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ABSTRACT
This work investigates the effectiveness of learning to rank
methods for entity search. Entities are represented by multi-
field documents constructed from their RDF triples, and
field-based text similarity features are extracted for query-
entity pairs. State-of-the-art learning to rank methods learn
models for ad-hoc entity search. Our experiments on an en-
tity search test collection based on DBpedia confirm that
learning to rank methods are as powerful for ranking entities
as for ranking documents, and establish a new state-of-the-
art for accuracy on this benchmark dataset.
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1. INTRODUCTION
Publicly available knowledge bases such as DBpedia, Free-

base, and Wikipedia are beginning to be used for tasks such
as document ranking, card retrieval, and question answer-
ing [3, 4, 5]. A key component in many such systems is ad-
hoc entity retrieval - using a query to retrieve one or more
entities that satisfy some underlying information need. Sev-
eral methods of representing and ranking entities have been
developed recently, however the problem is far from solved.

Recent knowledge bases store information in RDF triples.
A triple is a piece of information about the entity, for ex-
ample its name, alias, category, description or relationship
to another entity. Some prior research represents each en-
tity as a structured document by grouping RDF triples into
fields [1, 6] or a tree [2]. This allows entities to be retrieved
by typical document retrieval algorithms such as BM25,
query likelihood, or sequential dependency models.

This work investigates the effectiveness of learning to rank
(LeToR) models, the state-of-the-art in ranking documents,
for entity search. It represents entities following the previ-
ous state-of-the-art’s multi-field representations [6], extracts
text similarity features for query-entity pairs, and studies
the effectiveness of state-of-the-art learning to rank models
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for ranking entities. Experimental results on an entity search
test collection based on DBpedia [1] confirm that learning
to rank is as powerful for entity ranking as for document
ranking, and significantly improves the previous state-of-
the-art. Results also indicate that learning to rank mod-
els with text similarity features are especially effective on
keyword queries.

Our analysis further shows the influence of query types on
learning to rank models. Different types of queries use dif-
ferent parts of an entity’s representation. It is more effective
to learn different models for different types of queries than
to use a single model for all types of queries.

2. LEARNING TO RANK ENTITIES
The first question in entity search is how to represent en-

tities. We follow Zhiltsov et al. [6] and group RDF triples
into five fields: Name, which contains the entity’s names;
Cat, which contains its categories; Attr, which contains all
attributes except name; RelEn, which includes the names of
its neighbor entities; and SimEn, which contains its aliases.
We include all the RDF triples in DBpedia in the fields.

In state-of-the-art learning to rank systems for document
ranking, most features are the scores of common unsuper-
vised ranking algorithms applied to different document rep-
resentations (fields). The different ranking algorithms and
representations provide different views of the relevance of
the document to the query. The multiple perspectives rep-
resented by these features are the backbone of any learning
to rank system.

This approach can be applied to entity search by extract-
ing features for query-entity pairs. We use the following
ranking algorithms on each of an entity’s five fields: Lan-

guage model with Dirichlet smoothing (µ = 2500), BM25

(default parameters), coordinate match, cosine similar-

ity, and sequential dependency model (SDM). We also in-
clude Zhiltsov et al’s. [6] fielded sequential dependency

model (FSDM) score for the full document as a feature. As
a result, there are in total 26 features as listed in Table 2.

With features extracted for all query-entity pairs, all
learning to rank models developed for ranking documents
can be used to rank entities. We use two widely-used
LeToR models: RankSVM, which is a SVM-based pairwise
method, and Coordinate Accent, which is a gradient-based
listwise method that directly optimizes mean average pre-
cision (MAP). Both of these LeToR algorithms are robust
and effective on a variety of datasets.



Table 1: Query sets used in experiments.

Query Set Queries Search Task
SemSearch ES 130 Retrieve one entity
ListSearch 115 Retrieve a list of entities
INEX-LD 100 Mixed keyword queries
QALD-2 140 Natural language questions

Table 2: Query-entity features used in learning to rank.

