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1. Introduction 

CASC is a multi-institutional, multi-disciplinary initiative to comprehensively address the needs 
of the specialty crops sector, with a focus on apples and nursery trees. In CASC we develop 
methods to improve production efficiency, identify threats from pests and diseases, and detect, 
monitor and respond to food safety hazards. At the end of this four-year project, we expect to 
demonstrate significant advances from the integration of robotics technology and plant 
science; to understand and overcome the socio-economic barriers that prevent technology 
adoption; and to make our results available to growers and stakeholders through a nationwide 
outreach program. 

CASC’s partners include academic institutions (Carnegie Mellon University, Pennsylvania State 
University, Washington State University, Oregon State University, and Purdue University), 
agricultural machinery companies (Vision Robotics, IONco, Toro, and Trimble), and a federal 
research laboratory (USDA Agricultural Research Service). CASC activities are overseen by an 
advisory panel of growers and stakeholders, including the Washington Tree Fruit Research 
Commission, US Apple Association, National Wine and Grape Initiative, California Citrus Quality 
Council, California Canning Peach Association, International Fruit Tree Association, and several 
US universities, among others. 

In this document the CASC team presents the accomplishments it attained in the first year of 
the project in each of the three main themes that comprise the project (Figure 1). 

 

Figure 1. CASC’s three main themes and their underlying eleven thematic areas. CASC impacts 
growers by providing crop intelligence that increase farm efficiency and automation solutions 
that reduce production costs. All technologies developed are validated via thorough socio-
economic analyses aimed at overcoming technology adoption barriers, and demonstrated in 
actual field conditions via outreach and extension activities. 
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Nomenclature 

In this document we use the following acronyms and abbreviations: 

ARS  USDA Appalachian Fruit Research Station in Kearneysville, WV 
CMU  Carnegie Mellon University 
FB  Fire blight 
FREC  PSU Fruit Research and Extension Center in Biglerville, PA 
GIS  Geographical information system 
IFM  Internal fruit moth 
MMDAQ Multi-modal data acquisition system 
NDVI  Normalized difference vegetation index 
OSU  Oregon State University 
Purdue  Purdue University 
PSU  Pennsylvania State University 
ROI  Region of interest 
USDA  US Department of Agriculture 
VRC  Vision Robotics Corp. 
WSU  Washington State University 
WTFRC  Washington Tree Fruit Research Commission 
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Precision Agriculture, Prosser, WA; Roger Adams, Willow Drive Nursery, Ephrata, WA.; Paul 
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and Produce, Royal City, WA. 
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2. Outputs and Outcomes 

The USDA National Food and Agriculture Institute (NIFA) developed a logic model that describes 
the interrelationship between inputs, activities, outputs, and outcomes of its projects. These 
concepts are defined as: 

 Inputs: What is invested, such as resources, contributions, and investments that are 
provided for the program. 

 Activities: What the program does with its inputs to services it provides to fulfill its mission. 

 Outputs: Products, services and events intended to lead to the program's outcomes. 

 Outcomes: Planned results or changes for individuals, groups, communities, organizations 
or systems. 

NIFA’s complete logic model for the Specialty Crop Research Initiative (SCRI) defines each of 
these four concepts in detail. We refer the reader to their web site for more information 
(http://www.csrees.usda.gov/funding/integrated/integrated_logic_model.html). Here we 
describe how CASC researchers contributed to the success of the SCRI in terms of outputs and 
outcomes. 

2.1 CASC Outputs 

Since the beginning of the project, CASC researchers produced the following outputs (classified 
according to the SCRI logic model): 

Basic and Applied Research 

Stress and disease detection 

 “On-the-go” multimodal sensing system for plant stress detection based on canopy 
reflectance and temperature, including a graphical user interface for sensor fusion and data 
visualization. 

 Algorithms for detecting fire blight damage in digital images taken in the greenhouse and 
the field. 

Insect monitoring 

 Two models of electronic trap prototypes based on IR sensors (IR-trap, six units) and on bio-
impedance sensors (Z-trap, twenty units). 

 Image processing-based internal feeding worm damage detection algorithms. 

 5,800 images of internal feeding worm-damaged apples and healthy apples across four 
varieties, to validate damage detection algorithms. 

http://www.csrees.usda.gov/funding/integrated/integrated_logic_model.html
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 Web-accessible database of images of internal feeding worm-damaged and healthy apples 
collected in 2009. 

Crop load scouting 

 Upgraded crop load estimation scout (“Newton”) system including new mast, additional 
cameras, industrial flash, GPS receiver. 

 Improved crop load (fruit count and size) estimation software. 

Caliper measurement 

 “On-the-go” automatic caliper for measuring tree diameter in the field. 

 “On-the-go” automatic counter for counting nursery trees in the field. 

 Four weeks of field tests in Ephrata, WA, Royal City, WA, and Hickman, CA. 

 Large field experiment with Crop Tech LLC to count 1 million nursery trees to validate an 
insurance claim using CASC automatic counter. 

Information management 

 Web-based geographic information system tool for collecting and managing crop 
information from the field. 

Reconfigurable mobility 

 Upgraded Autonomous Prime Mover based on Toro electric utility vehicle, including new 
computing, sensors, and environmental protection. 

 Hydraulic orchard platform converted to autonomous orchard vehicle, including computing 
and sensing. 

 Improved row following and turning algorithms for the Autonomous Prime Mover family of 
orchard vehicles. 

 New user-friendly Autonomous Prime Mover command interface. 

 Four weeks of field tests in Pittsburgh, PA, Wexford, PA, Biglerville, PA, and Doubs, MD. 

 Two weeks of field tests in Wenatchee, WA and Royal City, WA. 

Accurate positioning 

 Positioning algorithm that eliminates the need for artificial infrastructure in the orchard. 

Augment harvesting 

 Passive bin-filling prototype using a variety of energy absorbing materials. 



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 5 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

 Harvest assist transport and bin filling system for apple orchards. 

Outreach to Producers, Processors, and Consumers 

 6,218 direct contacts through field days and presentations. 

 45 students involved in CASC activities. 

 Socioeconomic surveys of Eastern and Pacific Northwest growers on barriers to technology 
adoption. 

 Economic models for four CASC thematic areas. 

 Business plan for digital traps. 

 AgTools website. 

 AgFinance software (alpha version). 

 Licensing agreement with Spensa Corp. to commercialize digital traps. 

 Partnership with Crop Tech LLC to commercialize counter. 

 Outreach and collaboration tools: 

o CASC web site: http://www.cascrop.com 

o CASC on YouTube: http://www.youtube.com/user/TheCASCrop 

o CASC on Facebook: http://on.fb.me/awfoFB 

o CASC on Slideshare: http://www.slideshare.net/CASCrop 

 Publications 

o 39 research papers and written reports 

o 71 invited presentations 

o 61 trade magazine and newspaper feature stories 

o 14 bulletins, fact sheets, computer software and videos 

o 47 workshops, tours, field days, and reports to grower organizations 

2.2 CASC Outcomes 

Likewise, CASC researchers contributed the following outcomes to the SCRI program: 

Short-Term 

Generate new knowledge for specialty crop systems 

 Determined that spectral signature (NDVI) and canopy temperature are highly correlated to 
plant water stress 
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 Detected up to 36% photosynthesis reduction due to plant water stress 

Adapt existing knowledge to specialty crop systems 

 Image processing-based internal feeding worm detection algorithm achieves >85% accuracy 
with <4% false alarm rate 

Engage broadest possible scientific community in challenges faced by specialty crop 
industries 

 Engaged team of 50+ horticulturists, entomologists, engineers, computer scientists, 
economists, social scientists 

Web based and other digital information 

 CASC web site, YouTube channel, Facebook page, and Slideshare account. 

Medium-Term 

New processes and products for specialty crop producers 

 Built two autonomous prime movers (APMs) 

 Deployed APMs in orchards in WA and PA 

o Toro electric utility vehicle autonomously traversed 300+ km of orchard rows 

o Hydraulic orchard platform autonomously traversed 10 km of orchard rows 

 Designed and tested grower-friendly APM user interface 

 Demonstrated sub-meter positioning accuracy without GPS in over 100 km of field trials 

 Integrated GPS-free positioning system with APM software architecture 

 Designed, built, and field-tested harvest assist system 

o Initial trials showed 10% improvement in harvesting speed with 5% reduction in bruising 

o Determined that singulation of fruit during transport from tree to bin is essential to 
reduce bruising 

 Designed, built, and field-tested digital traps with a capture rate comparable to standard 
delta traps 

o In laboratory, digital traps achieve >95% detection accuracy 

o In the field, preliminary data indicate that digital traps achieve >80% detection accuracy 
with <5% false alarm rate 

 Designed, built, and field-tested crop load scout system 
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o For red fruit, the crop load estimate for six acres was 75% of the load extrapolated from 
hand count; median apple diameter estimate within 1% of the median of 2.58” 

o For green fruit, the crop load estimate for eleven acres was 94% of the load 
extrapolated from hand count; median apple diameter estimate was within 3% of the 
median of 2.63” 

 Designed, built, and field-tested on-the-go automatic caliper 

o Determined caliper within 2 mm of harvested bareroot tree in the warehouse 

o Determined caliper within 3 mm of nursery trees while moving at 2 mph 

o Caliper data used to effectively determine bareroot tree grade 

 Designed, built, and field-tested on-the-go automatic tree counter 

o Counted in-ground nursery trees of >= 1/4” in caliper with 95% accuracy while moving 
at 2.5 mph 

o Counted in-ground nursery trees of >= 1/2” in caliper with 97% accuracy while moving 
at 3 mph 

New professionals engaged in specialty crop systems 

 Directly involved 45 students in CASC activities 

Producers and processors adopt newly developed technologies and innovations 

 A quarter of mid-Atlantic producers who attended CASC presentations are adopting new 
technologies for precision agriculture 

 PNW growers who attended a CASC field day rated interest in adoption 3.8 to 4.4 on a 1-5 
scale 

 Thirty percent of PA producers who attended field days are adopting trellised planting 
systems and 65% plan to make this change 

Networks that improve the flow of information among all components of specialty crop 
systems 

 Created open source information management system to aid growers in data capture and 
analysis and decision-making 

Long-Term 

Profitable systems for specialty crop production/processing 

 Socio-economic survey findings include 

 Crop projection sensor more popular in PNW than in the East 
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 Justifiable price point of technology that increases fruit packout is higher in the Northwest 

 Eastern growers are less concerned with water availability effects on crop production. 

Increased competitiveness of U.S. specialty crop producers and processors 

 Preliminary findings suggest that CASC technologies could have an impact ranging from $20 
to $1,047/acre/year 

 Management efficiency trials in pilot orchards demonstrated increases in efficiency as high 
as 78% 

 

  



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 9 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

3. Crop Intelligence 

Crop intelligence encompasses the work aimed at increasing the amount of information and 
corresponding level of detail growers have on their crops, especially crop load (for tree fruit) 
and caliper (for nursery trees); at providing early detection of stress due to water or nutrient 
deficiency and of disease such as fire blight; at monitoring insect populations and infestation; 
and at organizing the information in georeferenced databases for faster and improved decision 
making. 

This section presents the goals and accomplishments in the following five thematic areas: 

 Plant stress and disease detection; 

 Insect monitoring; 

 Crop load scouting; 

 Caliper measurement; 

 Information management. 
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3.1 Plant Stress and Disease Detection 

Thematic area leaders 

Name Institution Email 

Johnny Park Purdue University jpark@purdue.edu 

Henry Ngugi The Pennsylvania State University hkn3@psu.edu 

D. Michael Glenn USDA Agricultural Research Service michael.glenn@ars.usda.gov 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Improve sensor fusion-
based stress detection 
algorithm. 

2. Develop stereo vision 
algorithms for locating shoots 
where fire blight infection 
starts. 

3. Integrate sensors into 
APM. 

4. Carry out field and 
greenhouse stress and fire 
blight detection experiments. 

1. Report on the performance 
of stress detection and shoot 
localization algorithms. 

2. Report on the results from 
greenhouse and field 
experiments. 

3. Publicly available dataset 
of images with accompanying 
ground truth. 

1. Identify 25% 
photosynthesis reduction due 
to stress in field conditions. 

2. Localize > 70% of shoots in 
the field-of-view with < 30% 
false alarm rate. 

Notable results: 

 Developed an on-the-go multimodal sensing system for plant stress detection based on 
canopy reflectance and temperature and a graphical user interface for sensor fusion and 
data visualization. 

 Determined that spectral signature (NDVI) and canopy temperature are highly correlated to 
plant water stress. 

 Measured photosynthesis reduction in growth chambers and detected up to 36% 
photosynthesis reduction due to plant water stress (75% water) by multimodal sensors. 

 Developed several algorithms for detecting fire blight damage in digital images taken in the 
greenhouse and the field, but all of the methods still have a high rate of false detections. 

  

mailto:jpark@purdue.edu
mailto:hkn3@psu.edu
mailto:michael.glenn@ars.usda.gov
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Data Analysis from Year 1 

Multi-modal sensor data was collected in the PSU-FREC greenhouse in 2009 for the study of 
water stress detection on five groups of young apple trees (Buckeye Gala) in different water 
treatment (100%, 90%, 75%, 60%, and 45% at field capacity) with four replications per group. 
Data collection was continued on a weekly basis from late April to June. Water treatment levels 
were defined as the percentage replacement of water content to bring the tree to field capacity 
and were measured by weighing the containers before irrigation in order to calculate the 
needed replacement amount. 

Hyperspectral Image Analysis 

The hyperspectral camera was calibrated with dark and white reference images for every group 
of ten trees prior to image acquisitions (Kim et al., 2010a). The calibrated images were 
processed to calculate plant stress index. Thirteen different spectral indices that have been 
published were selected for plant stress detection, as shown in Table 1. Seventeen individual 
spectral band images for the spectral index calculations were extracted. The vegetation area in 
each image was segmented out using the corresponding NDVI value and processed to calculate 
canopy reflectance. 

Table 1. Spectral indices evaluated for plant stress detection. The three digit numbers 
following the letter R in each formula represent the response of the hyperspectral camera at 
that particular wavelength. 

Broadband Greenness 

NDVI (Normalized Difference Vegetation Index) 
680800

680800

RR

RR




  

SRI (Simple Ratio Index) 
680

900

R

R
  

EVI (Enhanced Vegetation Index) 
14505.76806800

680800
5.2






RRR

RR  

ARVI (Atmospherically Resistant Vegetation Index) 
)4506802(800

)4506802(800

RRR

RRR




  

Narrowband Greenness 

Red Edge NDVI   
705750

705750

RR

RR




  

Modified Red Edge NDVI   
4452705750

705750

RRR

RR




  

Modified Red Edge SRI   
445705

445750

RR

RR




  

VOG Red Edge Index (REI) 1 
720

740

R

R


 

VOG REI 2 
726715

747734

RR

RR




  

VOG REI 3   
720715

747734

RR

RR




  

Light Use Efficiency PRI (Photochemical Reflectance Index) 
570531

570531

RR

RR






 

Dry or Senescent Carbon PSRI (Plant Senescence Reflectance Index) 
750

500680

R

RR 


 

Canopy Water Content WI (Water Index) 
970

900

R

R
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The broadband indices compare a reflectance peak in near infrared (NIR) to another peak in red 
range where chlorophyll absorbs photons for photosynthesis. Since these features are 
spectrally broad, they can work effectively with broadband multispectral sensors. The 
narrowband indices use red edge that is a steeply sloped region of the vegetation reflectance 
curve between 690 nm and 740 nm, and caused by the transition from chlorophyll absorption 
to NIR leaf scattering. 

The results of the four best indices from the images acquired on May 4, 7, 11, and June 4, 2009 
are shown in Figure 2. NDVI had the highest average correlation among broadband greenness 
indices with R2 = 0.68 (Figure 2a). The highest average correlation among narrowband 
greenness indices was found at Red Edge NDVI with R2 = 0.89 (Figure 2c). 
 
Table 2 presents the correlation values of selected indices to water stress over the tree images. 
Since narrowband measurements in the red edge are more sensitive to smaller changes in 
vegetation health than broadband indices, narrowband indices are suitable for hyperspectral 
sensors. The result of our experiment with the hyperspectral camera supports this result with 
better performance in narrowband indices. 

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Figure 2. Hyperspectral image responses to water treatments (a) NDVI, (b) SRI, (c) Red Edge 
NDVI, and (d) VOG REI 1. 
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Table 2. Spectral indices that were evaluated for plant stress detection. 

  4/27  5/4  5/7  5/11  6/4  R  R
2
  

Broadband 
Greenness  

NDVI  0.70  0.83  0.76  0.93  0.89  0.82 0.68 

SRI  0.55  0.89  0.81  0.94  0.90  0.82 0.67 

Narrowband 
Greenness  

Red Edge NDVI  0.86  0.95  0.96  0.99  0.96  0.94 0.89 

VOG REI1  0.95  0.98  0.94  0.82  0.89  0.91 0.84 

GreenSeeker NDVI Analysis 

NDVI values of both the vegetation area of tree canopy and the non-vegetation area between 
trees were obtained with the NDVI sensor. Figure 3a shows continuous readings of NDVI in 
which higher values are from the vegetation area of canopy and lower values are from the non-
vegetation background. NDVI values corresponding to each apple tree were manually selected 
by comparing a digital image in the same time stamp (marked with circles in Figure 3a). Average 
NDVI responses over 13 measurement dates generally match water treatment patterns with a 
correlation of R = 0.6 (Figure 3b). Low correlation may be due to measurement errors in the 
data manually selected from unsynchronized NDVI readings and digital image acquisition. 

    
(a)                                                                         (b) 

Figure 3. NDVI sensor responses to water treatments: (a) continuous readings of vegetation 
of tree canopy and non-vegetation area between trees, (b) average NDVI over 13 
measurement dates indicating correlation (R = 0.6) between NDVI measurements and plant 
water treatment. 

Canopy Coverage Analysis 

Leaf area index (LAI) provides an important parameter to detect stress, as leaf area influences 
photosynthesis and plant growth. A value of LAI = 3 is obtained when almost 100% of the 
incoming light is intercepted and thus corresponds to a canopy coverage of 100% (Potato 
Explorer, 2010). Digital images were acquired from nadir view and processed for canopy 
coverage. Figure 4 displays an image sequence of apple trees with five different water 
treatments. Images are arranged in chronological order from April 27 to June 18 with an 
interval of 3–5 days. Canopy coverage was calculated by image segmentation of canopy area 
with NDVI image masking and presented as a percentage of canopy coverage. As plants grow 
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over the time, the growth pattern increases in the beginning of the time period, followed by a 
relatively static period of growth in the middle (May 10 to June 10) (Figure 5a). After June 10, 
there are clear decreases of canopy coverage in 60%- and 45%-watered groups, while in the 
other three groups the canopy coverage remains high and static. The average percentage 
canopy coverage over the period is 50% in 100%-watered trees and 27% in 45%-watered trees 
(Figure 5b), resulting in an overall correlation R = 0.7. The result indicates that canopy coverage 
measurement can be used as a supplemental index of chronic plant water stress. 

(a)  

(b)  

(c)  

(d)  

(e)  

Figure 4. Canopy growth (top-view) in 13 measurements from April 27 to June 18 on young 
apple trees with five different water treatments: (a) 100%, (b) 90%, (c) 75%, (d) 60%, and (e) 
45%. 

 
(a)                                                                         (b) 

Figure 5. Percentage canopy coverage to different water treatments: (a) measurements along 
the plant growth from April 27 to June 18 (partly missing data in 60%- and 45%-watered trees 
due to an image formation problem), (b) average canopy coverage to water treatments with 
correlation of R = 0.7. 

Field Data Analysis for Disease Detection 

Field data obtained during the Year 1 growing season were processed for disease detection. 
The data had been collected at the Pennsylvania State University Fruit Research and Extension 
Center (FREC) on a 5-cultivar plot. Each treatment block consists of five cultivar apple trees: 
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Rome Beauty (RB), Golden Delicious (GD), Stayman (Stay), Cortland (Cort), and Red Delicious 
(RD). The plot was arranged in a randomized complete block design consisting of 20 fungicide 
treatments each replicated four times (Figure 6), thus generating data for 400 trees in total. 
GreenSeeker NDVI data was collected in continuous mode while driving down the row in the 
same direction in each path. 

