimates. The score
adjuster node adjusts the score estimates to get the generation
probabilities and also applies any priors. The heap node
maintains a list of the top n ranked objects and returns a sorted
result list. Efficient retrieval is achieved using a document at a
time approach. This requires that the query tree be walked
many times during the evaluation of a query, but results a large
saving of memory, as only the result objects for a document and

the top n results objects in the heap must be stored at any point
in time.

A more detailed description of each of the query nodes follows.
When each query node is called, they are passed a document id
to evaluate. In order to know which document should be
processed next, the term nodes pass up the next document id in
the inverted list. For other query nodes, the minimum next
document id among a node’s children gets passed up the query
tree with the results list. We will describe the query nodes
bottom up, as that is how the scores are computed.

We first note that we can rewrite the log of the probability that
the document node generated the query as

()() () ()
()

() ()∑

∑

∈

∈

+











=

Qw
node

nodeQw node

node
node

wwqtf

w

w
wqtf

?Plog

?P

?P
log?QPlog

unseen

, unseen

seen

as shown in [16]. This will allow us to easily compute the item
in the first sum easily using term nodes, combine these
components of the score using a sum node, and then add on the
rest using a score adjustment node.

5.2.1 Term Node
The term nodes read in the inverted lists for a term w and create
results where the score for a result is initialized to

() ()
() 










⋅

node

node

w

w
wqtf

?P

?P
log

unseen

seen

The term node assumes that the parent id of a node is smaller
than the node’s id. It also assumes that the document entries in
inverted lists are organized in increasing document id order and
the node entries are organized in increasing term id order. The
structured document index we built is organized this way. In
the follow ing algorithm description, indentation is used to
denote the body of a loop.

1 Seek to the next entry in the inverted list where the
document id is at least as large as the requested document

2 If the document id of the next entry is the requested
document

3 Decompress the document structure information for the
document

4 Read in the node entries from the inverted list

5 Create the result objects for the leaf nodes. For each
node that contains the term:

Heap

Score adjuster

Sum Sum

Term

“gregorian”

Term

“chant”

6 Initialize the score for the result to the seen
probability part for the node

 () () () ()nodenodenodewfreqnodeseen ,,1 λω−=

 where

 () ()
()nodelengthdaccumulate

nodelength
nodenode =,λ

 and ω will be used to set the influence of the
collection models.

7 Push the node id onto the candidate node heap

8 Store the result object in an array indexed by node id
for fast access

9 While the candidate node heap isn’t empty:

10 Pop the top node id off of the heap (the largest node
id), set it to the current node id

11 Lookup the result from the result array

12 Lookup the node id for the parent of the current node

13 Lookup the parent node’s result

14 If the parent node’s result object is NULL:

15 Create a new result object for the parent node and
put it in the result array, initializing the score to 0

16 Push the parent node’s id onto the candidate node
heap

17 Propagate the seen part of the score from the
current node to the parent node, setting the
parent node’s seen part to

 () () ()parentnodenodeseenparentseen ,λ+

 where

 () ()
()parentlengthdaccumulate

nodelengthdaccumulate
parentnode =,λ

18 Push the result onto the front of the results list

19 Set the result in the result array for the node to NULL
(initializing the result array for the next document)

[Now each document node that contains the query term
(or has a child containing the term) has a result in the
results list where the score is the seen probability part
for the query term]

20 For each node in the result list

21 Compute the unseen part of the generative
probability for each node. For linear
interpolation with a constant ω and one single
node type independent collection model, this is

 () ()collectionwnodewunseen ?P, ω=

For linear interpolation with a constant ω and
node type specific collection models, this can be
computed recursively

()
()() ()
() ()∑

∈

+

=

)(

,

,,

,?P

,

nodechildrenchild

nodetypecollection

nodechildchildwunseen

nodenodew

nodewunseen

λ

λω

22 Set the score for the result to

() () ()
() 







 +
⋅

nodewunseen
nodewunseennodeseen

wqtf
,

,
log

23 Return the result list and the next document id in the
inverted list

The result list now contains results for a single document where
the score is

() ()
()










⋅

node

node

w
w

wqtf
?P
?P

log
unseen

seen

and the list is ordered by increasing node id.

5.2.2 Sum Node
The sum node maintains an array of result lists, with one result
list for each of the children. It seeks to the next entry in each of
the child result lists where the document id is at least as large as
the requested document. If necessary, it calls the children nodes
to get their next result lists. For the requested document, the
sum node merges results from the result lists of the children,
setting the score of the new result equal to the sum of the
children’s results with the same document and node id. This
node assumes that results in a result list are ordered by
increasing document id, then increasing node id. The results
returned by this component have the score

() ()
()∑

∈











nodeQw node

node

w

w
wqtf

, unseen

seen

?P

?P
log

and the minimum document id returned by the children is
returned.

