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ABSTRACT 
This paper presents a language modeling system for ranking flat 
text queries against a collection of structured documents.  The 
system, built using Lemur, produces probability estimates that 
arbitrary  document components generated the query.  This 
paper describes storage mechanisms and retrieval algorithms for 
the evaluation of unstructured queries over XML documents.  
The paper includes retrieval experiments using a generative 
language model on the content only topics of the INEX testbed, 
demonstrating the strengths and flexibility of language modeling 
to a variety of problems.  We also describe index characteristics, 
running times, and the effectiveness of the retrieval algorithm. 

1. INTRODUCTION 
Language modeling has been studied extensively in standard 
Information Retrieval in the last few years.  Researches have 
demonstrated that the framework provided by language models 
has been powerful and flexible enough to provide strong 
solutions to numerous problems, including ad-hoc information 
retrieval, known-item finding on the Internet, filtering, 
distributed information retrieval, and clustering.   

With the success of language modeling for this wide variety of 
tasks and the increasing interest in studying structured 
document retrieval, it is natural to apply the language modeling 
framework to XML retrieval.  This paper describes and 
presents experiments using one way the generative language 
model could be extended to model and support queries on 
structured documents.  We model documents using a tree-based 
language model.  This is similar to many previous models for 
structured document retrieval [1][2][3][6][7][10], but differs in 
that language modeling provides some guidance in combining 
information from nodes in the tree and estimating term weights.    
This work is also similar to other works using language models 
for XML retrieval [5][9], but differs in that we also present 
context-sensitive language model smoothing and an 
implementation using information retrieval style inverted lists 
rather than  a database. 

The next section provides background in language modeling in 
information retrieval.  In Section 3 we present our approach to 
modeling structured documents.  Section 4 describes querying 
the tree-based language models presented in the previous 
section.  In Section 5we describe the indexes required to support 
retrieval and the retrieval algorithms.  We describe the 
experiment setup and indexes used for INEX 2003 in Section 6.  
Section 7 describes experimental results.  We discuss 

relationships to other approaches to structured document 
retrieval in Section 8, and Section 9 concludes the paper. 

2. LANGUAGE MODELS FOR 
DOCUMENT RETRIEVAL 
Language modeling applied to information retrieval problems 
typically models text using unigram language models.  Unigram 
language models are similar to bags-of-words representations, as 
word order is ignored.  The unigram language model specifically 
estimates the probability of a word given some text.  Document 
ranking typically is done one of two ways: by measuring how 
much a query language model diverges from document language 
models [8], or by estimating the probability that each document 
generated the query string.  Since we use the generative language 
model for our experiments, we will not describe the divergence 
based approaches here. 

2.1 The Generative Language Model 
The generative method ranks documents by directly estimating 
the probability of the query using the texts’ language models 
[13][4][15][16]:   
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where Q is the query string, and T? is the language model 

estimated for the text, and qtf(w) is the query term frequency of 
the term.  Texts more likely to have produced the query are 
ranked higher.  It is common to rank by the log of the generative 
probability as it there is less danger of underflow and it 
produces the same orderings: 
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Under the assumptions that query terms are generated 
independently and that the query language model used in KL-
divergence is the maximum-likelihood estimate, the generative 
model and KL divergence produce the same rankings [11]. 

2.2 The Maximum-Likelihood Estimate of a 
Language Model 
The most direct way to estimate a language model given some 
observed text is to use the maximum-likelihood estimate, 
assuming an underlying multinomial model.  In this case, the 
maximum-likelihood estimate is also the empirical distribution.  
An advantage of this estimate is that it is easy to compute.  It is 
very good at estimating the probability distribution for the 
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language model when the size of the observed text is very large.  
It is given by: 
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where T is the observed text, freq(w, T) is the number of times 
the word w occurs in T, and |T| is the length in words of T .  The 
maximum likelihood estimate is not good at estimating low 
frequency terms for short texts, as it will assign zero probability 
to those words.  This creates a problem for estimating document 
language models in both KL divergence and generative language 
model approaches to ranking documents, as the log of zero is 
negative infinity.  The solution to this problem is smoothing.  

