Grapheme Based Speech Synthesis and Speech Recognition

> S.P. Kishore skishore@cs.cmu.edu

Carnegie Mellon University

International Institute of Information Technology

A.C.

&

Focus Papers

- Alan W Black and Ariadana Font Llitjos, "Unit Selection With out Phoneme Set", IEEE TTS Workshop 2002, Santa Monica, CA
- Mirjam Killer, Sebastian Stuker, Tanja Schultz, "Grapheme based Speech Recognition", Eurospeech, Geneva, 2003.

Speech Synthesis without Phoneme Set

- Why without phoneme set?
- Increasing need for speech synthesis and speech recognition in new unsupported languages.
 - Availability of less phonetic knowledge in the new languages
 - Researchers/developers may not have (or access to) language expertise
 - Native speakers may not be consciously aware of the phonetic knowledge
- How hard/easy for well studied languages?
 - An appropriate phoneme set for a well studied language may not be easy.
 - Orthography and phonetics may not have one to one relationship

Experiment in Spanish language

- Nature of the language: Written system and phonology is relatively close, but not one-to-one
- Letter set as phoneme set
 - 26 standard English letters
 - Accented characters a', e', i', o', u' and n'
- Pronunciation:
 - Word into characters (list of phones)
 - No vowel/consonant information available!
 - Each word is coded as a single syllable
 - Numbers?: Expanded into complete words using knowledge base

Labeling

- Typical Process using DTW (in Festvox):
 - Phone set and duration information is available
 - Prompts are generated
 - Use this acoustic and duration information to do a DTW on the uttered sentences
- If no Phone Set?
 - Labeling using acoustic models of speech recognition systems (Sphinx Tools)
 - Acoustic models built using letter as phone names
 - Once the models are trained, segmental information could be obtained.

How Good These Systems are?

- Confirm with different pronunciation of letters in different context
 - Letter context and position information in the word is useful
 - Ex: casa \rightarrow /k a s a/ (house)
 - $cesa \rightarrow /th \ e \ s \ a/ \ (stop)$
 - cine \rightarrow /th i n e/ (cinema)
 - $\cos a \rightarrow /k \text{ os } a/$ (thing)
- Could capture dialect differences
 - Castillian Colombian
 - cesa \rightarrow /th e s a/ /s e s a/
- Synthesis Quality: Results show good rating for 90% of words.

Pros and Cons..

- Overcome the effects of using one language/dialect phone set onto another (ex: Pronunciation of Scottish English speaker does not match with US English lexicon!!)
- Does not require linguistically knowledgeable speakers of the language
- May not be easy to specify/formulate fine distinctions
- Letter to sound rules may not be easy
- Requires sufficient data for the model to get trained

Speech Recognition

- Pronunciation Dictionary: Core component
- Each lexicon entry is mapped to sequence of sub word units (phonemes)
- Accuracy of ASR systems heavily depend on consistency and accuracy of pronunciation dictionary
- For new languages, automated generation of pronunciation dictionaries rule-based or statistical based approaches.
 - Dictionaries hand crafting is time consuming
 - Non-accurate dictionaries degrades the ASR performance

Grapheme Vs Phoneme ASR

- Phoneme based systems
 - 3 state HMM with 3000 triphone models
 - 32 Gaussians for each HMM state
 - Linguistically motivated questions to cluster the polyphonic decision tree
- Grapheme based systems
 - As in the case of phoneme, modeled by 3-state HMM
 - Pronunciation dictionaries: split the word into characters
- Decision trees for context dependent modeling

Performance

	WER				
Language	English	German	Spanish		
Phoneme	12.7%	17.7%	24.5%		
Grapheme	19.1%	17.0%	26.8%		

Grapheme-phoneme Correspondence

Context Width of the Models

- A context width of one (C-1) leads to tri grapheme system
- A hybrid tri grapheme system in which question and model context windows are different.

Language	C-1	C-1 Q-2	C-2	C-2 Q-3	C-3
English	19.1%	19.8%	21.7%	22.4%	23.6%
German	18.1%	17.0%	18.4%	18.7%	18.7%
Spanish	27.0%	26.8%	28.8%	28.2%	31.4%

Other Ideas

- Question generation to group poly-grapheme into a limited number of clusters.
- Multilingual Grapheme based Recognition
 - Rapid adaptation to new languages
 - Similar to multilingual phoneme based speech recognition

• • • •

- Questions and Discussion
- Future directions on the topic.