 

Figure 6. Field experiment layout for disease detection on five cultivar apple trees: Rome 
Beauty (RB), Golden Delicious (GD), Stayman (Stay), Cortland (Cort), and Red Delicious (RD), 
with 20 treatments and four replications. 

Three types of diseases, powdery mildew (pm), cedar apple rust, and scab were measured by 
hand-sampling to obtain a disease severity value on leaves. Each disease was compared with 20 
treatments and 5-cultivar apple trees. NDVI response was also compared among treatments 
and apple variety. The diseases varied significantly between treatments and varieties. Overall 
correlation to NDVI values are shown in Table 3. The highest correlation to NDVI responses 
found were: Golden Delicious (R = -0.62 with scab), Stayman (R = -0.58 with rust), and Cortland 
(R = -0.38 with powdery mildew). Table 3 also shows the comparison of NDVI sensor 
performance with (Rf) and without (R) filtering by canopy coverage conditions. Better 
corrections were found on average when the filter was applied. 
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Table 3. Correlation of NDVI sensor responses to three diseases (powdery mildew, rust, and 
scab) in 5-cultivar apple trees. Rf indicates correlation to NDVI values that were filtered by 
canopy coverage conditions. In each row the entry with highest value is marked in bold. 

Disease  Correlation RB GD Stay Cort RD Average 

Powdery 
Mildew 

R = -0.09 -0.04 -0.22 -0.41 -0.19 -0.19 

Rf = -0.15 -0.02 -0.25 -0.38 -0.19 -0.20 

Rust 
R = -0.37 -0.53 -0.58 -0.46 -0.27 -0.44 

Rf = -0.43 -0.51 -0.58 -0.43 -0.33 -0.46 

Scab 
R = -0.58 -0.60 -0.09 -0.16 -0.44 -0.37 

Rf = -0.56 -0.62 -0.13 -0.19 -0.48 -0.39 

System Update in Year 2 

In this year we made several updates to the multimodal sensor system. Hardware updates 
include: 

 a multi-spectral camera (ADC Lite from TetraCam, Chatsworth, CA) that captures light from 
520 nm in the visible spectrum to 920 nm in the near infrared, delivering the red, green, and 
NIR bands needed for calculation of NDVI; 

 two rangefinder ultrasonic sensors (MB7060 from MaxBotix, Baxter, MN) to validate the 
NDVI sensor’s target distance (Kim et al., 2010b); 

 a low-cost WAAS-enabled GPS (18xPC from Garmin, Olathe, KS) for geo-referenced field 
mapping; and 

 six IR temperature sensors (five MLX90615_10FOV and one MLX90615_90FOV from 
Parallax, Rocklin, CA) and a microcontroller (BS2-IC from Parallax, Rocklin, CA) to integrate 
them to a sensor array. 

Software updates include:  

 integration of the ultrasonic rangefinders to the multimodal data acquisition (MMDAQ) 
software to filter NDVI readings based on target distance; 

 integration of the GPS to the MMDAQ to read and append latitude/longitude positions to 
sensor readings; and 

 an interface with IR thermometer array  and display of 2-D thermal map in real-time or 
retrieval mode. 

Greenhouse Experiment 

The greenhouse experiment was prepared at the PSU-FREC with young apple trees (cultivar 
‘Gale Gala’) grafted on M9 rootstocks and potted in Berger BM1 potting medium—twenty trees 
for water stress and five trees for fire blight (FB) studies. For the water stress study, each set of 
five trees were treated at different water amounts of 100% (control), 75%, 65%, 55%, and 45% 
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(most stressed) at field capacity with four replications per set. Water treatment levels were 
defined as the percentage replacement of water content to bring the tree to field capacity and 
were measured by weighing the containers before irrigation in order to calculate the needed 
replacement amount. 

The multimodal sensor system was installed on a cart with extended support pipes and 
positioned to get nadir view over the top of the canopy (Figure 7, left). The sensor system 
includes a multispectral camera, an NDVI sensor, a digital camera, an ultrasonic rangefinder, 
and a thermal imager (Figure 7, right). Solar radiation, air temperature, and relative humidity in 
the greenhouse were separately recorded by a datalogger (WatchDog 450 from Spectrum 
Technologies, Inc., Plainfield, IL). Soil water status at two trees of each water group was also 
monitored using soil moisture sensors (Watermark from Irrometer, Riverside, CA). 

 

Figure 7. Greenhouse experiment apparatus for plant stress study. 

Canopy Reflectance 

Canopy reflectance in near-infrared (NIR) and red spectral bands of young apple trees was 
measured by a NDVI sensor and a multispectral camera. The NDVI sensor generates a point 
value from a line scan at 10 Hz and was used on a continuous mobile mode. The sensor 
obtained NDVI values of both the vegetation area of tree canopy and the non-vegetation area 
between trees along a driving path. An ultrasonic rangefinder was deployed to determine the 
distance from the sensor to the target canopy and filter out NDVI values if synchronously 
measured target distance is above a set point. Figure 8a shows continuous readings of NDVI 
and target distances of five trees under different water treatments and four replications. NDVI 
values at target distance above 170 cm were considered as non-canopy area; this allowed us to 
filter out the majority of noisy NDVI measurements (Figure 8b). Still, there were low NDVI 
values that were suspected as non-vegetation but not filtered due to sparse presence of leaves 
and unmatched field-of-view (FOV) shapes of the NDVI sensor (line) and the rangefinder (oval). 
Improved results are expected in outdoor application with mature dense canopy trees. The 
highest NDVI values for each tree were manually selected and confirmed by comparing a digital 
image in the same time stamp and marked in circles in Figure 8a. 
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(a)                                                                         (b) 

Figure 8. Continuous readings of NDVI and target distances of five trees under different water 
treatments and four replications: (a) before filtering, (b) after filtering non-vegetation 
(measurements above 170 cm). 

The multispectral camera captures an image (2048 x 1536 pixels) in the NIR, red, and green 
spectral bands. The image is displayed as a false color image by mapping the original bands to 
red, green, and blue, respectively (Figure 9a). The image was processed for canopy 
segmentation (Figure 9b) using five threshold or sieve values that separates canopy from the 
soil spectral space within the red—NIR region, and then converted to a gray-scaled NDVI image 
(Figure 9c) by spectral band math (NIR-red)/(NIR+red). A calibration coefficient was determined 
by reading pixels on a white reference tag contained in the image as shown at the bottom of 
Figure 9b and applied for reflectance calibration for all rest of pixels in generating the NDVI 
image. Canopy NDVI was calculated by manually selecting a region of interest (ROI) on the 
canopy area. 

        
(a)                                                  (b)                                                  (c) 

Figure 9. Multispectral image of a tree in a photosynthesis chamber under 45% water 
treatment acquired on June 3, 2010. The white reference tag at the bottom is used for 
reflectance calibration. (a) A false color image of NIR, red, and green mapped to RGB. (b) 
Canopy segmented image using five threshold values. (c) Gray-scaled NDVI image in which 
canopy ROI was selected for canopy NDVI. 
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Comparison of NDVI responses between the NDVI sensor and the multispectral camera is 
plotted in Figure 10a for six measurement dates from June 3 to 23. Because the two sensors 
perform in different ways, they resulted in different NDVI ranges. The NDVI sensor had a higher 
resolution range of 0.61-0.86 in comparison with 0.73-0.8 for the multispectral camera, but 
suffered from wider noisy data due to small canopy coverage of the young apple trees within 
the FOV (Figure 10b/c). The average correlation between the two sensors was R = 0.85, with 
correlation of both sensors to water treatments resulting in R = 0.75. 

      
(a)                                                  (b)                                                  (c) 

Figure 10. Canopy spectral response: (a) comparison of NDVI responses between the NDVI 
sensor and the multispectral camera, (b) NDVI sensor with a range of 0.61-0.86, (c) 
multispectral camera with a range of 0.73-0.8. 

Canopy Temperature 

The thermal camera was used to measure plant canopy temperature and determine if plant 
water stress affects plant canopy temperature. Figure 11 illustrates thermal images of five trees 
acquired on May 14, 2010 with the temperature range 22.3-40.7 °C. There were clear changes 
of canopy temperature across the water treatments from cool (bluish) at the 100%-watered 
trees to hot (yellowish) at the 45%-watered ones. Since the thermal image contains both 
canopy and background areas and their temperature distributions are different, the canopy 
area only was selected in rectangular regions of interest (ROI) for the calculation of canopy 
temperature only. The vertical line next to temperature scale indicates the temperature range 
of pixels within the ROI. 

 

Figure 11. Thermal images of apple trees in five different water treatments: 100%, 75%, 65%, 
55%, and 45%. The rectangles in each image indicate the regions of interest (ROI) for the 
calculation of canopy temperature. 

The canopy temperature variations of trees under different water treatments were measured 
teen times from May 14 to June 22 (Figure 12). All measurements showed the same trend of 
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temperature increase as water availability decreases. Air temperature in the greenhouse was 
affected by weather and caused different ranges of canopy temperature from 0.75 to 7.13°C in 
the five water groups. An average 3.9 °C temperature difference was found from most stressed 
trees (45% water) to the control (100% water). The canopy temperature indicated a strong 
correlation (R = -0.96) to plant water stress, and thus further research was performed to 
develop and deploy an array of low-cost infrared temperature sensors for outdoor and real-
time applications. 

 

Figure 12. Canopy temperature variation of trees under different water treatments acquired 
by a thermal camera from May 14 to June 22. 

Soil Water Status 

Soil water condition was monitored every hour continuously from May through June, 2010 
(Figure 13). Higher soil matric potentials indicate more water stress. Average daily soil matric 
potential remained low, mostly under 20 kPa, in control trees (100% water) indicating well-
watered soil conditions. It gradually increased as water treatment decreases. The repeated 
peaks in the graph were generated by daily watering based on the water treatment plan. 
Average daily soil water status of five groups is shown in Figure 13 and indicates a well-
designed experiment with a clear separation of water treatments in soil (R = -0.89). 
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(a)                                                                       (b) 

Figure 13. Soil water status monitored with a Watermark logger. (a) Every hour continuously 
in May–June, 2009. (b) Average daily soil water status. Higher soil potentials at 45% and 60% 
indicate water-stressed plants. 

Photosynthesis Measurements 

Photosynthesis measurements at a tree of each water group were prepared along with the 
plant water stress experiments to determine photosynthesis reduction by water stress and 
compare with multimodal sensor data. Each tree was enclosed in a chamber by a polycarbonate 
board on the side and polyester films on the top and bottom (Figure 14). Air was supplied to 
the chamber by a motor fan through a 4”-diameter aluminum air duct and ventilated via a 4”-
diameter opening in the middle of the top cover. Input reference air at the air duct and output 
air at 6” below the opening in the top of the enclosure were monitored by a CIRAS I infrared gas 
analyzer (PP Systems, Amesbury, MA) through a 0.5”-diameter Tygon tube and vacuum pump. 
Plant carbon dioxide (CO2) assimilation and water vapor pressure deficit were measured by 
comparing input and output air by the gas analyzer and recorded by a datalogger (CR7 from 
Campbell Sci., Logan, UT), as well as temperatures inside and outside the chamber. Air velocity 
was manually measured in each chamber by taking an average of six readings at 0.5” 
incremental depths in the input air duct. Air ducts were cut and positioned in order to provide 
the same air velocity of about 1200 ft/min to all five chambers. 

 

Figure 14. Photosynthesis measurement setup on five trees in different water treatments. 
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Photosynthesis measurements during the entire period of greenhouse experiments (May 12 to 
June 21, 2010) are shown in Figure 15a. Reference CO2 stayed low at around 370 ppm during 
the day and increased to more than 500 ppm at night due to leaf respiration; CO2 consumption 
(delta CO2) stayed above zero during the day and decreased below zero at night. Daily 
photosynthesis (g CO2/h) of five trees under different water treatments and solar radiation on 
May 15, 2010 is shown in Figure 15b, which shows a treatment separation during the day with 
high photosynthesis levels at the 100%-watered tree and lower levels as water availability 
decreases to 45%. 

   
(a)                                                                            (b) 

Figure 15. Photosynthesis measurements. (a) CO2 consumption in a chamber of treatment #1 
tree with 100% water supply during the entire period of greenhouse experiments (May 12 to 
June 21). (b) Daily photosynthesis of five trees under different water treatments on May 15. 

Photosynthesis (Ps) data typically stays below 1 g CO2/h, but also presents high peaks as shown 
in Figure 15; we believe these peaks are likely due to sensor noise. Therefore, data was further 
processed to predict photosynthesis during the noisy period based on filtered Ps, vapor 
pressure deficit (VPD), and photosynthetically active radiation (PAR). All photosynthesis data 
above 1 g CO2/hr and outliers were filtered. The VPD was calculated from saturated vapor 
pressure (SVP) as: 

                               (1) 

             
 

   
  (2) 

where T is air temperature in degrees Celsius and H is relative humidity. The greenhouse PAR 
was estimated from solar radiation of a weather station nearby the greenhouse as: 

                   (3) 

where SR is solar radiation in W/m2, 2.424 is a unit conversion factor from W/m2 to μmol/m2/s, 
and 0.75 is a conversion factor from ambient PAR to greenhouse PAR. 

These three values, filtered Ps, VPD, and greenhouse PAR, were used for multiple regression 
analysis to generate parameter estimates for predicted photosynthesis. The predicted 
photosynthesis value closely matched the measured ones (Figure 16a) and used to substitute 
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noisy data measurements. Figure 16b supports the successful estimation with clear separation 
of water treatment levels by the predicted Ps during the entire period of experiments. 

   
(a)                                                                            (b) 

Figure 16. Predicted photosynthesis. (a) Comparison with measured photosynthesis at the 
tree under 75% water treatment. (b) Predicted photosynthesis of five trees under different 
water treatments. 

The predicted photosynthesis data was further processed to calculate daily photosynthesis 
reductions at each water treatment as a ratio to the average daily Ps of control trees (see Table 
4 and Figure 17). Photosynthesis reduction varied from 15% to 69% with an average of 36% in 
75%-watered trees and increased up to 73% in the least watered trees (45% water). Daily 
photosynthesis reductions of the trees created by water stress were compared with multimodal 
sensor data: NDVI response of GreenSeeker (Figure 17a), NDVI provided by the multispectral 
camera (Figure 17b), and canopy temperature of the thermal imager (Figure 17c). Correlation 
of multimodal sensors to daily photosynthesis reduction is listed in Table 5. The highest 
correlation to photosynthesis reduction was found in canopy temperature (R = -0.91), followed 
by GreenSeeker NDVI (R = 0.87) and multispectral camera (R = 0.8). 

Table 4. Photosynthesis (Ps) reduction by water stress as a ratio to average Ps of control trees 
(100% water). 

Water treatment 5/13 5/14 5/25 5/28 6/4 6/8 6/11 6/15 6/18 average 

100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
75% 15% 24% 26% 43% 65% 69% 28% 33% 24% 36% 

65% 28% 25% 54% 25% 50% 75% 38% 37% 52% 43% 

55% 40% 27% 50% 36% 62% 55% 53% 43% 53% 47% 

45% 72% 68% 65% 104% 72% 85% 57% 69% 63% 73% 
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(a)                                                  (b)                                                  (c) 

Figure 17. Photosynthesis reduction by water stress compared with: (a) NDVI response of 
GreenSeeker, (b) NDVI response of the multispectral camera, (c) canopy temperature of the 
thermal imager. 

Table 5. Correlation of multimodal sensors to photosynthesis (Ps) reduction by water stress. 

 GS ADC Ps Thermal SoilW 

GreenSeeker (GS) 1.00     
ADC multispectral camera 0.85     

Photosynthesis (Ps) 0.87 0.80    

Thermal imager -0.86 -0.89 -0.91   

Soil water status (SoilW) -0.75 -0.88 -0.74 0.77 1.00 

Field Experiment 

The outdoor experiment was conducted at the PSU-FREC with 10 irrigated and 10 non-irrigated 
apple trees during the period August 11 through September 24, 2010. The irrigated trees were 
regularly irrigated every 2-3 days based on conventional soil water management practice. The 
multimodal sensor system was installed on a Toro eWorkman utility vehicle with extended 
support pipes and positioned to aim the side of the tree canopy (Figure 18). The sensor system 
includes a multispectral camera, two sets of NDVI sensors with a digital camera and an 
ultrasonic range finder, an IR thermometer array, and a thermal imager. Solar radiation, air 
temperature, and relative humidity were separately recorded by a WatchDog datalogger. Soil 
water status was also monitored using soil moisture sensors that were installed in 6”-deep soil 
for both irrigated and non-irrigated trees. 

The multispectral camera and thermal imager acquired images on a static mode and were used 
as references for the NDVI sensor and IR thermometer array, respectively, running on 
continuous mode. Preliminary data from the multimodal sensor system from the non-irrigated 
apple trees acquired on August 17, 2010 is shown in Figure 19. A complete data analysis is 
under process and will be reported in the first period of Year 3. 
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Figure 18. Multimodal sensor system mounted on a Toro utility vehicle for plant stress 
detection by measuring canopy temperature and reflectance. 

 (a)              

(b)             

(c)      

(d)  

Figure 19. Multimodal sensor data acquired at non-irrigation trees on August 17, 2010. (a) 
Digital color image, (b) gray-scaled NDVI image of the multispectral camera, (c) 2-D canopy 
temperature map of the IR thermometer array, (d) NDVI responses of two GreenSeeker 
sensors filtered by a rangefinder (RF). 
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Fire Blight Detection 

We acquired a large number of images of fire blight (FB), both in early stage (i.e., when only leaf 
veins are brown) and in advanced stage (i.e., when the entire leaf becomes brown). Table 6 
summarizes the number of fire blight images taken in the greenhouse and in the field. In 
addition to the fire blight images, we also acquired approximately 600 images of healthy trees 
in the field. Figure 20 shows some examples of the images in the database. 

Table 6. Number of images in database for fire blight detection. 

 Early stage damage Late stage damage Total 

Greenhouse 137 144 281 

Field 189 335 524 

Total 326 479 805 

 

Figure 20. Sample images of fire blight-infected trees. 

In Year 2 we tried several different image processing methods to automatically detect fire blight 
symptoms. Unfortunately, none of the methods performed well. In this section, we describe 
two of the methods we have tried and their results. 

 Method 1: Leaf detection followed by fire blight detection 

Recognizing that early-stage fire blight symptoms appear on leaf veins, this method first 
extracts leaf regions in the image, then attempts to detect fire blight. A simple color-based 
support vector machine (SVM) (Joachims, 1999) is applied to extract leaves in the image. A 
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second SVM-based classifier attempts to detect fire blight around the extracted leaf regions in 
the image. Some qualitative results of this method are shown in Figure 21 and Figure 22. In 
these figures, the top row shows the original images, the pink regions in the center row 
represent the detected leaf areas, and the white regions in the bottom row represent the pixels 
detected as non-fire blight regions. All other (i.e., non-pink and non-white) pixels are the 
regions detected as fire blight-infected. Although this method does not give rise to false 
detections in the background, several false detections occur around the edges of the leaves. 

 

Figure 21. Fire blight detection results on greenhouse images using Method 1. 
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Figure 22. FB detection results on field images using Method 1. 

 Method 2: SVM using a histogram of hue values 

In this method, a 36-bin histogram of hue values in an image window is used as a feature 
vector. Similar to other SVM-based methods, a large number of positive and negative examples 
are used to train the SVM classifier. Some qualitative results of this method are shown in Figure 
23. Similarly to other methods, this one presents a high rate of false detections. Without 
considering the background, this method yields a detection rate of 76.6% with a false detection 
rate of 58.9%. 

In Year 3 we expect to improve the results obtained by deploying other sensors, in particular 
forward-looking infrared cameras. 
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Figure 23. Fire blight detection results using Method 2 
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3.2 Insect Monitoring 

Thematic area leaders 

Name Institution Email 

Larry Hull The Pennsylvania State University lah4@psu.edu 

Vincent Jones Washington State University vpjones@wsu.edu 

Johnny Park Purdue University jpark@purdue.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Improve electronic 
pheromone monitoring traps 
and algorithms for detecting 
moths. 

2. Test trap under various 
orchard and pest conditions. 

3. Compare electronic trap to 
current standard trap. 

4. Improve computer vision 
algorithms for fruit injury 
detection. 

5. Explore the use of stereo 
vision for fruit injury 
detection. 

1. Reports on the orchard 
studies of automatic moth 
detect technology. 

2. Reports on the results 
from IFM fruit injury 
detection studies. 

3. Publicly available dataset 
of images with accompanying 
ground truth. 

1. 10 traps installed in WA 
and PA. 