2.3 Smoothing 
Smoothing is the re-estimation of the probabilities in a language 
model.  Smoothing is motivated by the fact that many of the 
language models we estimate are based on a small sample of the 
“true” probability distribution.  Smoothing improves the 
estimates by leveraging known patterns of word usage in 
language and other language models based on larger samples.  In 
information retrieval smoothing is very important [16], because 
the language models tend to be constructed from very small 
amounts of text.  How we estimate low probability words can 
have large effects on the document scores.  In addition to the 
problem of zero probabilities mentioned for maximum-
likelihood estimates, much care is required if this probability is 
close to zero.  Small changes in the probability will have large 
effects on the logarithm of the probability, in turn having large 
effects on the document scores.  Smoothing also has an effect 
similar to inverse document frequency [4], which is used by 
many retrieval algorithms. 

The smoothing technique most commonly used is linear 
interpolation.  Linear interpolation is a simple approach to 
combining estimates from different language models: 
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where k  is the number of language models we are combining, and 

iλ  is the weight on the model i? .  To ensure that this is a valid 

probability distribution, we must place these constraints on the 
lambdas: 
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One use of linear interpolation is to smooth a document’s 
language model with a collection language model.  This new 
model would then be used as the smoothed document language 
model in either the generative or KL-divergence ranking 
approach.   

2.4 Another Characterization 
When we take a simple linear interpolation of the maximum 
likelihood model estimated from text and a collection model, we 
can also characterize the probability estimates as: 
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This notation distinguishes the probability estimates for cases 
where the word has been seen in the text and where the word 
has not been seen will be in the sample text.  We will use this 
notation later when describing the retrieval algorithm, as it 
simplifies the description and is similar to the notation used in 
previous literature [16].  The simple form of linear interpolation 
where ? is a fixed constant is often referred to as Jelinek-
Mercer smoothing. 

3. STRUCTURED DOCUMENTS AND 
LANGUAGE MODELS 
The previous section described how language modeling is used 
in unstructured document retrieval.  With structured documents 
such as XML or HTML, we believe that the information 
contained in the structure of the document can be used to 
improve document retrieval.  In order to leverage this 
information, we need to model document structure in the 
language models.   

We model structured documents as trees.  The nodes in the tree 
correspond directly with tags present in the document.  A 
partial tree for a document might look like: 

 

Nodes in the document tree correspond directly to XML tags in 
the document.  For each document node in the tree, we estimate 
a language model.  The language models for leaf nodes with no 
children can be estimated from the text of the node.  The 
language models for other nodes are estimated by taking a linear 
interpolation of a language model formed from the text in the 
node (but not in any of its children) and the language models 
formed from the children. 

We have not specified how the linear interpolation parameters 
for combining language models in the document tree should be 
chosen.  This could be task specific, and training may be 
required.  The approach we will adopt in this paper is to set the 
weight on a child node as the accumulated length of the text in 
the child divided by the accumulated length of the node.  By 
accumulated length we mean the number of words directly  in the 
node plus the accumulated length of the node’s children.  Setting 



the parameters in this manner assumes that a word in a one node 
type is no more important than a word in any other node type; 
it is the accumulated length of the text in the node that 
determines how much information is contained in the node.   

We also wish to smooth the maximum likelihood models that are 
estimated directly from the text with a collection language 
model.  In this work, we will combine the maximum likelihood 
models with the collection model using a linear interpolation 
with fixed weights.  The collection model may be specific to the 
node type, giving context sensitive smoothing, or the collection 
model may be one large model estimated from everything in the 
corpus, giving a larger sample size.   

When the ? parameters are set proportional to the text length 
and a single collection model is used, this results a special case 
that is very similar to the models used in [5][9].  The tree-based 
language model estimated using these parameter settings will be 
identical to a language model estimated by taking a simple linear 
interpolation of a maximum likelihood estimate from the text in 
the node and its ancestors and a the collection model.   

4. RANKING THE TREE MODELS 
In a retrieval environment for structured documents, it is 
desirable to provide support for both structured queries and 
unstructured, free-text queries.  It is easier to adapt the 
generative language model to structured documents, so we only 
consider that model in this paper.  It is simpler to support 
unstructured queries, so we will describe retrieval for them first. 