5.2.3 Score Adjustment Node
The score adjustment node adds

() ()∑
∈Qw

nodewwqtf ?Plog unseen

to each of the results, where

() ()nodewunseenw node ,?Punseen =

as defined for the term node. If there is a prior probability for
the node, the score adjustment node also adds on the log of the
prior. The results in the list now have the score

() ()
()

() ()
()()

() ()()node

node

wwqtf

w
w

wqtf

node

Qw
node

nodeQw node

node

P?QPlog

Plog

?Plog

?P
?P

log

unseen

, unseen

seen

=

+

+












∑

∑

∈

∈

which is the log of the score by which we wish to rank
document components.

5.2.4 Heap Node
The heap node repeatedly calls its child node for result lists
until the document collection has been ranked. The next
document id it calls for its child to process is the document id

returned by the child node in the previous evaluation call. It
maintains a heap of the top n results. After the document
collection has been ranked, it sorts the results by decreasing
score and stores them in a result list that is returned.

5.2.5 Other Nodes
There are many other useful nodes that could be useful for
retrieval. One example is a node that filters the result lists so
that the XML path of the node in the document tree satisfies
some requirements. Another example is a node that throws out
all but the top n components of a document.

6. EXPERIMENT SETUP
The index we created used the Krovetz stemmer and InQuery
stopword list. Topics are similarly processed, and all of our
queries are constructed from the title, description, and
keywords fields. All words in the title, description, and
keywords fields of the topic are given equal weight in the query.
Table 3 shows the size of components created to support
retrieval on the INEX document collection. The total index size
including information needed to do context sensitive smoothing
is about 70% the size of the original document collection. A
better compression ratio could be achieved by compression of
the context sensitive smoothing support files. Note that the
document term file which is 100 MB is not necessary for the
retrieval algorithms described above.

Component Size (MB)
Inverted file 100
Document term file (allows iteration
over terms in a document)

100

Document structure 30
Attributes inverted file 23
Smoothing – single collection model 4
Smoothing – context sensitive models 81

(not compressed)
Other files (lookup tables, vocabulary,
table of contents, etc.)

12

Total 350
Table 3: Lemur structured index component sizes

Table 4 shows approximate running times for index construction
and retrieval. The retrieval time for context insensitive
smoothing is reasonable at less than 20 seconds per query, but
we would like to lower the average query time even more. We
feel we can do this with some simple data structure
optimizations that will increase memory reuse.

Action Time (mins)
Indexing 25
Retrieval of 36 INEX 2003 CO topics
– context insensitive smoothing

10

Retrieval of 36 INEX 2003 CO topics
– context sensitive smoothing

45

Table 4: Indexing and retrieval times using Lemur

The higher retrieval time for the context sensitive retrieval
algorithm is due to the recursive computation of the unseen
component of the score as described Step 21 of Section 5.2.1.
Clever redesign of the algorithm may reduce the time some.
However, all of the descendent nodes in the document’s tree
must be visited regardless of whether the descendent nodes
contain any of the query terms. This means that the
computation of the unseen component of the scores is linear in
the number of nodes in the document tree, rather than the
typically sub-linear case for computation of the seen score
components. If the ? and ? functions and their parameters are
known, it is possible to precompute and store necessary
information to reduce the running time to something only
slightly larger than the context insensitive version. However,
our implementation is meant for research, so we prefer that
these parameters remain easily changeable.

7. EXPERIMENT RESULTS

We submitted three official runs as described in Table 2. All of
our runs used the title, description, and keyword fields of the
topics. Unfortunately, two of our runs performed rather
poorly. This is either an error in our path filter or a problem
with the component type priors. We would also like to
evaluate the additional runs corresponding to the dashes in the
table, but we have not been able to do these experiments yet.

The LM_context_TDK run has good performance across all
measures. This is our basic language modeling system using
context sensitive smoothing. The strong performance of the
context sensitive language modeling approach speaks well for
the flexibility of language modeling.

For the content only topics, context sensitive smoothing does
not help. The node type priors also do not consistently help.
There was a significant problem with the path filters we used.

With regards to context sensitive smoothing, it may not make
much difference for content only tasks as they are typically
searching for textual components such as paragraphs, sections,
and articles. The characteristics of the text in these components
tend to be very similar, so the context sensitive smoothing may
not be helpful.

With regards to component type priors, we have observed
similar puzzling behavior in [12]. We discovered that the
distributions observed in the rankings after applying the prior
probabilities are not the desired distributions. We are actively
working on new techniques to incorporate information in a way
that will provide the desired distributions of results in the
rankings.

8. RELATED WORK
There exists a large and growing body of work in retrieving
information from XML documents. Some work is described in
our previous paper [11] and much of the more recent work is
also described in the INEX 2002 proceedings [14]. With that in
mind, we will focus our discussion of related work on language
modeling approaches for structured document retrieval.

In [5] a generative language modeling approach for content only
queries is described where a document component’s language
model is estimated by taking a linear interpolation of the
maximum likelihood model from the text of the node and its
ancestors and a collection model. This corresponds to a special
case of our approach. Our model is more flexible in that it
allows context sensitive smoothing and different weighting of
text in children nodes.