2. Ability to automatically 
count moths entering the 
trap with > 90% accuracy. 

3. Ability to ID moth and limit 
non-target species with > 
70% accuracy while 
withstanding various orchard 
conditions. 

4. Ability to automatically 
detect IFM-damaged apples 
with > 80% detection rate 
and < 20% false alarm rate. 

Notable results: 

 Developed two models of electronic trap prototypes: one based on IR sensors (IR-trap) and 
the other based on bio-impedance sensors (Z-trap). 

 Deployed six IR-traps and twenty Z-traps in orchards in WA and PA, and carried out field 
experiments. 

 Determined that the IR-traps have a low-capture rate compared to standard delta traps. 

 Determined that the original Z-traps also have a low-capture rate. After modifying the trap 
shape and the size of the high-voltage coil, the new Z-traps achieved a similar or better 
capture rate compared to standard delta traps. 

 In the laboratory wind tunnel, the Z-traps achieved >95% detection accuracy. Preliminary 
field data results seem to indicate that the new Z-traps achieved >80% detection accuracy 
with <5% false alarm rate. 

mailto:lah4@psu.edu
mailto:vpjones@wsu.edu
mailto:jpark@purdue.edu
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 Acquired an additional 5,800 images of internal feeding worm (IFW)-damaged apples and 
healthy apples across four varieties. 

 The latest IFW damage detection algorithm achieves >85% accuracy with <4% false alarm 
rate. 

 Created a database that contains the images of IFW-damaged and healthy apples collected 
in 2009 and made it available on the web. 

  



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 32 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

Bio-Impedance Sensor-Based Traps (Z-trap) 

In collaboration with Spensa Technologies and partial funding from the Washington Tree Fruit 
Research Commission, we have devised a new electronic trap based on a bio-impedance 
sensor, the “Z-trap.”  A schematic representation of the Z-trap is shown in Figure 24. A lure is 
located inside a cylinder-shaped high-voltage electric grid, which is the bio-impedance sensor. 
When an insect, attracted by the lure, touches the electric grid, it gets electrocuted and falls 
down to the bottom collector. The bottom collector is designed in such a way that it is easy for 
temporarily-stunned pests to fall through the top opening of the collector but difficult for them 
to get out of it. Whenever an electric discharge occurs (i.e., an insect gets electrocuted), the 
microcontroller records the time of the event. Furthermore, the microcontroller analyzes the 
properties of each electric discharge (i.e., the amplitude and duration of the electric current 
pulse) in order to distinguish whether the event was caused by a target insect or by a non-
target insect. 

 

Figure 24. Schematic design of the bio-impedance based trap (Z-trap). 

The high-voltage electric grid consists of a pair of metallic coils spaced approximately 1/5” apart 
from each other (although the inter-coil spacing may vary according to the target insect 
species). An electric voltage is applied to each coil, but since they form an open circuit, there is 
no current flow. As an insect approaches/touches the grid, the circuit is closed and an electric 
current flow is initiated, which electrocutes the target insect. Figure 25 shows a picture of the 
grid. By eliminating a supporting frame for the coils on this grid design, we were able to avoid 
accumulation of chemicals used in the field that could potentially short-circuit both coils. In 
addition, there is no non-conductive landing surface in the grid; therefore, target insects cannot 
touch it without being electrocuted and hence detected. 
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Figure 25. Zapper coils prototype. 

Based on several laboratory experiments, we found voltage levels that allow the target insects 
to be temporarily stunned whenever they contact the electric grid without sticking to its 
surface. For both codling moth (CM) and obliquebanded leafroller (OBLR), the average voltage 
level was around 750 V, whereas for the oriental fruit moth (OFM), it was around 450 V. After 
finding the optimal voltage levels for the detection of the different insect species, a prototype 
was built and tested in the wind tunnel at the Washington State University Tree Fruit Research 
and Extension Center (WSU-TFREC), in Wenatchee, WA with adult CM and OFM. The 
experiments showed that the zapper trap is capable of accurately counting the number of 
insects captured, obtaining >95% detection accuracy in this controlled environment. 

In June 2010, ten Z-traps were deployed in an experimental orchard at the WSU-TFREC and ten 
were deployed at the PSU-FREC. Figure 26 shows one of the traps deployed in WA. For a period 
of three months, the traps were used to monitor populations of CM and OFM in the orchards. 
During this period, the performance of the traps was carefully monitored and the data 
generated by each trap was periodically collected. For comparative purposes, the same number 
of standard delta traps was deployed in nearby locations within the same orchards. 

Although the Z-traps proved functional and operated uninterruptedly without major problems 
for the entire test period, they achieved significantly lower capture rates than standard delta 
traps. This is in contrast with the results of the wind tunnel experiments carried out at WSU, 
which achieved a comparable, if not better, capture rate than the conventional traps. We 
believe that the exterior shape of the current trap is somehow disrupting the dispersion of the 
pheromone plume. We evaluated the initial trap design in the wind tunnel and in the field. In 
the field, during the month of July, the original trap design caught between 8 and 11% of the 
moth catch of standard delta traps. In the wind tunnel, we used smoke (i.e., stannic 
oxychloride) to evaluate the pheromone plume emitted from the trap. We found that the shape 
of the trap caused a vacuum downwind from the large top, which caused the pheromone to 
curl back to the top, so that moths spent more time around the top of the trap and did not 
approach the zapper coil. The lower part of the trap was also problematic, because moths that 
went below the bottom part of the trap also lost the pheromone signal and were unable to 
locate the plume again, which resulted in the moths staying below the lower disk. 



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 34 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

           

Figure 26. Z-trap prototype (left); A Z-trap deployed at WSU-TFREC orchard for field testing 
(right). 

In order to identify and understand the reasons behind the low catch rate of the new trap 
prototype, several modifications to the design of the external structure of the trap were 
evaluated, some of which are shown in Figure 27. We tested eight different modifications of the 
trap either by modifying the bottom, or by incorporating portions of a bucket trap, which 
appeared to improve airflow around the trap and moth capture in the wind tunnel. We also 
evaluated two other modifications, one a bucket trap with the zapper coil attached at the top, 
and the other a standard delta trap attached over the coil, as illustrated in Figure 28. Because 
we only had a limited number of traps to test, these parts of the test were replicated only over 
time. From early August to September 8th, we were able to release large numbers of sterile 
adult CM from Canada roughly once a week in an orchard adjacent to the lab at the WSU-
TFREC. 

       

Figure 27. Experimental trap exterior designs. 
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In the field, we found that the bucket trap modified with a coil (Figure 28, left) captured ≈56% 
(85 moths) of the total delta trap capture (152 moths), and on most days was within 1-2 moths 
of the delta trap. On one date where the delta trap was placed high in the tree (instead of at 
the same level as the electronic trap), trap capture was roughly 2.5 times higher (62) than the 
bucket trap modification (24). In the WSU-TFREC experiments, the delta trap modification was 
less successful, at least in part because the coil was of smaller gauge wire and was easily 
distorted by the trap, potentially resulting in the zapper short-circuiting. The other 
modifications were consistently less efficient than either the delta or bucket modifications, 
despite not having the same issues with the coil. The bucket trap modification shows the 
potential of the zapper, and would easily allow for the combination of the zapper with the IR 
traps. Future designs of the zapper should simply place the electronics into a convenient, 
water-proof enclosure with the zapper coil on a cable that can easily be attached to any trap 
design for testing purposes to determine what works best. We anticipate that this design could 
be easily tested in the lab wind tunnel during the winter and modified relatively easily without 
having to re-engineer the trap design. 

     

Figure 28. Modified Z-traps employing existing bucket trap (left) and delta trap (right) exterior 
designs. 

Figure 29 (oriental fruit moth) and Figure 30 (codling moth) show some quantitative results 
obtained in the orchard at PSU. The figures show the cumulative capture of two modified Z-
traps with delta bottoms as well as the corresponding nearby standard delta traps used to 
evaluate the efficiency of the Z-traps. As one can see, the number of OFM and CM captured in 
the modified Z-trap with the delta bottom (Figure 28, right) easily surpassed the number 
captured by the manual delta trap at PSU. 

During the field experiments—conducted at WSU and PSU to improve the Z-trap exterior—we 
also collected additional electronic and environmental data. The data collected is accompanied 
by ground truth information based on the daily observations made in the field. That is, along 
with the digital signals obtained by the sensor, the data included the number of target and non-
target insects captured by each trap as well as the corresponding weather information. Unlike 
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the digital signals obtained in the wind tunnel experiments, which contained only target insect 
detections, the signals obtained in the field experiments also contained a large number of other 
unintended/unwanted events caused by things such as non-target insects, meteorological 
conditions or spraying events. These signals must be pre-processed to remove the unwanted 
events before they can be used to count the actual number of detected pests. 

 

 

 

Figure 29. Cumulative OFM capture of one 
of the zapper traps with a delta bottom 
compared with the captures of a nearby 
large delta trap. 

 Figure 30. Cumulative CM capture of one of 
the zapper traps with a delta bottom 
compared with the captures of a nearby 
large delta trap. 

Processing and analyzing the massive amounts of data produced during the field experiments is 
a formidable task. The information obtained by the traps consists of hundreds of millions of 
data points and several thousand events of interest. Just to put in perspective, using a regular 
laptop computer, it takes approximately 10 minutes to load and plot the data corresponding to 
two weeks of monitoring by a single trap. Manual inspection of the data allowed us to initially 
identify some of the signal features such as pulse width and slope that could be employed to 
distinguish between target insects, non-target insects, and irrelevant events, but developing 
algorithms to carry out these tasks and robustly filter out undesired data will require further 
investigation. 

Infrared Sensor-Based Traps (IR-Trap) 

We have also developed a new generation of infrared sensor based traps (“IR-traps”). Figure 31 
shows the new IR-trap deployed at the PSU-FREC. It has a small weather-resistant enclosure on 
the bottom that contains the electronics and batteries. Figure 32 shows how the circuit board 
was mounted on the back of a 3-cell D battery holder and placed inside the enclosure. The 
sensor funnel was mounted inside the bucket trap, as shown in Figure 33, and the sensors were 
connected to the circuit board internally with a pair of ribbon data cables. 
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Figure 31. IR-trap deployed at PSU-FREC. 

     

Figure 32. Circuit board and batteries inside the enclosure. 

     

Figure 33. Sensor funnel. 
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The new IR-trap has eight IR emitter/receiver pairs; last year’s model had four pairs. The IR 
sensors can be operated in two ways:  as a single ring of eight emitter-receiver pairs, or as two 
rings of four emitter-receiver pairs. Using a single ring allows for detecting smaller objects, and 
using two rings allows for determining whether the object is moving upwards or downwards. 

A 32 Mbyte flash memory integrated circuit board was added to the IR-trap in order to collect 
raw data. Every event is recorded with a time stamp and can be transferred later to a PC for 
further analysis. 

Power efficiency was significantly improved in the new IR-trap. Some of the new features for 
increasing the power efficiency include individual power control strategies over every single 
peripheral and a new signal conditioning circuit that works without the need of inverters or 
dual sets of batteries. Table 7 compares the power consumption between the Year 1 and Year 2 
prototypes. In order to make the comparison fair, the Year 2 prototype is not using any 
algorithm for smart duty-cycling and all sensors were kept active at all times to compare only 
the efficiency improvement in the electronics. 

Table 7. Power consumption for Year 1 and Year 2 prototypes for one day of operation. 

 
Operation Time Power 

Consumption 
Idle Time Power 

Consumption 
Average Operation 

Time 

Year 1 
prototype 

400 mA 30 mA 2 days 

Year 2 
prototype 

35 mA 0.2 mA 60 days 

In order to maximize the trap operation time, we designed a solar battery charger and 
controller. There is a wide range of solar energy products on the market. Integrating a solar 
panel solution to a customized electronic application, however, is still a difficult task. This year, 
we have successfully designed, implemented, and tested a solar charger and controller 
prototype. Integration of the solar charger and the electronic trap is part of our future work. 

We deployed six IR-traps at PSU-FREC in early September. Unfortunately, low capture rate was 
again the main problem. Figure 34 and Figure 35 show the cumulative capture for OFM and CM, 
respectively. The number of moths captured by larger delta traps used as controls is shown in 
red and that by the IR-traps is shown in green. We believe the bucket traps in general are not 
effective in capturing OFM and CM, unless there is a mechanism to force the insects to fall 
through the funnel (e.g., by stunning them with a high-voltage electrical grid similar to the one 
in the Z-trap). We also believe that the Vapona™ “kill” strip placed inside the bucket trap (i.e., 
as was used in the 2009 field studies) likely repels some moths from entering the trap. 
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Figure 34. Mean cumulative capture of OFM for three IR-traps. 

 

Figure 35. Mean cumulative capture of CM for three IR-traps. 
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Automated Detection of Internal Feeding Worm (IFW) Damage 

We have developed a two-step classification algorithm for detecting IFW damage on apples. A 
fast classifier is used in the first step to quickly remove most of the non-damaged regions. In 
the second step, a multiple kernel learning (MKL) approach is used on the remaining regions to 
obtain the final IFW damage detection. 

Figure 36 shows some examples of IFW-damaged apples across three varieties in different 
maturation stages. These images illustrate the wide variability in color of the apple and in the 
size and shape of IFW damage regions. These images also show the complexity of the image 
background that includes leaves, branches, ground, sky, etc. All of these factors make IFW 
damage detection a challenging task. 

 

Figure 36. Examples of IFW-damaged apples. 

Figure 37 shows the four fundamental operations of the current IFW damage detection 
algorithm: (1) feature extraction, (2) feature dimensionality reduction, (3) first-step 
classification based on support vector machine (SVM); and (4) second-step classification based 
on multiple kernel learning (MKL). Given an image, color and gradient features are extracted 
first. The dimension of the feature vector is reduced to 20 using principal component analysis 
(PCA). A two-step classification approach is applied after feature extraction and dimensionality 
reduction. In the first step, a standard SVM classifier with color and gradient features is utilized. 
After this first step classification, normally over 80% of the non-damaged regions are removed, 
thus only a small portion of the image regions (candidate regions) need to be evaluated in the 
second step. A more complicated MKL classifier (Figure 38) is used to detect the damaged 
regions from the candidate regions in the second step. A histogram of gradients (HoG) and 
color-shape features are calculated on a 21 x 21 patch surrounding the candidate region. The 
color-shape feature includes the average RGB intensities inside the candidate region, the 
average RGB intensities surrounding the candidate region, the difference of the RGB intensities 
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between the candidate region and its surroundings, the size of the candidate region, and the 
aspect ratio of the candidate region. 

 

Figure 37. IFW damage detection algorithm. 

 

Figure 38. Multiple kernel learning classifier procedure. 

In 2009, we collected a total of 2,774 apple images across three varieties to test our IFW 
detection algorithms (Table 8). These images are available for other research groups pursuing 
similar image processing problems at http://cobweb.ecn.purdue.edu/RVL/Database/IFW/. Half 
of the images in the 2009 database were used to train the algorithms and the other half to test 
them. Figure 39 through Figure 41 show some examples of detection results for Fuji, Golden 
Delicious and York. In these figures, the left image is the original image and the right image 
shows the detection result with pink regions detected as IFW damage. 

http://cobweb.ecn.purdue.edu/RVL/Database/IFW/


Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 42 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

Table 8. IFW damage image database collected in 2009. 

 Damaged Healthy Total 

Fuji 493 499 992 

Golden Delicious 490 401 891 

York 461 430 891 

Total 1444 1330 2774 

 

Figure 39. IFW damage detection results for Fuji apples. 

 

Figure 40. IFW damage detection results for Golden Delicious apples. 
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Figure 41. IFW damage detection results for York apples . 

Figure 42 shows the receiver operating characteristic (ROC) curves of the previous and the new 
detection algorithms. (An ROC curve is a plot of the sensitivity of a binary classifier when its 
discrimination criterion threshold is varied. The curve can be obtained by plotting the true 
positives vs. the false positives of the classifier under test. ROC analysis is usually regarded as a 
cost-benefit analysis because it allows one to select an optimal model and discard those that 
are suboptimal.) ROC curves generated from the test results to evaluate the first-step classifier, 
the single kernel classifier (SKL), and the multi-kernel classifier (MKL). The red line represents 
the ROC curve for the first-step classification, the blue line corresponds to the second-step 
classification using a SKL classifier, and the pink line the second-step classification using a MKL 
classifier. As one can see, the MKL-based classifier achieves about 85% detection accuracy with 
less than 4% false alarm rate. 

During the 2010 season, the PSU team acquired additional images of IFW damaged apples and 
healthy apples across four varieties (Table 9). We plan to use these images to retrain the 
detection algorithms in Year 3. 

Table 9. IFW damage image database collected in 2010. 

 Fuji York Golden 
Delicious 

Red 
Delicious 

Total 

IFW Damaged 742 1061 1022 1005 3830 

Healthy 394 647 422 496 1959 

Total 1136 1708 1444 1501 5789 
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Figure 42. ROC curves for the IFW damage detection algorithms. 

  



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 45 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

3.3 Crop Load Scouting 

Thematic area leader 

Name Institution Email 

Tony Koselka Vision Robotics Corp. tkoselka@visionrobotics.com 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Improve hardware for 
more reliable field 
operation. 

2. Enhance detection 
and sizing performance. 

3. Increase processing 
speed. 

4. Geo-reference data. 

  

1. Field tests using 
enhanced system will 
scout orchards with 
fruiting walls up to 3 ft., 
and red, green and 
mixed color apples sizes 
2” diameter and larger. 

2. Analysis report 
validating performance. 

1. Continuous scouting in excess of one 
hour in typical orchards with 
temperatures exceeding 95oF. 

2. Continuous operation in excess of 
eight hours (with software resets). 

3. One mile of row data analyzed by 
system and incorporated into GIS 
database. 

4. Data from 50’ foot scan of red apple 
trees analyzed and output within 60 
minutes. 

5. Average relative error in fruit count 
over reasonably-sized 3D regions less 
than 10%. 

6. Sizing performance quantified. 

Notable results: 

 Six acres of green apples and 5.5 acres of red apples were scanned and estimates of fruit 
count and size were produced. 

 Bias correction is required for accurate fruit count estimation. 

 Raw fruit sizing estimates had median size within 3% of hand-measured median size. 

 Ground traversal speed was increased to 1 mph. 

 Successful operation in temperatures in excess of 100oF. 

 Analysis time decreased to 30 to 70 minutes for 100’ of data (30 minutes for the 2009 data 
used as the baseline). 

 Data visualization through yield maps shows crop variability. 

  

mailto:tkoselka@visionrobotics.com
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Introduction 

The goals for Year 3 were to improve the apple detection and sizing accuracy for both red and 
green fruit, and to upgrade the robustness and operating scale of the prototype Scout. The year 
was to culminate with field tests to demonstrate crop load estimation on a significantly larger 
scale than in previous years. 

Summary of Field Test Results 

McDougall Farms, Ambrosia Block (Green Fruit, Figure 43) 

 The crop load estimate for six acres was 560,358, or 75% of the 742,388 load extrapolated 
from hand count of 240'. Raw count was 299,997. 

 Based on manual estimates of three bins per acre remaining in the block after harvest, the 
Scout’s bias-corrected estimates are 376, 335, 300 and 262 bins if the harvested apples had 
average sizes 100, 88, 80 and 72, respectively. 

 Counts from four trials each of two 60' hand-counted sections had consistencies (ratio of 
range to average) less than 7.1%. 

 Ratios of Scout count to hand count from the four hand-counted sections had consistency 
(ratio of range to average) of 13.7%. 

 Median apple diameter estimate for six acres was 2.60” which was within 1% of the median 
of 2.58” of the 240' of hand-measured apples. 

 Raw median apple diameter for six acres was 2.62”. 

       

Figure 43. McDougall Farms, ambrosia block (green fruit). 

Washington Fruit and Produce, Gala Block (Red Fruit, Figure 44) 

 The crop load estimate for eleven acres (with every other row scanned and the results 
doubled) was 1,445,143. This is 94% of the 1,532,232 load extrapolated from hand count of 
240'. Raw count was 284,477 for half of the block (5.5 acres). 