4.1 Unstructured Queries 
To rank document components for unstructured queries, we use 
the generative language modeling approach for IR described in 
Section 2.  For full document retrieval, we need only compute 
the probability that the document language model generated the 
query.  If we wish to return arbitrary document components, 
we need to compute the probability that each component 
generated the query.   

Allowing the system to return arbitrary document components 
may result in the system stuffing the results list with many 
components from a single document.  This behavior is 
undesirable, so a filter on the results is necessary.   

One filter we employ takes a greedy approach to preventing 
overlap among components in the results list.  For each result, it 
will be thrown out of the results if there is any component 
higher in the ranking that is an ancestor or descendent of the 
document component under consideration. 

4.2 Structured Queries 
Our previous paper on this subject [11] discusses how some 
structural query operators could be included in the model.  We 
do not currently support any of these operators in our system, 
so we will not discuss in depth here.  However, we will note 
that the retrieval framework can support most desired structural 
query operators as relatively easy to implement query nodes. 

4.3 Prior Probabilities 
Given relevance assessments from past topics, we can estimate 
prior probabilities of the document component being relevant 
given its type. Another example prior may depend on the length 
of the text in the node.  A way t o incorporate this information is 
to rank by the probability of the document  node given the 
query.  Using Bayes rule, this would allow us incorporate the 
priors on the nodes.  The prior for only the node being ranked 
would be used, and the system would multiply the probability 
that the node generated the query by the prior:  
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This would result in ranking by the probability of the document 
component node given the query, rather than the other way 
around.   

5. STORAGE AND ALGORITHMS 
This section describes how we support structured retrieval in 
the Lemur toolkit.  We first describe the indexes built to 
support retrieval.  Then we describe how the indices are used 
by the retrieval algorithm.  We also present formulas for the 
computation of the generative probabilities we estimate for 
retrieval.   

5.1 Index Support 
There are two main storage structures in Lemur that provide the 
support necessary for the retrieval algorithm.  Lemur stores 
inverted indexes containing document and node occurrences and 
document structures information. 

5.1.1 Inverted Indexes 
The basic idea to storing structured documents in Lemur for 
retrieval is to use a modified inverted list.  Similar to storing 
term locations for a document entry in an inverted list, we store 
the nodes and the term frequencies of the term in the nodes in 
the document entries of the inverted list. The current 
implementation of the structured document index does not store 
term locations, but could be adapted to store term locations in 
the future.   

The inverted lists are keyed by term, and each list contains the 
following: 

• document frequency of the term 
• a list of document entries, each entry containing 

o document id 
o term frequency (count of term in document) 
o number of nodes the term occurs in 
o a list of node entries, each entry containing 

§ node id 
§ term frequency (count of term in node) 

When read into memory, the inverted lists are stored in an array 
of integers.  The lists are stored on disk using restricted-variable 
length compression and delta-encoding is applied to document 
ids and node ids.  In the document entry lists, the documents 
entries are stored in order by ascending document id.  The node 



entry lists are similarly stored in order by increasing node id.  
Document entries and node entries are only stored in the list 
when the term frequency is greater than zero.  Access to the 
lists on disks is facilitated with an in-memory lookup table for 
vocabulary terms. 

There is also an analogous set of inverted lists for attribute 
name/value pairs associated with tags.  For example, if the 
document contained the text  

  <date calendar=“Gregorian”>, 

the index would have an inverted list keyed by the triple 
date/calendar/Gregorian.  The structure and information stored 
in the inverted lists for the attribute name/value pairs is identical 
to those in the inverted lists for terms.   

5.1.2 Document Structure 
The document structure is stored compressed in memory using 
restricted variable length compression.  A lookup table keyed 
by document id provides quick access to the block of 
compressed memory for a document.  We choose to store the 
document structure in memory because it will be requested 
often during retrieval.  For each document, a list of information 
about the document nodes is stored.  For each node, we store: 

• parent of the node 
• type of node 
• length of the node (number of words) 

Since this list of information about the document structure is 
compressed using a variable length encoding, we must 
decompress the memory to provide efficient access to 
information about nodes.  When the document structure for a 
document is being decompressed, we also compute: 

• accumulated length of the node (length of text directly in 
the node + accumulated length of children) 

• number of children of the node 
• a list of the node’s children 

This decompression and computation of other useful 
information about the document structure is computed in time 
linear to the number of nodes in the document being 
decompressed.   