Features Dimension
FSDM 1

SDM on all fields 5
BM25 on all fields 5

Language model on all fields 5
Coordinate match on all fields 5
Cosine similarity on all fields 5

3. EXPERIMENTAL METHODOLOGY
This section describes our experiment methodology in

studying the effectiveness of learning to rank in entity search.
Dataset: Our experiments are conducted on the en-

tity search test collection provided by Balog and Neu-
mayer [1], which others also have used for research on en-
tity retrieval [2, 6]. The dataset has 485 queries with rel-
evance judgments on entities from DBpedia version 3.7.
These queries come from seven previous competitions and
are merged into four groups based on their search tasks [6].
Table 1 lists the four query groups used in our experiments.

Base Retrieval Model: We use the fielded sequen-

tial dependency model (FSDM) as the base retrieval model
to enable direct comparison with prior work [6]. All learning
to rank methods are used to rerank the top 100 entities per
query retrieved by FSDM.

Ranking Models: RankSVM implementation is provided
by SVMLight toolkit1. Coordinate Ascent implementation
is provided by RankLib2. Both methods are trained and
tested using five fold cross validation. We use linear kernel
in RankSVM. For each fold, hyper-parameters are selected by
another five fold cross validation on the training partitions
only. The ‘c’ of RankSVM is selected from the range 1 −
100 using a step size of 1. The number of random restarts
and iterations of Coordinate Ascent are selected from the
ranges 1− 10 and 10− 50 respectively using a step size of 1.

Baselines: The main baseline is FSDM, the previous state-
of-the-art for the benchmark [6]. We also include SDM-CA and
MLM-CA [6] results as they perform well in the test collection.

Evaluation Metrics: All methods are evaluated by
MAP@100, P@10 and P@20 following previous work [6]. We
also report NDCG@20. Statistical significance tests are per-
formed by Fisher Randomization (permutation) tests with
p < 0.05.

4. EVALUATION RESULTS
We first present experimental results for learning to rank

on entity search. Then we provide analysis of the importance
of features and fields, and the influence of different query
types on LeToR models.

1https://www.cs.cornell.edu/people/tj/svm light/svm
rank.html
2http://sourceforge.net/p/lemur/wiki/RankLib/

4.1 Overall Performance
The ranking performances of learning to rank models are

listed in Table 3a. We present results separately for each
query group and also combine the query groups together,
shown in the All section of Table 3a. Relative perfor-
mances over FSDM are shown in parenthesis. †, ‡, § indicate
statistical significance over SDM-CA, MLM-CA, and FSDM re-
spectively. The best performing method for each metric is
marked bold. Win/Tie/Loss are the number of queries im-
proved, unchanged and hurt, also compared with FSDM.

The results demonstrate the power of learning to rank
for entity search. On all query sets and all evaluation met-
rics, both learning methods outperform FSDM, defining a new
state-of-the-art in entity search. The overall improvements
on all queries can be as large as 8%. On SemSearch ES,
ListSearch and INEX-LD, where the queries are keyword
queries like ‘Charles Darwin’, LeToR methods show signif-
icant improvements over FSDM. However, on QALD-2, whose
queries are questions such as ‘Who created Wikipedia’, sim-
ple text similarity features are not as strong.

Similar trends are also found in individual query per-
formances. Figure 1 compares the best learning method,
RankSVM, with FSDM at each query. The x-axis lists all
queries, ordered by relative performance. The y-axis is the
relative performance of RankSVM over FSDM on NDCG@20.
On keyword queries more than half of the queries are im-
proved while only about a quarter of the queries are hurt.
On questions (QALD-2), about the same number of queries
are improved and hurt. A more effective method of han-
dling natural question queries was developed recently by Lu
et al. in which queries are parsed using question-answering
techniques [2]. That method achieves 0.25 in P@10, but
performs worse than FSDM on keyword queries. Section 4.3
further studies the influence of query types on entity-ranking
accuracy.