 Based on manual estimates of one bin per acre remaining in the block after harvest, the 
Scout’s bias-corrected estimates are 1,004, 899, 810 and 712 bins if the harvested apples 
had average sizes 100, 88, 80 and 72, respectively. 
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 Counts from four trials each of four 60' hand-counted sections had consistencies (ratio of 
range to average) less than 12.1%. 

 Ratios of Scout count to hand count from the four hand-counted sections had consistency 
(ratio of range to average) of 19.2%. 

 Median apple diameter estimate for eleven acres was 2.56”, which was within 3% of the 
median of 2.63” of the 240' of hand-measured apples. 

 Raw median apple diameter for eleven acres was 2.49”. 

   

Figure 44. Washington Fruit and Produce, gala block (red fruit). 

Crop Distribution 

 The Scout scanned 11.5 acres over two blocks, which is a significant amount of data 
collected about the orchards. While two blocks do not represent a large statistical data set, 
it does demonstrate the potential for the Scout to enable precision farming. 

 The six acres of ambrosia apples consisted of 30 rows and approximately 5 miles of trees. 
When broken into approximately 5 m sections, the Scout count/section values had a 
median of 340 and a standard deviation of 158.7. 

 The 5.5 acres of gala apples consisted of 26 rows and approximately 4.5 miles of trees. 
When broken into approximately 5 m sections, the count/section values had a median of 
513 and a standard deviation of 128.4. 

 The four ambrosia 60’ hand-count sections had median 1574 and standard deviation 162.6, 
while the four gala 60’ hand-count sections had median 1988 and standard deviation 104.4. 

 Figure 45 and Figure 46 show the hand counts and bias-corrected Scout estimates for the 
four 60’ sections, where each bar represents the count for a section with width equal to 
twice the tree spacing (for the ambrosia sections) or equal to the tree spacing (for the gala 
sections). Two key observations can be made. First, the Scout counts closely follow the hand 
counts for the vast majority of the trees. Second, the hand counts on such a small basis vary 
greatly, namely by a factor of three between the lowest and highest density trees. Hence, 
sampling one or two trees and extrapolating is not necessarily an accurate approach to crop 
load estimation. It should be noted that the exact transition between the equal width 
sections may not be the same for the hand count and the Scout count, i.e., apples on the 
border may be in different sections for the different counting methods. 
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Figure 45. Hand count and bias-corrected Scout estimate on a tree by tree basis for ambrosia trees. 
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Figure 46. Hand count and bias-corrected Scout estimate on a tree by tree basis for gala trees. 
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2009 Sizing Benchmark 

 As noted above, the 2010 sizing performance was extremely accurate, within 3% for the 
median apple size in the ground truth sections for both blocks scanned. This strong 
performance was predicated on benchmarking the 2009 results, analyzing actual sizing 
performance, improving sizing algorithms, and realizing benefits resulting from 
enhancements elsewhere in the Scout system. 

 Vision Robotics benchmarked the 2009 software's sizing performance by scanning apples of 
known sizes in several different configurations. 

 The raw average apple diameter was 2.2” while the true average diameter was 2.9”. 

 The data have been used to create a statistical model that can be applied to correct for such 
system biases. 

Speed and Robustness 

 Using standard off-the-shelf computers, industrial flashes, and forced air cooling, the Scout 
worked continuously for over one hour in temperatures in excess of 100°F during the field 
tests. 

 Ground speeds in excess of 1 mph were achieved using a camera frame rate of 20 images/s 
and the new flashes. 

 The industrial flashes provide sufficient light to enable the Scout to operate in all Sun 
conditions, a flash rate high enough for production, and robustness that approaches that 
required for production. 

 The system has been optimized such that the median time to analyze 100' of data was 30 to 
70 minutes, depending on the block from which the data were collected. 

Results and Discussion 

Moving the Scout system towards production requires strong performance in counting and 
sizing the apples, high processing speed, high system robustness and an effective means of 
displaying the data. In 2010, all these components were significantly improved. 

Estimation Performance 

At this time, it is difficult to measure the accuracy of the Scout’s crop load estimates because 
accurately determining the actual crop load even after the harvest is largely impractical. 
Additionally,  unknowns, such as an accurate value for how much of the crop was left in the 
orchard after it was scouted, are present. Furthermore, comparisons of Scout count estimates 
and after-harvest estimates are difficult because using bin counts as a unit can introduce 
inaccuracies since accurately converting a bin count to a count of apples depends on precise 
knowledge of the size of the fruit within the bins. Finally, at the time of this writing, post-
harvest estimates are not yet available for comparison. Thus, the main ground truth data 
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available for comparison are hand counts of 60’ sections; however, as described below, these 
data were used for bias correction. Nevertheless, as discussed below, study of the consistency 
of the raw Scouting estimates suggests that it is reasonable to believe the Scout’s bias-
corrected crop load estimates approach the 10% maximum relative error goal; however, 
sufficiently accurate ground truth data is not currently available to make this determination 
with certainty. 

Bias Correction 

In a crop load estimation system such as the Scout, it is likely that biases will inherently be 
present. Causes of such biases could include software factors such as a systematic tendency to 
undersize fruit during analysis, as well as physical factors such as high tree thickness causing 
some fruit to not be visible in captured images (and thus not counted). While the variability of 
such biases across different orchards and apple varieties is not yet known, they are likely to 
remain consistent through a block. Consequently, a small set of hand collected data can be 
used to develop a statistical model to correct the bias, transforming raw data into more 
accurate, statistically-adjusted data. For example, by applying bias correction, an estimate is 
equally accurate regardless of whether the Scout consistently identifies 99% of the apples 
correctly with zero double counts or false positives, or consistently estimates 80% of the apple 
count regardless of the number of correct versus incorrect detections. Undoubtedly, the better 
the system is at correctly distinguishing apples, the more likely it is to have a consistent count. 

In 2010, hand counts from 60' sections were used to perform bias correction. The ratios of the 
median hand-measured diameter to the median Scout estimated diameter were 0.98 and 1.06 
for the green and red apples, respectively. These near-unity diameter scaling factors 
demonstrate that only a small bias was present in the median size estimates, and that 
potentially either an extremely small or no bias correction will be required for sizing. 

To correct for bias in count estimates, a scaling factor was determined for each of the green 
and red apple scans by averaging the ratio of the hand count to the Scout count over the four 
60' sections. The resulting count scaling factors were 1.87 and 2.54 for the green and red 
apples, respectively. The relatively large separation of these values from unity shows that, 
despite being rather self-consistent, a fairly large bias was present in count estimates. A brief 
review of images in which detected fruit were outlined with circles suggested that a large 
percentage of more distant fruit were not visible to the Scout's cameras because they either 
were obscured by closer foliage and fruit, or were insufficiently illuminated by the flashes. In 
general, as illustrated in the images below, the majority of the fruit detected by the Scout were 
on the close side of the trunk, which roughly corroborates a scaling factor of two. One potential 
approach to combating such a source of bias would be to detect tree trunks, filter detected fruit 
to include only those on the near side of the trees, and then double the estimated count. 
Another is for the Scout to determine the thickness of the canopy and determine the depth into 
which is sees a large and uniform number of apples. It could then filter out all apples beyond 
that depth and use a scaling factor between that depth and the total canopy thickness. Both 
these logical refinements would lead to a more stable bias factor across different orchards. 
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The McDougall block scanned in 2010 was representative of the configurations initially 
anticipated for the Scout. The Washington Fruit and Produce block reached beyond the Scout’s 
initial objectives; however, the 2010 field tests demonstrated that bias correction can extend 
the capabilities of the Scout to operate in such orchard configurations. 

   

Figure 47. Two flash images with detected apples indicated with circles. 

Apple Count 

To improve raw estimation performance, the first step in 2010 was to further analyze the 
Scout's 2009 performance. The estimates of the number of apples in the 100' sections of jazz 
rows in the Allan Brothers orchard scanned in 2009 were typically accurate (based on 4-6 runs) 
to within 25% using 2009 software, with some of the runs achieving 98% accuracy. The Scout 
count includes correctly identified apples, doubly counted apples, missed apples and false 
detections. The results of these analyses, coupled with experience gained improving algorithm 
performance in 2009, provided target areas for enhancement in 2010. 

VRC has implemented an improved detection algorithm with better identification of individual 
apples (particularly those of mixed color) and stronger performance in identifying individual 
apples within clusters. The new algorithm uses the same software for detecting both red and 
green apples, but requires different input filters. The visual odometry software module is used 
to determine how much the cameras have moved between pictures and to determine the 
relative positions between cameras. The module has been enhanced to better correlate the 
portions of the images that overlap between cameras, which helps to eliminate double counts 
due to multiple cameras seeing the same apple (the largest number of errors in 2009) and 
enables improved location and size determination by incorporating more views of the same 
apple from different perspectives. 

Significant improvements to the collection software and the prototype design also improved 
detection performance. Using data collected from the 2009 field tests, the team optimized the 
camera/mast configuration, adding one additional camera pair (nine as opposed to eight in 
2009) and changing the relative locations and orientations to better image entire trees. 
Additionally, camera settings were adjusted and the auto-exposure algorithms were updated. 
Taken together, these modifications have improved the capability of the Scout to see the 
apples on the trees, which leads directly to improved estimation accuracy. 
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Figure 48 and Figure 49 show the raw and statistically-adjusted counts for the 30 rows of green 
apples, and the 26 rows of red apples. The median and standard deviation of the statistically-
adjusted row counts were 17,820 and 2,799 for the green apples and 28,709 and 4,548 for the 
red apples. The plots illustrate that while a significant bias correction factor has been applied, 
the raw counts are overall fairly consistent from row to row. Note that row 31 of the red apple 
block was of substantially shorter length than the other red apple rows, giving rise to a 
correspondingly low count. 

To view the data on a finer scale, each row was divided into approximately 16' sections along 
the row. Histograms giving the statistically-adjusted counts per section are shown on the top in 
Figure 50 for green fruit and on the bottom for red fruit. These plots demonstrate the Scout's 
ability to detect load variability within the block. 

In order to develop a bias correction model and to study the consistency of the Scout's 
estimates, the hand-counted 60' sections were scanned repeatedly; the results are shown in 
Table 10. In all cases, the latter three trials were performed in succession, while the first trial 
was performed at a different time of day. The counts clearly demonstrate the consistency of 
the Scout estimates over these trials. 

Table 10. Estimation consistency over multiple scans of the same sections. 

Row Scout Counts Consistency 

(max-min)/average 

Green 18 829, 780, 772 and 818 7.1% 

Green 24 807, 812, 780, and 768 5.6% 

Red 10 769, 817, 833 and 819 7.4% 

Red 19 781, 737, 744 and 726 7.6% 

Red 34 777, 851, 844 and 878 12.1% 

Red 43 764, 733, 724 and 704 8.2% 
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Figure 48. Raw counts (top) and statistically-adjusted counts (bottom) for 30 scanned rows of 
green fruit. 
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Figure 49. Raw counts (top) and statistically-adjusted counts (bottom) for 26 scanned rows of 
red fruit. 
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Figure 50. Statistically-adjusted histograms of fruit size for 30 scanned rows of green fruit 
(top) and 26 scanned rows of red fruit (bottom). 
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Apple Sizing 

Analysis of the 2009 sizing performance revealed that partially occluded apples tended to lead 
to size underestimation with a larger variance than true distributions; the estimates of the 
range of apple sizes tended to be wider, flatter and shifted to smaller sizes than the actual crop. 
Sources such as this introduce system biases which can be reduced through the use of 
statistical modeling. A statistical model was created to adjust the size distribution to address 
these expected inaccuracies. More and improved data from this year's field tests will enable 
refinement of the model in 2011. 

As reported last year, the 2009 raw average size estimates were approximately 20% too small. 
For the run shown in Figure 51, the raw average apple size was 2.2" diameter, which is 24.1% 
less than the hand-measured average of 2.9" diameter. The histogram of the data after the 
statistical model was applied shows a mean size of 3.0" diameter, or 3.4% larger than ground 
truth. Thus, the statistical modeling is effective in adjusting the mean of the size distribution. 
The variance of the distribution, however, remains larger than the true variance. This result is, 
in part, due to the need for a larger sample size when developing the statistical model. Such a 
larger set will be available when statistical models are developed based upon field data as 
opposed to laboratory data. 

When compared to 2009, the 2010 Scout produces a better distinction between an individual 
fruit and the surrounding fruit, leaves and branches in the images. This delineation directly 
leads to the software more accurately detecting the perimeter of the apples in the images, 
thereby significantly improving the raw average sizing performance. The 2010 raw and 
statistically-adjusted (using the simple scaling model) size distributions for the six acres of green 
fruit are shown in Figure 52, and for the 5.5 acres of red apples in Figure 53. The aggregate 
hand-measured size distributions of fruit in the four 60' sections for green and red apples are 
shown in Figure 54. Visually comparing the histograms for the raw and hand-measured fruit 
diameters immediately illustrates that very little bias is present in the median size; however, 
the Scout estimates display a larger variance, as is expected. After bias correction with a near-
unity scaling factor, the median green apple diameter was 2.60”, which was 0.78% larger than 
the hand-measured median diameter of 2.58”. Similarly, the bias-corrected median red apple 
diameter was 2.56”, which was 2.66% smaller than the hand-measured median diameter of 
2.63”. 
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Figure 51. Raw (top) and statistically-adjusted (bottom) size distribution for a 2009 scan. 
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Figure 52. Raw size estimates (left) and statistically-adjusted size estimates (right) for 30 
scanned rows of green fruit. 

   

Figure 53. Raw size estimates (left) and statistically-adjusted size estimates (right) for 26 
scanned rows of red fruit. 

   

Figure 54. Hand-measured apple sizes for 240' of green (left) and red (right) apple. 
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System Robustness 

Improving the system robustness was a key goal for this year and all related objectives were 
met. The 2010 Scout prototype and camera module (Figure 55) represent significant upgrades 
towards a production design, but the resources necessary to fully weatherize them were not 
expended. For example, each camera pair is now in a closed module that is straightforward to 
fully seal, but the time and expense were not taken to use IP65 connectors and gaskets. 
Similarly, the computers are more robust than those used in 2009, but they are still standard 
desktop models. Fully weatherized and robust computers are available, but only represent a 
marginal robustness improvement that, as expected, was not required this year. Active cooling 
of the electronics cabinet through a fan system was included in the 2010 prototype. VRC 
conducted several local field tests to debug the prototype and the final unit operated virtually 
flawlessly during the week of field tests in Washington where the temperatures were in excess 
of 95°F every day and above 100°F a couple of days. 

   

Figure 55. Scout prototype (left) and camera module (right). 

As noted, the improved robustness was a part of the requirement to ensure that the Scout can 
operate at a production scale. Additional improvements introduced to achieve this goal include: 

 increased Scout scanning speed to 1 mph; 

 increased camera frame rate; 

 decreased image density (pictures per inch); 

 incorporated GPS system to geo-reference data; 

 decreased number and increased robustness of electrical connections; 

 debugged software to eliminate crashes; 

 incorporated industrial flashes. 
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Analysis Speed 

The current Scout is approximately 20 times faster than in 2009 when analyzing data from 
2009, meeting the goal of analyzing 50' of data within 60 minutes. In fact, 50’ of 2009 data was 
process in under 30 minutes, or approximately twice the initial success criteria. The speed gains 
were achieved primarily through parallelization and decreased analysis time because of the 
new detection algorithms. Analysis times for 2010 data are somewhat longer, with median 
times of 70 and 59 minutes for 100' of green and red apples, respectively. This increase can be 
attributed primarily to the blocks, which have significantly more fruit than those scanned in 
2009, and to the fact that the scans were significantly longer (the longer runs require the 
software to track more fruit during each run). 

Integration with the APM and CASC GIS System 

In 2010, the APM towed the Scout throughout the field tests at the Washington Fruit and 
Produce orchard. VRC and the CMU team spent almost a full day integrating the two systems, 
primarily updating the APM software to correctly turn between the rows when towing the 
Scout. The two robots completed the red apple scans over the course of the next day and a 
half. VRC has provided the crop load estimate data to CMU for integration into the GIS 
database. 

Data Visualization 

VRC has created a framework for viewing data output by the Scout to provide detail and a 
debugging environment at VRC. The crop load data can be overlaid onto a Google Earth map of 
the block to show the crop load and sizes for various resolutions. The yield and median size 
maps for the red apple data broken down into approximately 5 m sections along each row are 
shown in Figure 56 for red fruit and Figure 57 for green fruit. In each case, red indicates lower 
counts (or smaller sizes), yellow indicates medium counts (or sizes) and green indicates higher 
counts (or larger sizes). Note that some variability is present due to inaccuracies in raw received 
GPS data. Such inaccuracies likely account for instances where data which should truly appear 
in rows which are quite red being shifted to appear in neighboring rows (making them very 
green). Count and size data can be shown at any resolution from the entire block, to a row, to 
any meter along the row. 
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Figure 56. Yield map (left) and median size map (right) for the 26 scanned rows of red fruit. 

   

Figure 57. Yield map (left) and median size map (right) for the 30 scanned rows of green fruit. 
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Figure 58. Yield map for a single row (left) and size information for a 16' section (right) for a 
green apple scan. 

Field Tests 

The VRC team wishes to acknowledge and thank everyone that helped make our field tests a 
success. This includes the McDougall’s and Washington Fruit and Produce who let us into their 
orchards as well as helped keep us dry during those hot days. Similarly the CMU and WTFRC 
teams went way above and beyond reasonable effort. Collectively, we worked from before 
dawn to late into the night, and even through thunderstorms. Finally, we appreciate and thank 
the Commission for collecting the ground truth data, both the estimates for the full blocks and 
the hand counts of small sections within the blocks. During the tests, the Scout collected 
approximately nine terabytes of data for analysis. Despite the temperature, rain and sprinkling, 
it operated all three days and collected data without a failure except for a couple of hard disk-
related crashes with one of the twelve disks used. 

The Future 

VRC is pleased with the 2010 progress; the detection software performance (particularly with 
respect to sizing) and speed was improved, and the Scout demonstrated its ability to scan large 
blocks with high consistency within a block. The goals for the future include a plan for 
continued refinement of the apple detection and sizing performance, and further increasing the 
processing speed with the ultimate goal of achieving real time. One specific goal for 2011 is to 
analyze the data collected this year to determine a statistical scanning plan to create accurate 
crop load estimates while scanning only portions of the orchards. An additional key goal is to 
collect data from a larger and more diverse set of blocks (in terms of varieties and tree 
configurations) to analyze the variability in the statistical models used for bias correction.  
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3.4 Caliper Measurement 

Thematic area leader 

Name Institution Email 

James Owen Oregon State University jim.owen@oregonstate.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Develop tree counter. 

2. Develop 2nd version of 
caliper. 

3. Quantify caliper 
performance in field 
conditions in OR (shade 
trees) and WA & PA (fruit 
trees). 

1. Report on performance of 
counter and caliper devices. 

2. At least one each of the 
counter and caliper 
prototypes operational in 
WA, OR, and CA. 

3. Database of images with 
accompanying ground truth. 

1. Caliper accuracy to within 
1 grade. 

2. Count accuracy to within 
2%. 

Notable results: 

For the caliper: 

 Determined caliper within 2 mm of harvested bareroot tree passing in front of the 
stationary device in a warehouse. 

 Determined caliper within 3 mm of nursery trees at an unspecified height (≤10”) while 
moving at approximately 2 mph in the field. Caliper was only obtained when no visual 
obstructions or interference was present. 

 Caliper data was used to effectively determine bareroot tree grade. 

For the counter: 

 Counted in-ground nursery trees of ≥ ¼” in caliper with 95% accuracy while moving at 
approximately 2.5 mph. 

 Counted in-ground nursery trees of ≥ ½” in caliper with 97% accuracy while moving at 
approximately 3 mph. 

 Counter is undergoing commercialization trials by Crop Tech LLC, to be used in WA fruit tree 
nurseries. 

   

mailto:jim.owen@oregonstate.edu
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Introduction 

In Year 2 we focused on redesigning and field-testing the on-the-fly caliper and counter devices 
(Figure 59). Extensive testing was conducted in various production systems over three states: 
Pennsylvania, Oregon, and Washington (Table 11). 

           

Figure 59. Second generation caliper, constant height wheel-mount and infrared sensors for 
counting. 

Table 11. Year 2 sites utilized to test the counter and caliper devices. 