5.2 Retrieval 
We construct a query tree to process and rank document 
components.  A typical query tree is illustrated below.  The leaf 
nodes of the query tree are term nodes which read the inverted 
lists for a term off of disk and create result objects for document 
components containing the term.  The term nodes are also 
responsible for propagating the term scores up the document 
tree.  The sum node merges the result lists returned by each of 
the term nodes, combining the score estimates.  The score 
adjuster node adjusts the score estimates to get the generation 
probabilities and also applies any priors.  The heap node 
maintains a list of the top n ranked objects and returns a sorted 
result list.  Efficient retrieval is achieved using a document at a 
time approach.  This requires that the query tree be walked 
many times during the evaluation of a query, but results a large 
saving of memory, as only the result objects for a document and 

the top n results objects in the heap must be stored at any point 
in time.   

 
A more detailed description of each of the query nodes follows.  
When each query node is called, they are passed a document id 
to evaluate.  In order to know which document should be 
processed next, the term nodes pass up the next document id in 
the inverted list.  For other query nodes, the minimum next 
document id among a node’s children gets passed up the query 
tree with the results list.  We will describe the query nodes  
bottom up, as that is how the scores are computed. 

We first note that  we can rewrite the log of the probability that 
the document node generated the query as 
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as shown in [16].  This will allow us to easily compute the item 
in the first sum easily using term nodes, combine these 
components of the score using a sum node, and then add on the 
rest using a score adjustment node. 

5.2.1 Term Node 
The term nodes read in the inverted lists for a term w and create 
results where the score for a result is initialized to  
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The term node assumes that the parent id of a node is smaller 
than the node’s id.  It also assumes that the document entries in 
inverted lists are organized in increasing document id order and 
the node entries are organized in increasing term id order.  The 
structured document index we built is organized this way.   In 
the follow ing algorithm description, indentation is used to 
denote the body of a loop. 

1 Seek to the next entry in the inverted list where the 
document id is at least as large as the requested document 

2 If the document id of the next entry is the requested 
document 

3 Decompress the document structure information for the 
document 

4 Read in the node entries from the inverted list 

5 Create the result objects for the leaf nodes.  For each 
node that contains the term: 

Heap  

Score adjuster  

Sum Sum 

Term 

“gregorian” 

Term 

“chant” 



6 Initialize the score for the result to the seen 
probability part for the node 

 ( ) ( ) ( ) ( )nodenodenodewfreqnodeseen ,,1 λω−=  

 where  

 ( ) ( )
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 and ω  will be used to set the influence of the 
collection models.   

7 Push the node id onto the candidate node heap 

8 Store the result object in an array indexed by node id 
for fast access 

9 While the candidate node heap isn’t empty: 

10 Pop the top node id off of the heap  (the largest node 
id), set it to the current node id 

11 Lookup the result from the result array  

12 Lookup the node id for the parent of the current node 

13 Lookup the parent node’s result  

14 If the parent node’s result object is NULL: 

15 Create a new result object for the parent node and 
put it in the result array, initializing the score to 0 

16 Push the parent node’s id onto the candidate node 
heap 

17 Propagate the seen part of the score  from the 
current node to the parent node, setting the 
parent node’s seen part to 

 ( ) ( ) ( )parentnodenodeseenparentseen ,λ+  

 where  

 ( ) ( )
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parentnode =,λ  

18 Push the result onto the front of the results list  

19 Set the result in the result array for the node to NULL 
(initializing the result array for the next document) 

[Now each document node that contains the query term 
(or has a child containing the term) has a result in the 
results list where the score is the seen probability part 
for the query term]  

20 For each node in the result list 

21 Compute the unseen part of the generative 
probability for each node.  For linear 
interpolation with a constant ω  and one single 
node type independent collection model, this is  

 ( ) ( )collectionwnodewunseen ?P, ω=  

For linear interpolation with a constant ω  and 
node type specific collection models, this can be 
computed recursively 
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22 Set the score for the result to 
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23 Return the result list  and the next document id in the  
inverted list 

The result list now contains results for a single document where 
the score is  
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and the list is ordered by increasing node id. 