4.2 Field and Feature Study
The second experiment studies the contribution of fields

and feature groups to learning to rank models. For each field
or feature group, we compare the accuracy of models when
used without field or features from that group to those with
all features. The change in accuracy indicates the contribu-
tion of the corresponding field or feature group. The field
and feature studies for RankSVM are shown in Figures 2a and
2b respectively. The x-axis is the field or feature group stud-
ied. The y-axis is the performance difference between the
two conditions (All versus held out). Larger values indicate
greater contributions. Figure 2a organizes features by the
fields they are extracted from, including Name, Cat, Attr,
RelEn, and SimEn. Figure 2b organizes features into five
groups, with one retrieval model per group. SDM related

contains FSDM and SDM scores as they are very correlated.
Figure 2a shows that RankSVM favors different fields for dif-

ferent query sets. The Name field is useful for ListSearch and
QALD-2, but does not contribute much to the other two query
sets. RelEn provides the most gain to keyword queries, but
is not useful at all for the natural language question queries
in QALD-2. For feature groups we find that SDM related fea-
tures are extremely important and provide the most gains
across all query sets. This result is expected because all
of the queries are relatively long queries and often contain
phrases, which is where SDM is the most useful.



Table 3: Accuracy of learning to rank methods on entity search. Relative improvements over FSDM are shown in parentheses.
Win/Tie/Loss show the number of queries improved, unchanged and hurt, comparing with FSDM. †, ‡, § indicate statistical
significance over SDM-CA, MLM-CA, and FSDM respectively. The best method for each metric is marked bold.

(a) Overall accuracy on each query group. All section combines the evaluation results of the other four sections.

SemSearch ES

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss
SDM-CA 0.254 (-34.2%) 0.202 (-29.3%) 0.148 (-27.0%) 0.355 (-29.5%) 26/15/89
MLM-CA 0.320† (-17.1%) 0.250† (-12.6%) 0.178† (-12.3%) 0.443† (-12.0%) 30/32/68

FSDM 0.386†‡ - 0.286†‡ - 0.203†‡ - 0.503†‡ - -

RankSVM 0.410†‡§ (+6.3%) 0.304†‡§ (+6.2%) 0.213†‡§ (+4.5%) 0.527†‡§ (+4.7%) 65/27/38
Coordinate Ascent 0.396†‡ (+2.6%) 0.295†‡ (+3.2%) 0.206†‡ (+1.1%) 0.511†‡ (+1.5%) 48/32/50

ListSearch

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss
SDM-CA 0.197 (-3.0%) 0.252 (-1.4%) 0.202 (-0.6%) 0.296 (+1.7%) 55/23/37
MLM-CA 0.190 (-6.6%) 0.252 (-1.4%) 0.192 (-5.3%) 0.275 (-5.3%) 39/28/48
FSDM 0.203 - 0.256 - 0.203 - 0.291 - -

RankSVM 0.224†‡§ (+10.3%) 0.303†‡§ (+18.7%) 0.235†‡§ (+15.9%) 0.332†‡§ (+14.3%) 61/23/31
Coordinate Ascent 0.225†‡§ (+10.5%) 0.300†‡§ (+17.3%) 0.229†‡§ (+12.9%) 0.328†‡§ (+12.9%) 62/21/32

INEX-LD

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.117‡ (+5.2%) 0.258 (-1.9%) 0.199 (-7.2%) 0.284 (-0.9%) 43/7/50
MLM-CA 0.102 (-8.2%) 0.238 (-9.5%) 0.190 (-11.4%) 0.261 (-8.8%) 34/13/53

FSDM 0.111‡ - 0.263‡ - 0.214†‡ - 0.287‡ - -

RankSVM 0.126‡§ (+12.9%) 0.282‡ (+7.2%) 0.231†‡§ (+7.7%) 0.317†‡§ (+10.6%) 55/9/36
Coordinate Ascent 0.121‡§ (+8.9%) 0.275‡ (+4.6%) 0.224†‡ (+4.4%) 0.306†‡§ (+6.7%) 53/7/40

QALD-2

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.184 (-6.0%) 0.106 (-22.0%) 0.090 (-19.2%) 0.244‡ (-6.8%) 36/66/38
MLM-CA 0.152 (-22.4%) 0.103 (-24.6%) 0.084 (-24.3%) 0.206 (-21.3%) 17/78/45