Production System/Application Location 

Fruit tree nursery (bareroot trees in warehouse  Adams County Nursery, Aspers, PA 

Shade tree nursery (in field) J. Franck Schmidt and Son, Canby, OR 

Flowering tree nursery (in field) J. Franck Schmidt and Son, Canby, OR 

Ornamental tree nursery (in field) J. Franck Schmidt and Son, Canby, OR 

Pot-in-pot ornamental tree nursery (in field) Oregon Turf and Tree, Hubbard, OR 

Ornamental tree nursery (in field) Oregon Turf and Tree, Hubbard, OR 

Established, trellised orchard Skyline East Orchards, Royal City, WA 

Newly planted, trellised orchard Skyline East Orchards, Royal City, WA 

Fruit tree nursery (in field) Willow Drive Nursery, Ephrata, WA 

Fruit tree nursery (in field) Willow Drive Nursery, Ephrata, WA 

Fruit tree nursery (in field) Dave Wilson Nursery, Hickman, CA 
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Caliper 

Ornamental and fruit tree nursery producers identified tree caliper as an important indicator of 
growth and yield, respectively. For nurseries, measuring caliper of in-ground trees would 
increase accuracy of current inventory and improve predicting of future inventory. Fruit tree 
growers identified caliper as most meaningful for monitoring young orchards, one to three 
years old, to determine rate of growth and establishment. Knowledge of young tree 
establishment allows orchard owners to better predict fruit yield, and therefore overall return 
on investment. 

Data analysis of the 2009 caliper device field evaluations in Washington, Oregon, Maryland, and 
Pittsburgh was completed in the winter of 2009-2010. The measurements from the prototype 
caliper device were within the suggested 3 mm specifications when imaging was performed at 
speeds under 2 mph. Further improvements were necessary to improve speed processing, 
widen the field of view and measure at a larger range of depths. 

The second version of the caliper device provides an increased field-of-view, depth-of-view, and 
incorporates a visible laser to assist the user with maintaining height and distance from the tree 
being measured. The issues of uneven ground conditions, the need to measure a fixed distance 
above a variable budding point and crop and non-crop related vegetation interference remain 
as challenges to be addressed. Additionally, this new caliper uses Class III laser diodes that pose 
eye safety issues. Sustained exposure to the laser source such as in the case a person places 
their eye at the aperture of the caliper device can cause injury. Proper workplace precautions 
need to be observed to ensure OSHA compliance. 

The second generation caliper device, when mounted to a wagon or equipment, is able to 
measure 97% of unstaked bareroot fruit or ornamental trees caliper within 3 mm accuracy 
moving at < 2.5 mph if tree stems are straight, planted in line, and perpendicular to the ground. 
At 3 mm accuracy, grade can accurately be determined with the exception of those trees 
following below or above a grading threshold such as 1” caliper. This is not a regular 
occurrence. In Year 2 it was observed that the speed of travel can increase with increasing tree 
caliper. This concept was successfully tested by measuring caliper travelling at 3 mph when 
determining caliper of in-ground wholesale ornamental cherries at Oregon Turf and Tree. When 
sorting or grading indoors the second generation caliper, as a stationary device, can measure 
caliper within 2 mm (Figure 60). 

Obstacles we still face are measuring caliper at 6” above the soil line or bud graft, interference 
from the tree stake, and curved stems (Figure 61). All of these obstacles occur only under field 
conditions. The issue of measuring caliper at a given height and ground interference is 
worsened by the non-uniform graft height and irregular grade or mounds/hills that occur within 
the tree row. Caliper cannot be determined on trees in which the stake is in front or behind the 
tree due to interference. The crooked tree stem is primarily a concern in fruit tree nurseries or 
orchards in which curved stems are acceptable. These stems move towards or away from the 
device as much as 10” if parallel with the row. A third generation caliper device will be designed 
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and constructed in Year 3 using new camera and lasers to address and attempt to overcome 
these barriers. 

      

      

      

Figure 60. From top to bottom, left to right: caliper being used to determine tree diameter in 
a warehouse sorting operation, bareroot ornamental nursery, established orchard, bareroot 
fruit tree nursery and ornamental wholesale nursery in both field and pot-in-pot production 
systems. 
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Figure 61. Current challenges when obtaining caliper in a nursery or orchard include tree 
stakes, variations in grade, tree sleeves, trellis posts, strings, curved stems, pots, irrigation 
stakes, and varying heights of graft union (bottom right, blue lines). 

Counter 

In Year 1 the focus of our research was to define existing methodology utilized by industry, 
possible obstacles, field conditions and industry integration. This occurred simultaneously with 
the development and evaluation of the on-the-fly caliper device. During Year 1 fruit tree 
bareroot nurseries identified counting as or more important than caliper measurement. 
Ornamental nurseries also identified counting as important. 

In Year 2, we determined that counting alone could be accomplished using a simpler approach 
with much less expensive hardware then that needed for measuring caliper. We designed and 
constructed a low-cost infrared device that works by detecting the presence or absence of 
trees. Initial field tests of the counter were conducted at Adams County Nursery in Aspers, PA 
on November 11th, 2009. Eighteen tests were conducted on 70 tree whips > ½” caliper spaced 
24” at a speed < 2 mph. For the 70 trees measured the prototype counter device was able to 
remain within 4% accuracy (± 3 trees). Our device and a more expensive, commercially-
available infrared sensor were sent to WA and OR for additional field evaluations. 
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In Year 2 both counters were evaluated at fruit and ornamental nurseries. Testing began at J. 
Frank Schmidt and Son Co. in Canby, OR on June 17th, 2010. Forty-five Sergeant crabapples 
were counted five times with an average accuracy of 97% when travelling at approximately 3 
mph. Also at J. Frank Schmidt and Son, forty-five coffee tree seedlings were counted four times 
with an average accuracy of 97% while travelling at approximately 2.5 mph. In Ephrata, WA at 
Willow Drive Nursery on July 27th, 2010, twenty small caliper apple tree seedlings were counted 
ten times with an average accuracy of 95% while travelling at approximately 2 mph. Many 
passes did not work initially because of ground interference. The last field evaluation was 
conducted at Dave Wilson Nursery in Hickman, CA on July 29th, 2010. Counters were mounted 
on a tractor and used to count fifty cherry trees ten to twenty times. Trees were counted with 
an average accuracy of 97% while travelling at 2.5 to 3.0 mph (Figure 62). 

    

    

Figure 62. Infrared devices used in Year 2 to count trees in bareroot ornamental nursery, fruit 
tree seedling nursery, bareroot fruit tree nursery and ornamental tree seedling nursery. 

Commercialization 

Crop Tech LLC, a new agriculture technology startup led by three WSU graduates, met Karen 
Lewis in Year 2 to discuss opportunities of creating a service-based business that counted and 
callipered trees for central and eastern WA tree fruit nurseries. Karen Lewis and entrepreneurs 



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 70 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

of Tech LLC developed a business plan and began discussions with CASC engineers. Shortly 
after, Crop Tech LLC traveled to Oregon and met with Jim Owen, observed on-farm trials of 
caliper and counter devices at Oregon Turf and Tree Farms, met with CASC industry 
participants, and attended a presentation by Wenfan Shi that explained the technical details of 
construction and application of the caliper and counter devices. Furthermore, Crop Tech LLC 
entrepreneurs met with CASC scientists and industry participants to discuss opportunities and 
pitfalls of the technology, business plan, and potential clientele. 

Crop Tech LLC identified the counter to be the first device employed by the company. In the fall 
of 2010 an opportunity arose to count trees as part of an insurance claim for a WA tree fruit 
nursery than incurred damage from the winter of 2009-2010 (Figure 63). The company acquired 
two second generation counters and provided service and software at no cost. Counting is 
underway. 

        

Figure 63. Crop Tech LLC utilizing CASC counter and software to count trees at a Washington 
tree fruit nursery. 
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3.5 Information Management 

Thematic area leader 

Name Institution Email 

Ben Grocholsky Carnegie Mellon University grocholsky@ri.cmu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Integrate plant science 
sensor suite into GIS. 

2. Deploy limited APM field-
testing. 

1. Demo in test orchard. 1. Produce map of 10 km 
block with three 
complementary sensors. 

Notable results: 

 Developed a web-based geographic information system (GIS) tool for collecting and 
managing crop information from the field. Re-implemented Year 1 GIS capability to remove 
scripting and supervision of data entry and processing by engineers or scientists. Processing 
is now performed automatically on the system server. Data query, editing and display use 
free and open source GIS tools (PostGIS, OpenLayers and Geo-Django). 

 Used new GIS tools to display Vision Robotics crop load estimates from WA field trials. The 
system provides display of geo-referenced crop data that includes total fruit count for each 
region and counts within specified size classes. 

 Leveraged APM mobility to collect data on continuous runs over 10 km in length; the scale 
of whole orchard blocks. Three sensors (laser, camera, NDVI) were used to collect canopy 
data that complements crop load measurement. It is anticipated that this data will be 
valuable in designing efficient crop load assessment schemes that utilize sparse sampling 
rather than dense canopy measurement. 

  

mailto:grocholsky@ri.cmu.edu
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Information Management Task 

The Year 1 geographic information systems (GIS) effort demonstrated the value of orchard data 
collection and display in terms of supporting awareness and high-level decision making by 
growers and managers. Reviews identified two drawbacks with the previous approach: 

1. Unacceptable level of scientist involvement in supervising data entry and processing; 

2. Poor scalability to large data sets without operations on small space and time selections. 

Development effort for Year 2 focused on re-implementing Year 1 capability, using existing 
open database and network frameworks to deliver a GIS tool that is scalable and easy to use. 

Approach 

A streamlined systematic GIS workflow for orchard information collection and management has 
been implemented using free and open source software. The software tools utilized provide a 
flexible web-based user interface (Django), geospatial database functionality (PostGIS), data 
visualization overlays (OpenLayers) and automated numerical procedures such as data 
interpolation (Python). This combination facilitates the shift from manual data processing to 
automated processing on a GIS server triggered via connections to network clients. The GIS 
server data storage modeling and the network interfaces that provide user interaction are 
described in the following sections. 

CASC Data Model 

A data model is implemented to provide storage primitives that describe types of 
measurements, information and infrastructure typical to orchard and nursery operations. Time 
and location are common to all data primitives. Fields to store specific numeric values, text 
descriptions and geometry have been added to represent the following entities:  

 Orchard Structure: Site boundaries, individual Tree, Row and Block geometry. 

 Sensing/Scouting: Sensor type and characteristics, measurements at point, area or voxel 
locations, registered imagery and manual incident descriptions. 

The data modeling methodology is extensible. Foreseeable additional features include 
representing orchard roads and paths, geometries such as irrigation lines, and maps of 
landmarks used for APM autonomy and localization. 

Network and User Interfaces 

The system provides network interfaces for data access and graphical web-based interfaces for 
user interaction. The following actions are supported by these interfaces:    

 Import: Data is entered into the system via either on-line connection to the server or off-
line from standard text or data base file formats logged on field devices. 
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 Edit/Administration: A web user interface is used to provide dynamic listing, inspection and 
editing of the data on the server. 

 Data Selection: User input supports queries based on measurement type, time range and 
spatial bounds allowing focused recall and inspection of specific information of interest. 

 Display: Selected data is visualized via map spatial overlays to provide inspection, 
comparison, analysis and decision aid to orchard managers. 

 Export: Export of selected data to standard file formats supports further data use and 
analysis via import to specialized scientific and agricultural software tools. 

Field Trials  

Data collection trials were conducted in Pennsylvania and Washington orchards using the APM 
as a sensor platform and in Washington using the Vision Robotics Scout Newton integrated with 
the APM to provide mobility and data registration. Three additional sensors were mounted to 
the APM (laser, camera, NDVI) as shown in Figure 64 to collect canopy data complementing the 
crop load measurements made by Vision Robotics. Notable features of the data collection trails 
were: 

 Low operator effort: Collection was conducted in the background during APM testing. 

 Scale and diversity: Over fourteen 10 km datasets were collected over a variety of research 
and production orchards. 

       

Figure 64. Canopy sensing instrumentation on the APM (left), and example GIS data layers 
(right) showing a visual comparison between yield data collected by traditional methods and 
canopy shape sensed by APM-mounted laser scanners. 
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Lessons Learned 

 Automating data collection and management is challenging. Significant payoffs include 
elimination of data entry effort and large-scale/duration operation without conscious 
monitoring by equipment operators. 

 Standardized open source web and database frameworks provide basis for building 
powerful free GIS tools. 

 APM mobility and localization depend on maps of orchard features. Usability would benefit 
from having future GIS provide orchard maps to APM system 

 Tracking and auditing APM activity and performance is a tedious task for operators but 
naturally suited to GIS. This task is highly valuable in demonstrating APM usability. Future 
GIS development will monitor and report APM activity. 
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4. Automation 

Automation encompasses the work aimed at increasing farm efficiency and reducing 
production costs via the deployment of self-guided, low-cost agricultural machines to automate 
sensor data collection and farm operations such as spraying and mowing; and at increasing 
worker efficiency and reducing worker load via the deployment of pruning, thinning, and 
harvesting assist technologies. 

This section presents the goals and accomplishments in the following three thematic areas: 

 Reconfigurable mobility; 

 Accurate positioning; 

 Augmented harvesting. 
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4.1 Reconfigurable Mobility 

Thematic area leaders 

Name Institution Email 

Sanjiv Singh Carnegie Mellon University ssingh@cmu.edu 

Brad Hamner Carnegie Mellon University bhamner@cmu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Integrate payload for 
assessment and treatment 
tasks. 

2. Integrate low-cost 
localization. 

3. Perform field tests in WA 
and OR. 

4. Extend APM automation to 
one more platform. 

5. Create, simulate and test 
control policies for thinning. 

1. APM integrated with GIS 
and crop load assessment. 

2. APM integrated with 
precision spraying. 

3. APM automation package 
installed and tested on 
hydraulic orchard platform. 

4. LIDAR integrated with 
string thinner control in test 
orchard. 

1. 100 km low-cost APM 
scout safe operation with a 
MDBF of 10 km. 

2. 10 km of autonomous row 
following with hydraulic 
orchard platform. 

3. Working closed-loop 
LIDAR-based control of the 
string thinner with 
quantitative results. 

2. Quantitative comparison 
of the ultrasonics and LIDAR 
for control. 

Notable results: 

 159 km of autonomous driving with the APM, each segment longer than 10 km. 

 10 km of autonomous driving with hydraulic orchard platform. 

 APM controlled by orchard workers using a user-friendly graphical interface. 

  

mailto:ssingh@cmu.edu
mailto:bhamner@cmu.edu
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Improving Reliability 

Year 1 in the area of reconfigurable mobility focused on proof-of-concept. We automated the 
first vehicle in the Autonomous Prime Mover (APM) family, a Toro eWorkman, and added 
sensors and a software suite to have the vehicle drive between rows of trees and turn around 
at the end of rows. We also showed how such a vehicle could be used to tow a mower or carry 
a sprayer and thus execute typical orchard maintenance operations. 

By the end of Year 1 the autonomous system was functional, but not reliable enough to 
undertake long missions. In particular it was not robust to uneven terrain and variance in 
canopy types. We met our 100 km distance goal for that year, but were frequently restricted to 
blocks or rows which were neatly maintained or on relatively level terrain. Our focus for Year 2 
was on improving the reliability of the system and its robustness to unexpected variations. We 
aimed for longer missions, more variety in the canopy and terrain of our test sites, and fewer 
failures. Our goal for this year was again to drive 100 km autonomously, except that now with a 
mean distance between system failures of greater than 10 km (in other words, we did not 
accrue kilometers if the distance traveled on a certain test was less than 10 km). Not written 
explicitly into the goals was that we would achieve this by driving entire blocks, not picking and 
choosing rows that were “nicer” for the autonomous system. 

Modifications to the APM 

The original design of the APM had two laser range finders located on the corners of the vehicle 
about one foot off the ground (Figure 65, left). The lasers scan 180o in a horizontal plane and 
provide distance to each object in front of them. We oriented the lasers to give a 270o field-of-
view in front of and to the sides of the vehicle. This is a simple, low-cost setup which allows the 
autonomous system to see the world around it, though only the objects that are one foot high 
relative to the vehicle. This includes not only tree trunks and canopy, but weeds and sometimes 
the ground itself when the terrain slopes upwards (Figure 65, right). To the autonomous system 
such obstacles are indistinguishable from trees and make row detection difficult. 

In Year 2 we modified the APM to use only one laser range finder for row following. This is a 
new model of sensor which provides a 270o field-of-view. We mounted the sensor centered 
left-right and at a height just above the hood of the APM (Figure 66). This configuration has two 
advantages. The first is that since the laser is above the hood we can take advantage of its 
increased field-of-view. The second is that the sensor at this height is less susceptible to the 
spurious obstacles mentioned above. 
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Figure 65. (Left) The Autonomous Prime Mover (APM) in its original configuration, with laser 
range finders mounted low on the corners of the vehicle. (Right) With the lasers at this height 
it was easy for sloped terrain to come into view, which presented a challenge to the row 
detection algorithm. 

 

Figure 66. The APM in its new configuration. The laser range finder mounted just above the 
hood is the only one used for row following. 

Improvements in Row Following 

One major concern in row following in Year 1 was performing row detection in the presence of 
spurious obstacles like weeds or sloped terrain. Our first row detection system used a Hough 
transform, which looks for the most likely pair of parallel lines in the laser range data. In normal 
circumstances, when the robot only sees the tree trunks and canopy, the two lines of tree 
canopy are the most likely. The autonomous system then finds the midway line between the 
two, and that is selected as the desired path to drive. When, however, spurious obstacles are 
present, the system may perceive them as being part of a good pair of parallel lines, which 

Laser range finder used 
for row following 
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results in the vehicle drifting off center, sometimes into the canopy (Figure 67, left). Although 
the new laser height mitigated this problem by presenting fewer such obstacles, we required a 
row detection system which was more robust. 

In Year 2 we developed a row detector which uses a particle filter, a common estimation tool 
used in robotics. The particle filter makes multiple guesses of where the tree rows could be, 
and scores each guess by how much it agrees with the laser range data. Furthermore, high-
scoring row lines are kept from one iteration of the detection to the next, so that detections get 
better over time. When spurious obstacles appear, the filter remembers the previous row lines 
that had been detected, and can select the correct row (Figure 67, right). 

        

Figure 67. Comparison of row detection methods among tall weeds or uneven terrain. (Left) 
The Hough transform method used in Year 1 is confused by the unexpected data, resulting in 
bad row detections. (Right) The particle filter method used in Year 2 correctly ignores the 
additional data and finds the tree rows. 

Improvements in Turning and Row Entry 

When the robot has reached the end of one row it attempts to turn into the next row. Due to 
inconsistencies in the tree plantings and in the robot’s location estimate, the system does not 
rely solely on the prescribed row width for its target position. Instead, as it is turning, it runs the 
row detection to find the lane to go into. The method of turning used in Year 1 was to make a 
sharp turn towards the next row, then run row detection when the robot was perpendicular to 
the row. This was suboptimal in a couple of ways. First, the sharp turns were hard on the motor 
controlling the steering wheel, which may have led to a motor failure we had in June. Second, 
row detection was difficult with the vehicle pointed perpendicular to the row. From this point, 
the canopy of the nearest trees can block the far row, giving the autonomous system little data 
to work with (Figure 68). Detections from this point were unreliable, with a success rate less 
than 50% in dense canopy. 
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Figure 68. The APM attempts to enter the row indicated by the yellow arrow. The canopy of 
the trees at the near side of the row, however, blocks the rest of the near edge and most of 
the far edge. The row detector has little data to work with in this situation. 

In Year 2 we designed new turn methods to make a smoother row entry. We implemented a 
path planner that takes the nominal starting point of the vehicle in the next driving lane and 
generates a smooth path that respects the vehicle’s steering constraints. The planner optimizes 
the path to produce gentle steering, avoiding hard steering angles that stress the motor, while 
minimizing the total path distance (Figure 69, left). This planner aligns the vehicle with the row 
as it enters, so the vehicle is pointed along the row early. Before the vehicle completes the turn 
the autonomous system runs a row detection to refine its target entry point (Figure 69, right). 