5.2.2 Sum Node 
The sum node maintains an array of result lists, with one result 
list for each of the children.  It seeks to the next entry in each of 
the child result lists where the document id is at least as large as 
the requested document.  If necessary, it calls the children nodes 
to get their next result lists.  For the requested document, the 
sum node merges results from the result lists of the children, 
setting the score of the new result equal to the sum of the 
children’s results with the same document and node id.  This 
node assumes that results in a result list are ordered by 
increasing document id, then increasing node id.  The results 
returned by this component have the score 
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and the minimum document id returned by the children is 
returned.  

5.2.3 Score Adjustment Node 
The score adjustment node adds  
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to each of the results, where  
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as defined for the term node.  If there is a prior probability for 
the node, the score adjustment node also adds on the log of the 
prior.  The results in the list now have the score 
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which is the log of the score by which we wish to rank 
document components. 

5.2.4 Heap Node 
The heap node repeatedly calls its child node for result lists 
until the document collection has been ranked.  The next 
document id it calls for its child to process is the document id 



returned by the child node in the previous evaluation call.  It 
maintains a heap of the top n results.  After the document 
collection has been ranked, it sorts the results by decreasing 
score and stores them in a result list that is returned.   

5.2.5 Other Nodes 
There are many other useful nodes that could be useful for 
retrieval.  One example is a node that filters the result lists so 
that the XML path of the node in the document tree satisfies 
some requirements.  Another example is a node that throws out 
all but the top n components of a document.     

6. EXPERIMENT SETUP 
The index we created used the Krovetz stemmer and InQuery 
stopword list.  Topics are similarly processed, and all of our 
queries are constructed from the title, description, and 
keywords fields.  All words in the title, description, and 
keywords fields of the topic are given equal weight in the query.   
Table 3 shows the size of components created to support 
retrieval on the INEX document collection.  The total index size 
including information needed to do context sensitive smoothing 
is about 70% the size of the original document collection.  A 
better compression ratio could be achieved by compression of 
the context sensitive smoothing support files.  Note that the 
document term file which is 100 MB is not necessary for the 
retrieval algorithms described above. 

 

 

 

Component  Size (MB) 
Inverted file 100  
Document term file (allows iteration 
over terms in a document) 

100  

Document structure 30  
Attributes  inverted file 23  
Smoothing – single collection model 4  
Smoothing – context sensitive models  81 

(not compressed) 
Other files (lookup tables, vocabulary, 
table of contents, etc.) 

12  

Total 350  
Table 3: Lemur structured index component sizes 

Table 4 shows approximate running times for index construction 
and retrieval.  The retrieval time for context insensitive 
smoothing is reasonable at less than 20 seconds per query, but 
we would like to lower the average query time even more.  We 
feel we can do this with some simple data structure 
optimizations that will increase memory reuse.   

Action Time (mins) 
Indexing 25  
Retrieval of 36 INEX 2003 CO topics 
– context insensitive smoothing 

10 

Retrieval of 36 INEX 2003 CO topics 
– context sensitive smoothing 

45 

Table 4: Indexing and retrieval times using Lemur 

The higher retrieval time for the context sensitive retrieval 
algorithm is due to the recursive computation of the unseen 
component of the score as described Step 21 of Section 5.2.1.  
Clever redesign of the algorithm may reduce the time some.  
However, all of the descendent nodes in the document’s tree 
must be visited regardless of whether the descendent nodes 
contain any of the query terms.  This means that the 
computation of the unseen component of the scores is linear in 
the number of nodes in the document tree, rather than the 
typically sub-linear case for computation of the seen score 
components.  If the ? and ?  functions and their parameters are 
known, it is possible to precompute and store necessary 
information to reduce the running time to something only 
slightly larger than the context insensitive version.  However, 
our implementation is meant for research, so we prefer that 
these parameters remain easily changeable.   