The authors of [9] also present a generative language model for
content only queries in structured document retrieval. They
estimate the collection model in a different way, using document
frequencies instead of collection term frequencies. As with [5],
this model can be viewed as a special case of the language
modeling approach presented here.

9. CLOSING REMARKS
We presented experiments using a hierarchical language model.
The strong performance of language modeling algorithms
demonstrates the flexibility and ease of adapting language
models to the problem. In our preliminary experiments with
standard text queries, context sensitive smoothing did not give
much different performance than using a single collection model.

We described data structures and retrieval algorithms to support
retrieval of arbitrary XML document components within the
Lemur toolkit. We are reasonably pleased with the efficiency of
the algorithms for a research system, but we will strive to
improve the algorithms and data structures to reduce retrieval
times even further.

In our future work, we would like to compare the component
retrieval to standard document retrieval. We would also like to
investigate query expansion using XML document components.
Additionally, we would like to explore different ways of setting
the ? weights on the nodes’ language models, as we believe that
words in some components may convey more useful
information than words in other components.

inex_eval Topic
Fields

Context Prior Path
Strict Gen

TDK YES NO NO .0464 .0646
TDK YES YES NO .0488 .0653
TDK NO NO NO .0463 .0641
TDK NO YES NO .0485 .0654

Table 1: Performance of the retrieval system on INEX 2002 CO topics. Context refers to context sensitive smoothing, prior
refers to the document component type priors, and path refers to the overlapping path filter.

inex_eval inex_eval_ng w/o overlap Run Name
(Official runs are bold)

Topic
Fields

Context Prior Path
Strict Gen Strict Gen Strict Gen

LM_context_TDK TDK YES NO NO .0717 .0804 .2585 .3199 .2305 .2773
LM_context_typr_T DK TDK YES YES NO .0769 .0855
LM_context_typr_path_TDK TDK YES YES YES .0203 .0240
LM_base_TDK TDK NO NO NO .0783 .0861
LM_base_typr_TDK TDK NO YES NO .0764 .0847
LM_base_typr_path_TDK TDK NO YES YES .0204 .0234

Table 2: Summary of runs and results for INEX 2003 CO topics.

10. ACKNOWLEDGMENTS
This work was sponsored by the Advanced Research and
Development Activity in Information Technology (ARDA)
under its Statistical Language Modeling for Information
Retrieval Research Program. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors, and do not necessarily reflect those of the
sponsor.

11. REFERENCES
[1] Fuhr, N. and K. Großjohann. XIRQL: A query language

for information retrieval in XML documents. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (2001), ACM Press, 172-180.

[2] Grabs, T. and H.J. Schek. Generating vector spaces on-
the-fly for flexible XML retrieval. In Proceedings of the
25th Annual International ACM SIGIR Workshop on XML
Information Retrieval (2002), ACM.

[3] Hatanao, K., H. Kinutani, M. Yoshikawa, and S. Uemura.
Information retrieval system for XML documents. In
Proceedings of Database and Expert Systems Applications
(DEXA 2002), Springer, 758-767.

[4] Hiemstra, D. Using language models for information
retrieval, Ph.D. Thesis (2001), University of Twente.

[5] Hiemstra, D. A database approach to context-based XML
retrieval. In [14], 111-118.

[6] Kazai, G., M. Lalmas, and T. Rölleke. A model for the
representation and focused retrieval of structured
documents based on fuzzy aggregation. In The 8th
Symposium on String Processing and Information Retrieval
(SPIRE 2001), IEEE, 123-135.

[7] Kazai, G., M. Lalmas, and T. Rölleke. Focussed
Structured Document Retrieval. In Proceedings of the 9th
Symposium on String Processing and Information Retrieval
(SPIRE 2002), Springer, 241-247.

[8] Lafferty, J., and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (2001), ACM Press, 111-119.

[9] List, J., and A.P. de Vries. CWI at INEX 2002. In [14],
133-140.

[10] Myaeng, S.H., D.H. Jang, M.S. Kim, and Z.C. Zhoo. A
flexible model for retrieval of SGML documents. In
Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (1998), ACM Press, 138-145.

[11] Ogilvie, P. and J. Callan. Language models and structured
document retrieval. In [14], 33-40.

[12] Ogilvie, P. and J. Callan. Combining Structural Information
and the Use of Priors in Mixed Named-Page and Homepage
Finding. To appear in Proceedings of the Twelfth Text
REtrieval Conference (TREC 2003) .

[13] Ponte, J., and W.B. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (1998), ACM Press,
275-281.

[14] Proceedings of the First Workshop of the Initiative for the
Evaluation of XML Retrieval (INEX). 2003, DELOS.

[15] Westerweld, T., W. Kraaj, and D. Heimstra. Retrieving
web pages using content, links, URLs, and anchors. In
Proceedings of the Tenth Text Retrieval Conference, TREC
2001, NIST Special publication 500-250 (2002), 663-672.

[16] Zhai, C. and J. Lafferty. A study of smoothing methods
for language models applied to ad hoc information retrieval.
In Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (2001), ACM Press, 334-342.