      

Figure 69. (Left) The new planner generates a smooth trajectory for the APM to follow, 
staying away from hard steering angles that stress the motor, while aligning the vehicle to be 
able to see into the row before entry. (Right) Once the vehicle has turned towards the row 
the system performs a row detection to refine the desired path of the vehicle. 
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Frequently, in order for the vehicle to be aligned with the row before entering, the planner 
creates a path with a large-radius, bulb-shaped turn. This turn is not always possible due to 
space constraints. Therefore  we have also developed a three-point, “K” turn. The vehicle first 
turns past the row, then backs up and points towards the row, and finally enters the row 
(Figure 70). During the third leg of the turn the system runs the row detector to refine the final 
goal point. 

 

Figure 70. This row is too narrow for the APM to smoothly turn into. The system plans a “K”-
turn, where the vehicle turns past the row, backs up, and then enters. In the third leg of the 
turn the system performs a row detection to refine the final desired path. 

We have successfully tested both of the new turn methods. The limitation at this point is that 
we need to manually program which type of turn to do, smooth or three-point. We also tell the 
system how much space it will have in which to turn the robot (for planning collision-free 
paths). In future work we will program the system to autonomously assess the drivable space 
and decide which turn maneuver to execute. 

Tests 

We conducted tests of the improved autonomous navigation system in Pennsylvania and 
Washington during the summer months. Test missions were conducted in large blocks because 
our goals required missions longer than 10 km. In places where blocks were not this long, we 
set the robot to repeat the block. Frequently upon arrival at a new block we would discover 
that minor tweaks to the system were necessary to deal with a new type of canopy previously 
unseen. In that case we had many short runs before we were ready to test long missions. For 
this reason, we only list the test missions longer than 10 km in the results below. 

We logged a total of 159 km of autonomous travel in Year 2 (Table 12). The first 20 km were 
achieved in commercial orchards in Washington state. The next 80 km came at our Robot City 
test planting in Pittsburgh. At Robot City our primary concern was to find and fix problems such 
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as the software memory errors that occurred on August 24th and 31st. These errors occurred 
when software elements—e.g., a desired path for the robot—were handled incorrectly, causing 
the computer to slowly run out of memory and the software controller to crash. They are 
typically hard to find and require such endurance runs to uncover. After each of the tests on the 
24th and 31st we ran memory check tools and corrected the software to fix the problem. 
Following the corrections for the test on the 31st we ran the system in a simulator to confirm 
that there were no more memory errors. The simulated system ran for over 30 simulated km in 
8 hours of operation, so we were ready to proceed with more on-vehicle tests. Tests at Robot 
City became progressively longer, culminating in a 25 km run that lasted 5 hours, which was 
manually stopped by the test lead for time scheduling reasons. 

Although we reached the 100 km mark at Robot City, we continued to go out to Soergel 
Orchards and Penn State’s Fruit Research and Extension Center to demonstrate the APM’s 
successful operation in fully-developed orchards. We logged an additional 50 km at these test 
sites. Also at the FREC, but not listed in the results table, we wished to show the ability of the 
autonomous navigation system to handle different blocks and canopy types. We went to 
multiple blocks, programmed in the number of rows as well as their length and width, and told 
the system to start driving, without adjusting any other parameters. In this way the APM 
successfully drove six different blocks at the FREC, despite differences in row width, canopy 
training, and growing systems (Figure 71). 

 

 

Figure 71. A sampling of the blocks driven by the APM this year. Growing systems varied from 
recent fruiting wall plantings (bottom middle) to completely standalone, untrained trees 
(bottom right). All pictures are from blocks at the Penn State FREC. 
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Table 12. Autonomous driving runs obtained in Year 2. Only those runs 10 km or longer were 
logged for the purposes of reaching the 100 km goal. 

Date Location Distance 
(km) 

Reason for Stoppage 

07/27 Skyline East Orchards, Royal City, WA 10.0 Person walked in front of robot 
causing bad row detection 

07/27 Skyline East Orchards, Royal City, WA 10.0 Vehicle battery critically low 

08/24 Robot City, Pittsburgh, PA 11.0 Software memory error 

08/31 Robot City, Pittsburgh, PA 11.3 Software memory error 

09/02 Robot City, Pittsburgh, PA 13.8 Brief delay in communication with 
low-level vehicle controller 
causing missed turn 

09/03 Robot City, Pittsburgh, PA 10.2 Manually stopped (no error) 

09/08 Robot City, Pittsburgh, PA 15.6 Dust cloud obscured laser causing 
bad row detection 

09/09 Robot City, Pittsburgh, PA 25.8 Manually stopped (no error) 

09/23 Soergel Orchards, Wexford, PA 10.0 Manually stopped (no error) 

09/29 Penn State FREC, Biglerville, PA 15.1 Manually stopped (no error) 

10/01 Penn State FREC, Biglerville, PA 12.6 Manually stopped (no error) 

10/02 Penn State FREC, Biglerville, PA 13.3 Manually stopped (no error) 

 

Automation of the N. Blosi Hydraulic Orchard Platform 

One of the main objectives of the Reconfigurable Mobility theme is to show how autonomy 
technology can be mapped between different types of vehicles, thus resulting in a family of 
autonomous vehicles all using the same sensors and software. In the Year 1 report we 
described initial work in adding our autonomy package to an N. Blosi platform owned by the 
Penn State Fruit Research and Extension Center. Our goal for Year 2 was to complete this work 
and demonstrate the platform driving autonomously in an orchard. We added valves to control 
speed and steering, connecting to a microcontroller similar to that used on the Toro 
eWorkman. The navigation software’s interface to the microcontroller is identical, so no 
software had to be changed between the eWorkman and the N. Blosi platform. Two Sick LMS 
laser range finders were added to the front of the platform scanning a horizontal plane low to 
the ground, similar to the initial configuration of sensors on the eWorkman (Figure 72). 
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Figure 72. The automated N. Blosi platform. Two laser range finders provide a view of the 
world similar to the original configuration of the Toro eWorkman APM. All software, 
including the user interface, runs on the laptop mounted on the top rail. 

Testing of the N. Blosi platform took place at the Penn State FREC in May 2010. The platform 
drove over 10 km autonomously, thus satisfying the Year 2 goals. There were, however, some 
setbacks which would prevent wider use. One is that the vehicle’s speed controller performed 
poorly when traveling uphill, with the platform driving much slower than intended. In manual 
mode we were able to drive the platform as fast as desired, suggesting that the problem is a 
lack of throttle. This should be repairable at the microcontroller level, and we are in talks with 
the microcontroller’s manufacturer to have that repair done. 

Another problem is related to the laser height. The lasers for the N. Blosi platform were 
designed to mimic their height on the original eWorkman APM. At this height it was easy for 
weeds and unlevel terrain to cause poor row detections, leading to the possibility of poor 
control. In one situation (Figure 73) the terrain dipped such that the lasers on the platform 
could not see beyond a few meters. We had raised the lasers on the APM for this very reason; 
the APM traveled this same row later in the year with no problems. We will raise the lasers on 
the platform before further use with our navigation system. 
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Figure 73. In unlevel terrain the N. Blosi cannot see more than a few meters ahead, and the 
travel lane is filled with weeds. It is impossible for the row detection to get a good result with 
this data. 

User Interface Development 

In Year 2 we began to take the steps necessary to deploy autonomous vehicles in orchards. Our 
first action was the development of a new user interface for the APM. We had developed an 
interface for our own purposes (Figure 74). This interface, however, is unsuitable for use by 
someone unfamiliar with the inner workings of the autonomous navigation system: it refers to 
the vehicle’s position in GPS coordinates as opposed to its location in the orchard; commands 
are sent via custom-built text files and sequences of button presses. Details of the autonomous 
system are displayed, which is useful for engineers but too much information for end users. An 
interface for end users would need to be simpler, focusing on the user controlling the vehicle 
with a minimum of effort. 

We enlisted a team of three design students from the Human-Computer Interaction 
department at Carnegie Mellon University to work from August to December, 2009. We asked 
them to design a graphical user interface intended for an end user of an autonomous vehicle. 
Since our goal is reconfigurable mobility we asked them to consider both an off-board mode 
where a vehicle is sent out to mow or spray an entire block as well as an on-board mode where 
the user would be on a vehicle (like a platform) and commanding the vehicle to go to the end of 
the row. 

The designers employed a formal top-down design process, starting with interviews with 
growers where they asked what their intended use of the vehicle would be. Growers from four 
farms in Wexford, PA and Adams County, PA were interviewed. The designers learned about 
the management of an orchard, what vehicles are typically used for, who would be the likely 
users of an autonomous vehicle, and their level of comfort with computers and software. From 
there they developed prototypes of the interface on paper (Figure 75). They presented these to 
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growers and other people involved in agriculture to get a preliminary sense of what control 
concepts made sense and what needed to be redesigned. 

 

Figure 74. Our user interface tells the software engineers everything they need to know when 
testing the functionality of the APM, but the controls are not intuitive enough for a lay user. 

 

Figure 75. An initial concept of the user interface presented on paper to potential users. Top 
left, the farm view shows a map of the blocks and tasks that are available to perform on 
those blocks. Bottom right, the block view shows the vehicle’s progress through the block and 
lets the user start and pause operation. 
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The next phase of the process was a working prototype (Figure 76) using lessons learned from 
the paper prototype. We worked with the designers to interface their program with our 
autonomous navigation software. The biggest realization from the design perspective was that 
orchard managers want to specify how tasks are accomplished, while workers just want to start 
the vehicle without having to set parameters. For example, the manager would decide at what 
speed the vehicle should move while towing a sprayer. It would be the worker’s job to hook up 
the spraying machine and start the vehicle, but he should not change the parameters set by the 
manager. The interface accomplishes this with a set of buttons in the top-left corner of the 
screen that are associated with predefined tasks. The worker would take the vehicle to the 
desired block, click on the desired task, and start the vehicle. The interface keeps track of 
completed rows, which the manager could use at the end of the day to track the work being 
done. Of course, our intention of using the interface for on-board use required a method to tell 
the vehicle to speed up, nudge left or right, etc. The designers placed an array of sliders along 
the bottom of the interface screen for this purpose. 

 

Figure 76. Screen shot of the new user interface (working prototype). Pre-defined tasks 
available for the block are shown in the top left (in this example, harvest). Sliders along the 
bottom allow the user to control the desired speed and lateral offset of the vehicle, as well as 
whether it should drive to the end of the row or stop after a certain number of trees. 

Tests of the prototype were conducted in a simulator running on recorded data from 
commercial orchards. The designers presented this version of the interface to employees at 
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Soergel Orchards in Wexford, PA. These employees were given scenarios of orchard work and 
asked to start and stop the vehicle, adjust its speed, lateral offset in the row, etc., all without 
previous training. The workers who were comfortable with computers executed every 
command correctly the first time. The workers with little computer experience typically found 
the correct commands, but were unsure of their actions. They explained that the vehicle would 
be an expensive piece of equipment, and they were afraid of doing something incorrectly. The 
main conclusion from this round of interviews was that the user interface required a training 
step, and very little modification to the interface itself would be required. 

For the final round of testing we brought the APM with the new user interface to Hollabaugh 
Orchards in Biglerville, PA. We had four potential users, the orchard manager and three full-
time workers, operate the APM following a five-minute explanation of the vehicle and the 
interface. Each user was able to operate the vehicle easily. Each was allowed to experiment 
with the controls, starting and stopping the vehicle, increasing and decreasing its speed, and 
switching between going to the end of the row and a mode where the vehicle would only go 
the prescribed number of trees and then stop. 

This interface has shown its promise for an orchard management situation. Using it, a worker 
should easily be able to complete any off-board task required of the vehicle. We have found, 
however, the interface to be ill-suited to on-board use. The sliders to control speed and lateral 
offset in the row are sufficient to control the vehicle, but are small on the screen and difficult to 
use while the vehicle is moving. The orchard management perspective of the interface may be 
seen as overkill for a worker on a platform trying to prune trees. He may not care about where 
in the orchard he is, and would rather have larger buttons to operate. We will move forward 
with this interface when considering the problem of organizing a fleet of autonomous vehicles, 
but we have determined that it would be best to have a separate interface for use of the 
vehicle within a row by an on-board worker. 

In the fall of 2010 we are working with another student design team to explore the issue of on-
board use of an autonomous vehicle. They are attempting to answer the questions of how best 
to control the vehicle, not limited to a screen interface. Possibilities include joysticks, levers, or 
even voice commands. We will present the conclusions at the of Period 1 in Year 3. 

Mechanized Thinning 

In Year 2 we collaborated with the SCRI project “Innovative Technologies for Thinning of Fruit,” 
led by Prof. Paul Heinemann at Pennsylvania State University. We focused on a control and 
perception system to automate the operation of the Darwin 300 string thinner, made by Fruit 
Tec. The Darwin has been demonstrated to be a cost-effective method of thinning1 but 
currently requires the operator to weave in and out of the trees using the steering on the 
tractor to maintain engagement with the canopy. This causes operator fatigue and wear on the 
tractor. Working with Prof. Heinemann’s team we created a system that automatically actuates 

                                                      
1
 Schupp, J.R.; Baugher, TA; Miller, S.S; Harsh, R.M; Lesser, K.M. “Mechanical Thinning of Peach and Apple Trees 

Reduces Labor Input and Increases Fruit Size.” HortTechnology. 2008 Oct-Dec, v. 18, no. 4, p. 660-670. 
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the thinner’s tilt angle and offset based on the tree profile while the operator focuses on 
driving straight down the row (Figure 77). We intend to show that this method is as effective as 
or more effective than the current manual control of the thinner. 

Our goals were to create, simulate and test algorithms for planning a trajectory for thinning, 
and compare ultrasonic and laser sensors for creating this trajectory. Penn State is developing 
the mechanism, ultrasonic sensors, and embedded control, while CMU is providing the laser 
sensing and planning. Our test platform is a Darwin string thinner which has been modified with 
hydraulics that control the piston offset and angle. 

Offset and Tilt Control 

In automating the Darwin thinner, the basic questions we need to answer are: (1) how do we 
obtain a representative profile of the trees, and (2) given a tree profile, what are the optimal 
offset and tilt of the thinner? At this moment we are investigating the use of laser rangefinders 
and ultrasound sensors to respond question #1, and experimenting with simple algorithms to 
advance solutions to question #2. For most of the types of trees we are studying (especially 
peaches and apples), horticulturists determined that it is desirable to have as much of the 
thinner spindle next to the outer edge of the tree as possible, while avoiding collisions of the 
spindle with the tree. This maximizes thinning of inner branches and approximates human 
behavior with the thinner. 

 

Figure 77. The proposed automation system for the Darwin string thinner. A laser or 
ultrasound sensor captures the profile of the tree (left) and sends this information to a 
computer (not shown here). Software running on the computer analyzes the tree profile and 
actuates the Darwin’s tilt angle and offset (blue arrows) accordingly (right). The piston has 
24” of travel in offset and 35o in angular range. 

To begin our investigation we built a simulation environment using data collected by mounting 
laser and ultrasound sensors on a tractor and driving it along rows of tree fruit. We created a 
kinematic model of the thinner, and we feed it commands as the data replays. From this, we 
can play back the expected positions of the thinner and therefore observe the performance of 
the algorithms before testing them on the field. 
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For sensing, we mounted a Sick scanning laser rangefinder to the side of the vehicle such that it 
is scanning vertically as the tractor moves forward. We also added a Trimble Ag GPS mounted 
near the roof of the tractor. By logging the laser data and interpolating the GPS we are able to 
build a map of the canopy as the vehicle drives down the row. The control algorithm uses this 
map to decide where the thinner should be at each time step and then sends commands to the 
embedded controller to move the thinner. The sensor is mounted sufficiently far ahead of the 
thinner to give the computer time to process the laser data and actuate the thinner (Figure 78). 

 

Figure 78. The modified Darwin thinner mounted onto a tractor. Note the ultrasonic mast 
visible above the tractor roof. 

To implement an algorithm that maximizes contact while avoiding collisions, we build a local 
voxel grid and store the number of laser returns in each 10 cm cube in space. This gives a 
discrete representation of the tree which can be used for testing whether or not the spindle is 
in collision with the tree. We then find the set of collision-free positions of the thinner based on 
a discrete representation of the machine, breaking up the different possible angle and offset 
commands into those reachable within 200 ms. From the available thinner positions which are 
not in collision, we choose the one which is the furthest extended into the trees and therefore 
is closest to the majority of the tree without colliding with it. This choice is made using a 
heuristic that gives preference to lateral extension over angle extension since we expect the 
trees to be naturally angled towards the tractor. 

In addition to simulating this algorithm and visually observing that it follows the trees well, we 
successfully tested the method in an apple orchard in runs with an inactive spindle. For the 
physical test, we made the modification that the voxel grid is entirely in the frame of the tractor 
and neglects the GPS. Instead, a set of occupied cells and commands are built based on each 
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200 ms of laser scans and new commands are sent to the thinner with a delay of 2.4 s. This time 
interval was determined assuming that the tractor is travelling at about 1 m/s (2.2 mph), the 
thinner is about 3 m behind the sensor, and that the system needs a bit of lead time to 
compensate for the controller lag. 

Comparison of Ultrasound and Laser Sensors 

Figure 79 presents a preliminary comparison of the orchard representations that can be 
obtained with the laser rangefinders and the ultrasound sensors. Clearly the laser provides 
much denser data for the control algorithm to use, albeit at significantly higher computational 
and installation costs. These are initial results and do not take into account the fact that we 
observed hardware problems with the ultrasound sensors, which we are in the process of 
diagnosing. 

           

Figure 79. (Left) A 3D rendering of the trees obtained with the laser rangefinder (grayscale) 
and the ultrasound sensors (red). The ultrasound sensors detect less trunks and trees than 
the laser. This may be due to hardware difficulties we experienced, or a fundamental 
problem with sensing trees using ultrasound. (Right) A 3D rendering of the trees obtained 
with the laser rangefinder (green) and the thinner’s path (as red cylinders) during field 
testing. Note that the thinner “hugs” the edge of the trees while mostly avoiding collisions. 

Two Years In: The Direction of Reconfigurable Mobility 

To this point we have chosen to use a limited sensing model with one or two laser range finders 
mounted rigidly to the vehicle. The technology exists to pan or tilt the lasers, but it more than 
doubles the cost of sensing. It also introduces moving parts which would need maintenance and 
repair, which is not ideal for growers who are unfamiliar with this technology. Our model has 
the advantages of low cost and reliable hardware. The fixed, horizontal-plane range scans, 
however, provide only a one-slice view of the world. This is the largest limiting factor in our 
work to improve the reliability of the autonomous navigation system. That the robot can only 
see objects at one height has a profound effect on safety. Multiple growers have asked us at 
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demonstrations and field days what would happen if the vehicle came across a worker or 
trespasser lying on the ground in their orchard. With this model the vehicle cannot see such 
people or crates or other tools left in the orchards. For now we do not have to worry about 
such a question, since all tests are monitored, but it is something to consider as the system 
moves towards being put into use by growers. 

We have also described above (and in previous reports) the many limitations this sensor model 
puts on the reliability of the autonomous navigation system. Since the sensors cannot see all of 
the canopy, there will be the possibility of canopy growing into the travel lane at a height not 
seen by the sensors, which the vehicle could then collide with. For this reason, and for safety 
considerations, in the coming year we will experiment with a new laser range technology called 
flash ladar that provides a complete range image, much like a camera. We will test the 
capability of these new sensors to deal with sunlight, dust, and other environmental conditions. 
For now, though, our plan is to move forward with the existing sensor model while we focus on 
other matters. 

In the first two years of the project we explored the breadth of possibilities for the use of 
autonomous vehicle technology in orchards. We asked what operations could be completed 
with an autonomous vehicle, and how to achieve them. We have shown the ability of an 
autonomous vehicle to mow grass and carry a selective sprayer, the WeedSeeker. We have 
worked to make autonomous navigation as reliable as possible within the limits of a low-cost 
sensor model. This work culminated in a series of experiments which showed the ability of the 
system to drive in many canopy types for long periods of time. 

No matter how reliable we make the autonomy software, though, an autonomous vehicle will 
at some time fail. Sensors will become occluded; cable connectors will break; and network 
connections will drop. How the system deals with such failures, and how the owner or user of 
an autonomous vehicle will recover from it, is an important question. It will remain a barrier to 
adoption until it is solved. Our work in Year 3 will begin to answer this question. 