7. EXPERIMENT RESULTS 



We submitted three official runs as described in Table 2.  All of 
our runs used the title, description, and keyword fields of the 
topics.  Unfortunately, two of our runs performed rather 
poorly.  This is either an error in our path filter or a problem 
with the component type priors.  We would also like to 
evaluate the additional runs corresponding to the dashes in the 
table, but we have not been able to do these experiments yet. 

The LM_context_TDK run has good performance across all 
measures.  This is our basic language modeling system using 
context sensitive smoothing.  The strong performance of the 
context sensitive language modeling approach speaks well for 
the flexibility of language modeling.   

For the content only topics, context sensitive smoothing does 
not help.  The node type priors also do not consistently help.  
There was a significant problem with the path filters we used.   

With regards to context sensitive smoothing, it may not make 
much difference for content only tasks as they are typically 
searching for textual components such as paragraphs, sections, 
and articles.  The characteristics of the text in these components 
tend to be very similar, so the context sensitive smoothing may 
not be helpful.   

With regards to component type priors, we have observed 
similar puzzling behavior in [12].  We discovered that the 
distributions observed in the rankings after applying the prior 
probabilities are not the desired distributions.  We are actively 
working on new techniques to incorporate information in a way 
that will provide the desired distributions of results in the 
rankings. 

8. RELATED WORK 
There exists a large and growing body of work in retrieving 
information from XML documents.  Some work is described in 
our previous paper [11] and much of the more recent work is 
also described in the INEX 2002 proceedings [14].  With that in 
mind, we will focus our discussion of related work on language 
modeling approaches for structured document retrieval.   

In [5] a generative language modeling approach for content only 
queries is described where a document component’s language 
model is estimated by taking a linear interpolation of the 
maximum likelihood model from the text of the node and its 
ancestors and a collection model.  This corresponds to a special 
case of our approach.  Our model is more flexible in that it 
allows context sensitive smoothing and different weighting of 
text in children nodes.   

The authors of [9] also present a generative language model for 
content only queries in structured document retrieval.  They 
estimate the collection model in a different way, using document 
frequencies instead of collection term frequencies.  As with [5], 
this model can be viewed as a special case of the language 
modeling approach presented here.   

9. CLOSING REMARKS 
We presented experiments using a hierarchical language model.  
The strong performance of language modeling algorithms 
demonstrates the flexibility and ease of adapting language 
models to the problem.  In our preliminary experiments with 
standard text queries, context sensitive smoothing did not give 
much different performance than using a single collection model.   

We described data structures and retrieval algorithms to support 
retrieval of arbitrary XML document components within the 
Lemur toolkit.  We are reasonably pleased with the efficiency of 
the algorithms for a research system, but we will strive to 
improve the algorithms and data structures to reduce retrieval 
times even further.   

In our future work, we would like to compare the component 
retrieval to standard document retrieval.  We would also like to 
investigate query expansion using XML document components.   
Additionally, we would like to explore different ways of setting 
the ? weights on the nodes’ language models, as we believe that 
words in some components may convey more useful 
information than words in other components. 

inex_eval  Topic 
Fields  

Context  Prior Path  
Strict Gen  

TDK YES NO NO .0464 .0646 
TDK YES YES NO .0488 .0653 
TDK NO NO NO .0463 .0641 
TDK NO YES NO .0485 .0654 

Table 1: Performance of the retrieval system on INEX 2002 CO topics.   Context refers to context sensitive smoothing, prior 
refers to the document component type priors, and path refers to the overlapping path filter. 

inex_eval inex_eval_ng w/o overlap Run Name 
(Official runs are bold)  

Topic 
Fields 

Context  Prior Path  
Strict Gen  Strict Gen  Strict Gen 

LM_context_TDK TDK YES NO NO .0717 .0804 .2585 .3199 .2305 .2773 
LM_context_typr_T DK TDK YES YES NO .0769 .0855     
LM_context_typr_path_TDK TDK YES YES YES .0203 .0240     
LM_base_TDK TDK NO NO NO .0783 .0861     
LM_base_typr_TDK TDK NO YES NO .0764 .0847     
LM_base_typr_path_TDK TDK NO YES YES .0204 .0234     

Table 2: Summary of runs and results for INEX 2003 CO topics.   
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