FSDM 0.195‡ - 0.136†‡ - 0.111‡ - 0.262‡ - -

RankSVM 0.197‡ (+0.8%) 0.136†‡ (0.0%) 0.113†‡ (+1.6%) 0.266‡ (+1.6%) 31/74/35
Coordinate Ascent 0.208‡ (+6.6%) 0.141†‡ (+3.2%) 0.115†‡ (+2.9%) 0.278‡ (+5.9%) 40/71/29

All

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss
SDM-CA 0.192 (-16.9%) 0.198 (-14.3%) 0.155 (-13.7%) 0.294 (-13.1%) 160/111/214
MLM-CA 0.196 (-15.3%) 0.206 (-11.0%) 0.157 (-12.4%) 0.297 (-12.1%) 120/151/214

FSDM 0.231†‡ - 0.231†‡ - 0.179†‡ - 0.339†‡ - -

RankSVM 0.246†‡§ (+6.5%) 0.251†‡§ (+8.7%) 0.193†‡§ (+7.8%) 0.362†‡§ (+7.0%) 212/133/140
Coordinate Ascent 0.245†‡§ (+5.8%) 0.248†‡§ (+7.2%) 0.189†‡§ (+5.4%) 0.358†‡§ (+5.7%) 203/131/151

(b) Accuracy of learning to rank models when queries from different groups are all trained and tested together. Relative accuracy and
Win/Tie/Loss are compared with the same model but trained and tested separately on each query group.

MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss
RankSVM 0.234 (-4.9%) 0.238 (-5.3%) 0.185 (-4.0%) 0.347 (-4.3%) 153/136/196

Coordinate Ascent 0.233 (-4.7%) 0.232 (-6.2%) 0.179 (-5.1%) 0.344 (-3.8%) 148/129/208

4.3 Query Type Differences
Previous experiments found that when different models

are trained for different types of queries, each model favors
different types of evidence. However, in live query traffic dif-
ferent types of queries are mixed together. The third exper-
iment investigates the accuracy of a learning to rank entities
system in a more realistic setting. The four query sets are
combined into one query set, and new models are trained
and tested using five fold cross validation as before.

Table 3a All shows the average accuracy when different
models are trained for each of the four types of query. Ta-

ble 3b shows the accuracy when a single model is trained
for all types of queries. Despite being trained with more
data, both learning to rank algorithms produce less effective
models for the diverse query set than for the four smaller,
focused query sets. Nonetheless, a single learned model is
as accurate as the average accuracy of four carefully-tuned,
query-set-specific FSDM models.

This results suggests that diverse query streams may ben-
efit from query classification and type-specific entity ranking
models. They may also benefit from new types of features
or more sophisticated ranking models.



Figure 1: Query-level relative accuracy of four query groups. The X-axis lists all queries, ordered by relative accuracy. The
Y-axis is the relative accuracy of RankSVM compared with FSDM using NDCG@20. A positive value indicates an improvement
and a negative value indicates a loss.

(a) Influence of fields

(b) Influence of feature groups

Figure 2: The contribution of fields and feature groups to RankSVM’s performance. The X-axis lists the fields or feature
groups. The Y-axis is the relative NDCG@20 difference between RankSVM used with all fields or feature groups and without
the corresponding field or feature group. Larger values indicate greater contribution.

5. CONCLUSIONS AND FUTURE WORK
This paper uses learning to rank models, the state-of-the-

art in document ranking, for more accurate ad-hoc entity
ranking. Entities are represented by multi-field documents
constructed from RDF triples. How well a query matches
an entity document is estimated by text similarity features
and a learned model. Experiments on an entity-oriented
test collection reveal the power of learning to rank for entity
retrieval. Moreover, statistically significant improvements
over the previous state-of-the-art are observed on all evalu-
ation metrics.

Further analysis reveals that query types play an im-
portant role in the effectiveness of learned models. Text
similarity features are very helpful for keyword queries, but
less effective with longer natural language question queries.
Learned models for different query types favor different
entity fields because each query type targets different
RDF predicates. This difference between query types is
a new challenge to the use of entities in diverse search
environments, because currently a single learned model
does not provide much gain on average. An interesting
future research direction is to automatically detect the type
of entity search required for a query or task, and then use a
model adapted for that type or task.
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