At this point in the project we believe it is more important to focus on the issue of usability, to 
make a concerted effort towards deployment of autonomous vehicles in orchards, rather than 
to continue major effort towards improving the reliability of the software in those few cases 
where it fails now. This is not to say that we will not try to improve reliability, but that it should 
not be the focus of our work in the next two years. In Year 3 we will deploy two new 
autonomous vehicles, one at Penn State and one at Washington State. Each will be a small-
scale platform vehicle intended to carry two workers engaging in tasks like pruning, training of 
branches, and thinning. Our major work this year will be in the deployment of these vehicles for 
on-board use. We must prepare for our software to be robust to the kinds of errors described 
above. We must sort out the details of how to start up computers and run the system. And 
most importantly, we must continue our work to produce a simple, easy to use interface. It is 
our hope that growers and extension workers will see these vehicles being put into use and 
understand how the vehicles would improve their own operation. This way we will move closer 
to a reality of autonomous vehicles in orchards.  
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4.2 Accurate Positioning 

Thematic area leader  

Name Institution Email 

George Kantor Carnegie Mellon University kantor@ri.cmu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Refine APM localization 
algorithm by incorporating 
laser odometry. 

2. Implement new algorithm 
on APM and test extensively. 

3. Develop localization 
approach for outside of rows. 

1. In-row localization 
software implemented 
onboard APM. 

2. Report with analysis of 
results of in-row localization 
software. 

3. Out-of-row localization 
software implemented and 
integrated with APM control 
system. 

1. Demonstrate on-line 
positioning with less than 25 
cm error 90% of time in 20 
hours of general operation 
(in rows and during turning). 

2. Demonstrate positioning 
during end-of-row turning 
and show accuracy sufficient 
for automated row entry. 

3. Integrate positioning with 
end-of-row turning and 
demonstrate successful row 
entry with < 1% failure in at 
least 100 trials.  

Notable results: 

 Developed a new positioning algorithm that eliminates the need for reflective features 
inside rows (reflective features required at ends of rows only). 

 Demonstrated sub-meter positioning accuracy in over 100 km of field trials (on-line and off-
line). 

 Integrated positioning system with APM autonomy to enable position-based navigation 
during both in-row and out-of-row operations. 

  

mailto:kantor@ri.cmu.edu
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Accurate positioning efforts during Year 2 were primarily focused on the development of new 
algorithms that are designed to improve the reflective feature-based positioning algorithm by 
making it less dependent on the use of engineered features (e.g., cones with reflective tape 
manually placed along the rows). Specifically, two approaches were investigated: laser 
odometry and row detection. Both of these techniques can be easily fused into the extended 
Kalman filter (EKF) framework for positioning that was developed in Year 1 of the project. Both 
laser odometry and row detection work using naturally existing structure, so they should 
provide a means of improving positioning accuracy while simultaneously reducing required 
landmark density. In addition to these primary efforts, a new technique for laser calibration was 
developed and implemented. This provides a means of quickly recalibrating the laser while in 
the field, which is necessary from time to time due to the bumps and bruises that the robot 
sometimes sustains during field experimentation and transportation. 

In order to understand how the laser odometry and row detection efforts fit into the EKF 
framework, it is important to understand how the EKF works. Figure 80 shows the structure of 
the EKF localization filter that was developed in Year 1. It has two basic components: a 
prediction step and an update step. In the prediction step, the vehicle position estimate is 
advanced using the wheel encoder measurements of distance traveled and steering angle. In 
the update step, the vehicle position estimate is improved using the laser scanner 
measurement (range and bearing) to a reflective feature in a known location. By iterating these 
two steps of prediction and update, it is possible to keep an accurate estimate of where the 
vehicle is as it moves through the orchard. 

 

Figure 80. The extended Kalman filter structure of the localization filter developed in Year 1. 
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Laser odometry uses the laser range scanner to provide an estimate of vehicle motion that is 
more accurate than the motion estimate provided by wheel odometry, so the laser odometry 
and wheel odometry measurements can be fused together to provide a more accurate EKF 
prediction step. Row detection provides a means to correct crosstrack (side-to-side) errors in 
position by comparing the detected rows to a known map of rows in the orchard. This provides 
a means to correct the position estimate when the vehicle is not within range of a reflective 
feature. A block diagram showing how these two techniques can be combined with the Year 1 
filter is shown in Figure 81. 

 

Figure 81. The new EKF with laser odometry and row detection incorporated. 

Laser Odometry:  In this technique, consecutive laser scans are matched to provide an accurate 
estimate of the vehicle motion between the two scans. This is achieved by searching for a 
translation and rotation so that, when the first scan is translated and rotated by those amounts, 
it lines up as closely as possible with the second scan. The resulting translation and rotation 
then provide an estimate of the rotation and translation by which the vehicle moved between 
the first and second scans. Since we know the time elapsed between the two scans, the 
translation and rotation found in scan matching can be used to get estimates of the linear and 
angular velocities of the vehicle, respectively. 
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Theoretically, this approach naturally exploits features in the environment without the need to 
do explicit feature extraction. We have found, however, that in practice the algorithm works 
better when features can be extracted and the rotation and translation are found by matching 
the extracted features rather than the raw scans. Some orchard environments contains many 
features that are useful for this purpose, most notably tree trunks and trellis poles. 

We have implemented this feature-based scan-matching laser odometry and tested in post-
processing on real data with varying results. In orchards where the tree trunks can clearly be 
seen by the laser, the laser odometry works reliably and provides a more accurate estimate of 
vehicle motion than can be had with wheel odometry alone. In orchards where leaves or weeds 
occlude tree trunks, the results were not as reliable. Further, we found that the majority of our 
test sites fall into this second category. For this reason, we decided not to incorporate laser 
odometry into the combined filter for Year 2. The approach, however, does show some 
promise, so we may attempt to improve it in future work. 

Row Detection: Our row detection approach uses the line extraction algorithm developed for 
autonomous row following for the purpose of localization. This provides a means of estimating 
the lateral position of the vehicle within a row, allowing an EKF update step to be used to 
correct crosstrack error without the need for reflective features. The dominant error observed 
in the reflective landmark-based positioning algorithm developed in Year 1 was due to 
crosstrack drift in the sections where no landmark was visible, so row detection should provide 
a means to correct those errors, allowing the reflective features to be place further apart. We 
characterized the noise present in the row detections and used the resulting row model to  
develop an EKF update step for row measurements. 

Combined Filter: The row detection work was merged with reflective-feature filter from Year 1 
to create an integrated filter. This combined filter and its integration with the rest of the APM 
autonomy system was the principal result of the Year 2 localization efforts. This filter was 
tested extensively during Year 2 in over 100 km of on-line and off-line tests using the APM. This 
filter proved to be capable of localizing the APM to within about 70 cm crosstrack and about 1% 
of the distance between reflective features in downtrack (along the direction of travel). The 

error metric used here is 3 (“three-sigma”) error, meaning that the distance between the 

actual vehicle position and the estimated vehicle position is smaller than the 3 error metric 
99.9% of the time. Table 13 shows some typical results from a subset of Year 2 trials. In all of 
these experiments, reflective landmarks were place at the ends of rows only, so the distance 
between landmarks is the same as the row length. 

Integrating with APM Autonomy System:  The combined filter was integrated with the APM 
autonomy system so that the position estimates it generates can now be used for autonomous 
vehicle navigation. Two of the 10 km autonomous runs that were conducted by the APM in 
Year 2 were executed with the vehicle navigating from the combined filter position estimate. 
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Table 13. Summary of combined filter localization results from Year 2. 

Test 
Site 

Row 
Length 

(m) 

Total 
Distance 

(km) 

Mean 
Crosstrack 
Error (m) 

Mean 
Downtrack 
Error (m) 

3 
Crosstrack 
Error (m) 

3 
Downtrack 
Error (m) 

FREC 125 2.05 0.18 0.28 0.78 1.13 

FREC 125 2.00 0.14 0.34 0.60 1.82 

Sunrise 53 1.38 0.15 0.17 0.54 0.65 

Sunrise 53 1.78 0.18 0.16 0.62 0.61 

Sunrise 53 1.59 0.17 0.25 0.60 1.01 

Skyline 345 2.94 0.23 0.66 0.67 3.16 

Skyline 345 10.21 0.22 0.73 0.64 3.48 

 

Directions for Year 3:  We learned lessons during Year 2 that will inform our efforts in the 
coming year. First, the accuracy of 25 cm that we had originally set out to achieve is not 
required for any known orchard operation and this level of accuracy is difficult to achieve 
without placing landmarks inside the orchard rows. Second, the localization system in its 
current form is difficult to use. For all practical purposes, the system can only be used with the 
direct involvement of its developer. With these two lessons in mind, our direction for Year 3 will 
be to relax the accuracy requirement and develop the reliability, ease-of-use, and interface that 
make it possible for non-technical personnel to use the localization system for APM operation 
and data collection. In fact, for most uses, our goal is to make the localization system “invisible” 
in the sense that a non-technical user would not make direct use of the localization system 
itself. Rather, they would operate the APM, and the associated localization functions would be 
automatically invoked and managed without direct attention from the user. 
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4.3 Augmented Harvesting 

Thematic area leader 

Name Institution Email 

William Messner Carnegie Mellon University bmessner@andrew.cmu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Develop platform-
mounted of bin filler with 
integrated fruit transport. 

1. Demo in test orchard. 

2. Report with quantification 
of speed and bruising. 

1. Speed up individual worker 
productivity by 25% (e.g., 
from 3,000 to 3,750 apples 
picked and loaded per hour) 
with no increase in bruising. 

Notable results: 

 Discovered that a variety of energy-absorbing materials can reduce bruising in passive bin 
fillers, including large sheets of inexpensive industrial bubble pack. 

 Determined that apple to apple impacts are the most significant cause of bruising, and thus 
singulation of fruit during transport from tree to bin is essential. 

 Early trials with DBR vacuum-assist transport and bin filling system showed at least a 10% 
improvement in harvesting speed with 5% reduction in bruising. 

  

mailto:bmessner@andrew.cmu.edu
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Introduction 

In Year 2, after careful evaluation of the direction and productivity of IONco, we decide not to 
renew IONco’s contract. We instead opted to focus on the passive bin filling designs while 
searching for another partner to work on transport of fruit from the tree to the bin. Thanks to 
the efforts of graduate student Brian Kliethermes, in January 2010 we identified DBR Conveyor 
Concepts of Conklin, MI as a new partner to develop a vacuum-based fruit transport system 
with a rotary “elephant-ear” bin filler. The company formally joined CASC in April 2010 and 
proved to be a successful partner. 

Passive Bin Filling 

Bins remain the prevailing method for transporting apples from the field to storage and 
processing facilities. The process of filling bins is a bottleneck for the efficient harvest of apples 
because workers must trade-off careful handling of apples to avoid damage with the desire to 
empty bags quickly into the bins. 

Carnegie Mellon, Penn State, and USDA-ARS developed designs for two prototype bin fillers 
that showed promise in laboratory testing for reducing damage to fruit during bin filling: 

 Energy absorbing grate bin filler: frames of energy absorbing materials strung on elastic 
bands. 

 Pneumatically self-adjusting bin filler: parallel inflatable soft polymer cylinders attached to a 
frame and of an external air supply for pneumatic inflating of the cylinders. 

Figure 82 shows one instantiation of the energy absorbing grate bin filler. Figure 83 shows the 
concept for the pneumatic self-adjusting bin filler, and Figure 84 shows the test rig for the full-
scale prototype. Our objective was to determine if either of these two approaches could be 
successfully adapted to use in the field to both reduce fruit damage and increase harvest speed. 

    

Figure 82. (Left) Energy absorbing grate bin filler. The netting was for experiments in guiding 
tossed apples into the bin filler. (Right) Energy-absorbing grate bin filler with bubble pack. 
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Figure 83. Pneumatic self-adjusting apple bin filler concept. 

 

Figure 84. Pneumatic self-adjusting bin filler with test ramp. 
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Significant Findings 

Our major findings regarding the passive bin fillers were the following: 

 Both types of bin fillers can reduce bruising when apples are dropped into them one at a 
time, and they are positioned within 2-4 cm of the top layer of apples in a bin. 

 A variety of different energy-absorbing materials successfully reduced bruising, including 
large sheets of inexpensive industrial bubble pack. 

 The pneumatically self-adjusting bin filler could not lift itself because of the compliance of 
the polymer cylinders. 

 When apple were dropped into a chute leading to the bin fillers, the impacts between the 
apples in the chute and in the bin filler caused significant bruising. 

 Nets for guiding apples into the bin show promise for reducing the need for picking bags. 

 Singulation of the apples during transport into and through the bin filler is essential to 
reduce bruising. 

Results and Discussion 

We  determined that a variety of energy absorbing materials, such as foam balls strung on 
rubber bands, are suitable for the bin fillers themselves. Significantly, even inexpensive, easily 
replaceable bubble pack can work, provided the pressure in the bubbles is high enough and 
there is the right amount of space between the energy absorbers so that they slow down the 
apples without completely stopping them. 

The pneumatic self-adjusting bin filler needs some modification to work as intended. The soft 
polymer cylinders are too compliant, and they bend under the weight of the rest of the 
mechanism when inflated. The middle of a cylinder remains in contact with the central inflation 
tube, and thus cannot lift the mechanism. The solution may be as simple as tying off the 
cylinder into discrete, separately inflatable sections. 

Both types of bin fillers were effective at reducing bruising as intended when apples were 
dropped one at a time into the bin filler with enough time between successive drops to prevent 
apples from hitting each other. On the other hand, pouring a bag of apples into the bin filler 
from the side or into a chute leading to the bin filler resulted in excessive bruising. 

To address the problem of singulation, we also tried a system of netting to catch and guide 
apples into the passive bin filler. This method still had excessive bruising, but the problem was 
with impacts between the apples and the sides of the bin filler. There was insufficient padding 
on the edges of the bin filler and the netting did not sufficiently guide the apples to the middle 
of the bin filler away from the edges. Considering that apples were tossed from heights above 
1.8 m (6 feet), the fact that the apples survived at all was encouraging. We believe this concept 
hold considerable promise for moving apples from the tree to bin without bags. 
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Summary of Passive Bin Filling Effort 

The primary result on the passive bin fillers effort was determining that the singulation of 
apples during transport from the tree through the bin filler is the key to reducing bruising for 
passive bin filling (Figure 85). 

Overall, the effort on passive bin filling provided several valuable insights that will be useful for 
the industry even though we did not yet achieve the goal of having a field-deployable bin filler. 
The fact that we did not reach our goal in Year 2 was due in part to changes in personnel during 
the project, which delayed the implementation of modifications to our prototypes, rather than 
insurmountable technical challenges. We believe that what we learned will help the industry 
develop cost-effective active or passive bin filling and transport mechanisms. 

 

Figure 85. Trend lines comparing the performance of two full-scale bin filling prototypes 
across three drop heights with and without singulation. Singulation improves performance by 
a factor of 10 for the energy absorbing grate and by a factor of about 100 for the pneumatic 
self adjusting bin filler. 

DBR Conveyor Concepts Vacuum Transport System 

Eliminating ladders and picking bags has the potential to greatly increase harvest efficiency 
provided that bruising of the fruit is prevented. Phil Brown Welding of Conklin, MI unveiled a 
prototype vacuum transport system in fall 2009 in which pickers placed fruit in vacuum hoses 
that led to a “decelerator” mechanism that dropped the fruit into rotary “elephant ear” bin 
filler. They demonstrated low bruising, but the system was integrated with a very large vehicle 
making it impractical for use in orchards due to a high turning radius. 
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Based on the demonstration of the vacuum technology, CASC  enlisted the three inventors of 
the technology, Chuck Dietrich, Phil Brown, and Mike Rasch, who together formed DBR 
Conveyor Concepts  to develop a smaller modular system that could be mounted on a harvest 
platform or on a tractor with hydraulic forks. Only four months after contracts were signed in 
April 2010, DBR completed their first prototype mounted on an N. Blosi platform towing a bin 
trailer (Fig. 6). After preliminary testing in Michigan, DBR delivered it to the FREC in Biglerville, 
PA in early September for field trials. 

The DBR system consists of two subsystems—the vacuum transport and the elephant ear bin 
filler. Each of these two subsystems can operate independently of the other. The vacuum 
transport consist of dual vacuum transport hoses, a new dual proprietary single-wheel 
decelerators (patent pending), dual vacuum return hoses, and two vacuum pumps with a single 
internal combustion engine providing power (Figure 86). Figure 87 shows a close-up of a worker 
picking apples and the vacuum hose inlet. The primary innovations of the vacuum transport 
design are (1) the lining of the vacuum hoses with neoprene to prevent bruising as apples move 
through the hose and (2) the single wheel decelerator, which “catches” the apples moving at 
high speed, and gently lowers them out of the vacuum into ambient pressure while maintaining 
a tight seal. The single wheel decelerator employs a hydraulic motor with significantly low size, 
weight, and power requirements. 

Comprehensive Automation for Specialty Crops 9
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Figure 86. DBR Conveyor Concepts’ vacuum transport mechanism. 
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Figure 87. Close-up of DBR system showing worker and vacuum hose inlet. 

The elephant ear bin filler is raised and lowered into the bin with a hydraulic motor. An electric 
eye measures the height of the bin filler above the top layer of apples in the bin. This sensor 
provides a signal to automatically raise the bin filler as the bin fills. When the bin is completely 
full, the workers manually control the lifting mechanism to raise the bin filler high enough to 
remove the full bin and replace it with an empty one. The workers then lower the bin filler into 
the empty bin. 

Field Test Results 

Bruise testing and efficiency trials were conducted with several cultivars. The complete results 
are shown in the appendices. Overall, the system increased efficiency by approximately 10% 
and increased the percentage of Extra Fancy apples by about 5% compared to hand-picking. On 
the other hand, the total percentage of culls increased from 2.3% to 3.0% while the percentage 
of apples with no detectable bruising decreased from 4.8% to 2.8%. The estimated increase in 
economic benefit due to the DBR system was $245/acre. 

In summary, the DBR harvest assist system shows great promise for increasing efficiency while 
decreasing bruising. The initial bruise testing was on particularly soft (overripe) Golden 
Delicious, which would favor hand-picking. We believe that even greater efficiency gains of up 
to 25% are possible in orchards with architectures more suitable for the harvest platform. 
Development of a tractor-mounted system will reduce its cost and may be more suitable for 
orchard architectures in Washington state. This will be investigated in Year 3. 
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5. Technology Adoption 

Technology adoption encompasses the work aimed at understanding and overcoming the 
socio-economic barriers, perceived or real, that inhibit growers’ incorporation of new 
technologies and methods; and the nationwide outreach and extension activities that we 
conduct to demonstrate, in actual field conditions, the technologies developed in the project 
and their applicability to growers in different industries and states. 

This section presents the goals and accomplishments in the following three thematic areas: 

 Sociological implications; 

 Value proposition; 

 Outreach and extension. 

  



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 106 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

5.1 Sociological Implications 

Thematic area leaders 

Name Institution Email 

Katie Ellis The Pennsylvania State University kag298@psu.edu 

Karen Lewis Washington State University kmlewis@wsu.edu 

Tara Baugher The Pennsylvania State University tab36@psu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Execute socio-economic 
survey of WA growers. 

2. Share WA and PA socio-
economic survey results with 
advisory panel & industry 
stakeholders. 

1. Surveys’ results posted at 
Comprehensive Automation 
web site. 

2. Surveys’ results detailed in 
outreach, trade, & refereed 
journals. 

1. 5% increase in growers’ 
support in the form of 
participation, interest, and in-
kind matching for 
Comprehensive Automation. 

Notable results: 

 Socio-economic survey conducted in the Pacific Northwest; results were compared with 
data obtained in the Mid-Atlantic region in Year 1. Some interesting findings include: 
o Crop projection sensor data more popular in Pacific Northwest than in the East; 
o Justifiable price point of technology that increases fruit packout is higher in the 

Northwest; 
o Eastern growers are less concerned with water availability effects on crop production. 

 Survey outcomes described in the article “Results from Survey Instruments Used to Assess 
Technology Adoption for Tree Fruit Production,” to appear in HortTechnology in Dec. 2010. 

 Recommendations for CASC value proposition and outreach activities based on survey data. 

  

mailto:tab36@psu.edu
mailto:kmlewis@wsu.edu
mailto:kag298@psu.edu
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Introduction 

We drafted a socioeconomic survey in January 2009 to assess stakeholder input and potential 
obstacles to industry adoption of new technologies in tree fruit. The survey consisted of eleven 
pages of questions preceded by a brief explanation of the CASC project and the purpose of the 
survey. The questions were grouped into related sections: (1) Specific information about the 
participant’s farm enterprise; (2) Needs/potentials for automation and sensor technologies in 
specialty crops; (3) Potential benefits of harvest assist (semi-automated harvest) technology;  
(4) Potential benefits of automated disease detection and pest monitoring technologies;          
(5) Potential benefits of automated technologies for monitoring plant stress; (6) Benefits of fully 
automated harvest technologies; and (7) Specific orchard system planting information. 

Several questions were designed to address regional differences between the Eastern and 
Western U.S. fruit industries; specifically, information about irrigation systems and current tree 
training may help determine more precise regional barriers to adoption of orchard 
technologies. The survey was initially distributed to audience members at the Tree Fruit session 
held during horticultural conventions in Pennsylvania and New York in February 2009 (results 
summarized in the CASC Year 1 report). The same survey was conducted at the December 2009 
Washington State Horticultural Association NW Hort Expo in Wenatchee, WA. 

The NW Hort Expo yielded 38 respondents. Compared with Eastern participants, the Western 
growers grew less diverse crops but tended to manage more acreage. The distribution of 
acreages managed by each respondent (Figure 88) was similar to that of the Eastern growers, 
but most grew only one, two, or three different crops. The annual gross operational revenues 
were also more evenly distributed across categories, thanks to more operations in the >$5M 
category (Figure 89). 

 

Figure 88. Total number of respondents that own or manage 0-100, 100-200, etc. acres of tree 
fruit or vine crops. 
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Figure 89. Percentage of growers in each annual gross revenue category. 

Needs and Potentials for Automation and Sensor Technologies in Specialty Crops 

To improve precision and efficiency in orchard enterprises, the participants rated fruit thinning, 
spraying and monitoring water/nutrients the areas of greatest need. The need scores for all 
other orchard activities were lower than those from the Eastern growers. Mowing was seen as 
least important. Harvesting, spraying, and monitoring water and nutrient status were identified 
as the areas of greatest need for improving environmental stewardship and sustainability 
(Figure 90). New spraying technologies received the highest ratings overall. These opinions 
were similar to those of the Eastern participants. 

 

Figure 90. Median rating for each area of need in environmental stewardship and 
sustainability. 
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Potential Benefits of Harvest Assist (Semi-Automated Harvest) Technology 

Many Western participants anticipated benefits with the suggested areas of improvement with 
harvest assist technologies; however, they were generally less enthusiastic than Eastern 
participants. As in the East, increased workforce productivity was selected most often (Figure 
91). Eastern growers anticipated reduced costs with new technologies more than Western 
growers, who saw more benefits with the reduced need for a steady workforce. Western 
growers also did not anticipate increased fruit quality/packout as the Eastern growers did. 

 

Figure 91. Percentage of participants anticipating benefits with harvest assist technologies. 

Respondents were also asked to choose the three main obstacles to industry adoption of 
harvest assist technologies from the list shown in Figure 92. Cost and equipment reliability were 
most often selected as potential obstacles, while decreased employee retention, decreased 
safety, reduced control over management of harvest operations, and the need for specialized 
employee training were not seen as major obstacles. 

Participants were asked to identify the maximum equipment price justified by an increased 
efficiency of harvest employees by 30-40%. The median price justified by Eastern and Western 
growers was $35,000. If harvest technologies increased fruit packout by 10-15%, Eastern 
respondents felt $25,000 was reasonable; however, Western growers justified a much higher 
price point of $55,000. 



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 110 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

 

Figure 92. Number of respondents that selected each potential obstacle to industry adoption 
of harvest assist technology. 

Potential Benefits of Automated Disease Detection and Pest Monitoring Technologies 

Internal fruit feeding insects, such as codling moth and Oriental fruit moth, were seen as a 
problem for more of the Western participants (82%) than Eastern (52%). Apple pack-out losses, 
however, were distributed about the same in both areas (Figure 93). Many Western growers (as 
in the East) would consider increasing trap density with new technologies but not expand their 
program to larger areas. 

 

Figure 93. Percentage of Western participants reporting apple pack-out losses to internal fruit 
feeding insects in six categories. 

Of the four potential obstacles posed by the survey to industry adoption of new sensor 
technology for insect monitoring, most felt that cost and equipment reliability under varying 
environmental conditions were most prohibitive. These responses were very similar to those 
from the East. Research validating efficiency in finding problems was regarded as potentially 
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successful. Across both regions, early involvement of commercialization partners was seen as 
least helpful (Figure 94). 

 

Figure 94. Percentage of respondents that were more likely to adopt precision systems for 
detecting disease and monitoring insects due to various research and outreach efforts. 

Potential Benefits of Automated Technologies for Monitoring Plant Stress 

Western participants were willing to incorporate sensor technologies into their irrigation 
systems with 35% energy and/or 50% water savings. In the East, willingness to redesign 
irrigation systems was fairly low, at a median response of 25% for each consideration. 

Imaging Systems that can Scout and Map Crop Load 

Improved preparation for harvest/fruit storage and accurate pre-harvest crop projections were  
seen as the most beneficial result from imaging systems that can scout and map crop load 
(Figure 95). Only 47% of Western growers saw a benefit from more efficient fruit thinning, vs. 
over 90% of Eastern growers. 

As in the harvest assist responses, the major obstacles to overcome for adoption of fully 
automated harvest technologies are cost and equipment reliability. 
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Figure 95. Percentage of respondents perceiving benefits in imaging/information 
management in various areas of crop management, harvest, and fruit storage. 

Specific Orchard System Planting Information 

Survey-takers were finally asked to specify the number of apple acres currently trained to a 
vertical fruiting wall, angled fruiting wall, and/or narrow fruiting wall; they were also asked to 
provide this information as a percentage of their total apple acreage, as well as planned tree 
training over the next ten years. Most growers that have trained their trees to fruiting walls 
have done so vertically, though angled fruiting walls were more common in the Northwest than 
the East. Those growers that intend on increasing their high density acreage over the next 10 
years will do so by about 20%. In the Northwestern U.S., vertical, angled, and/or narrow fruiting 
wall systems will likely increase more in sweet cherries than in other tree fruit crops. 

Regional Implications for Improvements in Technology Adoption 

While most responses were consistent across the country, Western and Eastern growers 
indicated differences in irrigation concerns and justifiable price points for harvest-assist 
technology. This result suggests a benefit in using region-specific outreach topics to emphasize 
local needs. Western growers with larger pack-and-ship operations associate a benefit with 
packout improvement, while smaller Eastern retail-based businesses would relate better to 
emphasis on reduced labor costs and fruit quality improvement. 

Western growers were also particularly interested in sensor data for crop projections, which 
may be due in part to recent disparities between projected and actual crops. Several months 
prior to the Western survey, Washington growers were faced with a large crop of unusually 
small apples. In addition, the 2008 actual fresh crop was nearly 11% more than the total 
projected that summer (assessment by Yakima Valley Growers-Shippers Association). 
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Therefore, recent reminders of crop variability may influence the participants’ opinions and 
interest in specific sensor technologies. 

These survey results are summarized in the HortTechnology article “Results from Survey 
Instruments Used to Assess Technology Adoption for Tree Fruit Production” to be published in 
December 2010. 

Activities 

Year 2 goals were accomplished by sharing the results with advisory panel members and 
industry stakeholders at several meetings: 

 CASC showcase webinar (November 2009); 

 Mid-Atlantic Fruit and Vegetable Convention advisory panel meeting (February 2010); 

 American Society of Agricultural and Biological Engineers annual conference (June 2010); 

 Engineering Solutions Technology Showcase and Advisory Panel Meeting (October 2010). 

Survey results were also posted at the CASC web site (http://www.cascrop.com) where the 
ASABE slide show received 57 visits and the showcase received 36 visits. 

  

http://www.cascrop.com/
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5.2 Value Proposition 

Thematic area leader 

Name Institution Email 

Clark Seavert Oregon State University clark.seavert@oregonstate.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Continue to collect field 
data from researchers. 

2. Conduct a marketing 
assessment for the 
automated caliper and VRC’s 
Scout. 

3. Discuss with growers and 
others in PA and WA about 
the economic and financial 
information needed for 
project. 

4. Schedule and conduct 
AgProfit™ workshops.  

1. AgTool™ website. 

2. AgProfit™ program, 
including training modules. 

3. AgFinance™ program (beta 
version). 

4. Report on the marketing 
potential of the caliper and 
Scout. 

5. One AgProfit™ workshop 
each in PA and WA reaching a 
total of 30 growers. 

1. Validation from growers 
and others that economic 
and financial information is 
representative of their 
industries in each region. 

2. 20 growers will have an 
understanding of the 
economic and financial risks 
involved in adopting 
technologies proposed in this 
proposal. 

Notable results: 

 Technologies being developed by CASC researchers could derive a benefit at the grower 
level from $20 to $1,047 per acre per year. These benefits represent the upper limit of net 
returns an end user would receive from adopting a technology. This value does not include 
the costs to acquire, repair, service, or train employees to operate the technology or a 
return on investment to the end user for the risks associated with implementing the 
technology. If these costs were equal to the net present value annual equivalent, the end 
user would receive no benefit from adopting that technology. 

 The market potential of the insect monitoring station for the primary market is estimated at 
$10 million in U.S. Plant and Protection Quarantine applications and an additional $50 to 
$100 million in U.S. tree fruit and nut crops. The potential in the secondary market is $10 
million in international tree fruit and nut producers with a long range market of less than 
$100 million in U.S. cotton and other row crops. 

 The development of the AgTools website allows growers, processors, packers, and 
technology providers access to risk management tools. These tools can assess the 
profitability and feasibility of CASC projects if implemented in their own businesses.   

mailto:clark.seavert@oregonstate.edu
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In Year 2 we conducted work in the areas described in the sequel. 

(1) Research was conducted to develop economic models for four CASC thematic areas. Our 
preliminary findings suggest the technologies being developed by CASC researchers could have 
an economic impact ranging from $20 per acre per year to $1,047 per acre per year, if they 
achieve their stated objectives (Table 14). This value does not include the costs to acquire, 
repair, service, or train employees to operate the technology or a return on investment to the 
end user for the risks associated with implementing the technology. If these costs were equal to 
the net present value annual equivalent, the end user would receive no benefit from adopting 
that technology. Relating this information to the size of farm operation, a grower with 345.9 
acres of apples in Washington State could achieve $95,126 of benefits per year by 
implementing the insect monitoring station (Table 15). A grower in Pennsylvania could achieve 
$34,580 and $27,758 of benefit per year from implementing the insect monitoring station on 
235.2 acres for fresh or process apples, respectively. 

Table 14. The net present value equivalent1, per acre and by average farm size within size 
category, of selected CASC technologies.2 
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Table 15. Number of farms by size of apple orchard, in acres, for the US and selected regions.* 

 

(2) Commercialization potential of a CASC technology: Product Innovation and 
commercialization (OSU ENGR 599) class project 

Oregon State University offers a graduate course that presents the process of taking an 
intellectual property developed by a university and creating a plan to commercialize the 
respective product. The course is divided into two sessions; in the first, the students assess the 
product’s viability and during the second, the students develop a plan to take the product to 
market. In a recent course, a group of students choose to study the insect monitoring station 
under development by members of the CASC team. 

The initial step was to assess the viability of the intellectual property as a product by working 
through the following list of topics (see the appendices for the completed report): 

 Product Functionality 

 Product Direct Costs 

 Product Value 

 Market Requirements  

 Product Differentiation  

 Manufacturing Explanation & Estimated Costs  

 Delivery Explanation & Estimated Costs 

 Support Explanation & Estimated Costs  

 Profit Justification 
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After working through each of these topics for the technology, a summary assessment can be 
made as to whether the technology has the potential to be developed into a standalone 
enterprise, a product line extension for an existing enterprise, or simply isn’t a viable product as 
currently envisioned due to costs, market size, or competition. 

In the case of the insect monitoring station, the assessment resulted in a reasonable 
opportunity but the market size and estimated adoption rate suggested that the device may 
have better success as a product line extension rather than a product to build a company 
around. The student group decided that they would continue with this device into the second 
term of the course and develop a business model around the technology. 

The second term project was to develop a presentation for potential investors describing an 
estimated market size and value, market channels and business model (see the appendices for 
the presentation). To do this the students contacted potential customers to get feedback as to 
how it might fit into their operation and any suggestions they may have to improve the device, 
as well as their general opinion of the technology. 

During the first term there were five students involved in developing the product viability 
assessment. During the second term, only two of the original students returned and continued 
the project; the others did not register for the second term for various reasons. All the students 
involved with the CASC-related group projects earned the grade of “A” for their efforts. This 
project was presented as a showcase during the CASC meeting in September (see the 
appendices for the slides). The presentation described the economic assessment performed by 
members of the CASC team and the results of the student project. 

(3) On March 4th, 2010, Clark Seavert and Jim Julian presented a “Got Economics?” workshop to 
30 growers, processors and input suppliers in Biglerville, PA. They also met with 5 local lenders 
the next day to discuss improvements to the output of the AgFinanceTM software program. A 
similar meeting with lenders in Yakima, WA was held to seek advice from a western lender 
perspective. 

Other accomplishments include: release of the AgToolsTM website, including download and 
installation videos (details in the appendices); development of AgFinanceTM software (alpha 
version) after advice from lenders (release date Winter 2010); brochures highlighting the 
AgToolsTM programs; presentation of the CASC project to Columbia Gorge Technology Alliance 
in Hood River, Oregon on March 16th. 

 

  



Comprehensive Automation for Specialty Crops Year 2 Accomplishments Report Page 118 

Distribution of this document is authorized only to members of the Comprehensive Automation for Specialty Crops project, members of its 
advisory panel, and project sponsors. Further distribution requires prior written permission from the project director. 

5.3 Outreach 

Thematic area leaders 

Name Institution Email 

Tara Baugher The Pennsylvania State University tab36@psu.edu 

Karen Lewis Washington State University kmlewis@wsu.edu 

Gwen-Alyn Hoheisel Washington State University ghoheisel@wsu.edu 

Year 2 goals 

Activities  Deliverables  Success Criteria  

1. Conduct educational 
programs to prepare 
stakeholders for future 
adoption of new 
technologies. 

2. Conduct management 
efficiency trials in whole-farm 
sustainable demonstration 
plantings. 

3. Track rates of adoption of 
trellis-based planting 
architecture of growers in 
areas of influence of CASC 
outreach. 

4. Increase student interest in 
developing engineering 
solutions for specialty crops. 

5. Improve project relevance 
and impact through 
structured input and 
feedback. 

1. In-depth risk-management 
workshops for producers and 
farm employees. 

2. Comprehensive 
Automation web site, video-
cast, and extension 
publications. 

3. Management efficiency 
and economic impacts from 
on-farm trials reported in 
research and outreach 
publications. 

4. Engineering interns trained 
to assist in developing 
engineering solutions for 
specialty crops. 

5. Report on rates of 
adoption of trellis-based 
planting architecture of 
growers in areas of influence 
of CASC outreach. 

1. Seventy percent of growers 
who attend CASC field 
days/workshops indicate 
planned changes in tree 
architecture as a result of 
CASC outreach programming. 

Notable results: 

 A total of 3,671 direct contacts were made through field days and presentations while an 
improved Internet presence accounted for hundreds more. A quarter of mid-Atlantic 
producers who attended presentations are already adopting new technologies for precision 
agriculture. PNW growers who attended a CASC field day rated interest in adoption 3.8 to 
4.4 on a 1 to 5 scale. 

mailto:tab36@psu.edu
mailto:kmlewis@wsu.edu
mailto:ghoheisel@wsu.edu
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 Management efficiency trials in pilot orchards demonstrated increases in efficiency as high 
as 78%. 

 Thirty percent of producers who attended field days are already adopting trellised planting 
systems and 65% plan to make this change. 

 During the first two years, 42 students were involved in CASC projects and now have an 
interest in engineering solutions for specialty crops. 
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CASC outreach was comprehensive in the development of outreach programs, conducting 
applied field research, and training other extension educators and students. 

Outreach Programming: The outreach programs were focused on preparing stakeholders for 
the future adoption of new technologies. In Year 2 we conducted eight field days and thirty 
presentations at industry and professional meetings, and published forty trade journal/ 
extension and thirty research articles. This resulted in 3,671 direct contacts through field days 
and presentations. Additionally, our website (http://www.CasCrop.com) was redesigned to 
include social media and YouTube presence. Fourteen new videos, a fact sheet, and legislative 
portfolio were all created and customized for the intended audience. 

Applied Field Research: In response to stakeholder suggestions in the CASC socioeconomic 
survey summary, an increased focus is being placed on field trials to present evidence of 
increased management efficiency, improved fruit quality, and increased net income. Trials were 
conducted to compare harvest and pruning from a semi-autonomous platform versus from 
ladders, and efficiency increased by 44% and 78%, respectively. In trials with a vacuum harvest 
system, fruit quality improved by 5%. Savings were seen in targeted spray application and 
harvest-assist trials. Specifically, there was a 32-67% savings in herbicides ($14-29/acre) with 
new precision technologies and a $245/acre savings with vacuum assisted harvest. 

Tracking Rates of Adoption:  We believe that through structured input and feedback, we can 
improve our project relevance and impact. The CASC team has an advisory panel that includes 
growers; engineering, horticultural, and environmental scientists; commodity association 
leaders; consumer representatives; community and workforce development educators; and 
commercial machinery developers. An advisory panel meeting was held in February 2010. CASC 
advisors also are invited to attend regularly scheduled webinars (six per year). During these 
webinars, project leaders showcased results that are at a point where industry 
recommendations are needed on technology transfer. 

Many of our field days and workshop presentations include a feedback mechanism. In the 
Pacific Northwest field days, CASC presentations rated 3.8-4.4 (1-5 scale), with highest interest 
in automated traps. At Mid-Atlantic field days and meetings, nearly half of respondents (47%) 
were very likely to adopt new technologies for increasing precision and 26% were already 
making changes (Figure 96). Sixty-five percent of respondents were very likely to plant high 
density systems and 30% were already making changes. A third of respondents (32%) were very 
likely to adopt new labor-saving technologies and 16% were already making changes. 

Training: To build capacity in agricultural engineering and competitive orchard systems, we 
devoted time to training students and other extension faculty. Throughout the entire project, 
42 students have been involved in CASC-related activities. Five faculty members from UC 
Extension, University of Maryland, and Rutgers were trained on labor saving technologies. 

http://www.cascrop.com/
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Figure 96. Producers in the Eastern US are embracing and preparing for novel technologies 
that improve efficiencies and reduce environmental impact. 

Three CMU courses included projects on developing engineering solutions for specialty crops. 

In the Human-Computer Interaction Institute’s senior design project course, three students 
tackled the problem of redesigning the APM interface to make it more grower-friendly. The 
students undertook a formal design approach to the problem, starting with requirements 
collected in interviews with actual growers and ending with a functional prototype that was 
used by a farm owner and three farm employees to drive the APM in their commercial orchard. 

In the Mechanical Engineering Department Prof. Bill Messner advised a group of seven students 
studying new methods to reduce fruit bruising and worker stress during harvest operations. The 
members of the Apple Picking Team took two approaches to the problem of bin filling. At first 
they considered modifying the bin, but changed their approach after the complexity of that task 
became apparent and after Prof. Messner advised them of the difficulty of getting such a 
product adopted. Their second approach was to modify the picking bag and combine that 
design with a removable padded insert for the bin. The insert created separate rectangular 
sections in the bin. The modified bag would reduce the jostling of the fruit as it was released 
into a section of the insert. Once an entire layer was filled, the insert would be lifted. The 
resulting prototype showed promise, but still had ergonomic issues. Providing a detachable 
mechanism on the side of the bin that allowed the workers to lower the picking bag over the 
middle of the bin might make the system practical. 

In the Robotics Institute Prof. Martial Hebert used images of apples collected by CASC scientists 
to train undergraduate students in image processing-based automatic fruit detection and 
counting. The algorithms that yielded the best results may be incorporated in our work on crop 
load sizing and counting. 

 

Adopting New Strategies/Technologies 
for Increasing Precision and Reducing 

Environmental Impacts

Unlikely (0 %)

Somewhat Likely (21.1%)

Very Likely (47.4%)

Already Making Changes 
(26.3%)


