SyRG Review, May 27 2004

Optimal Data Selection for Unit Selection Synthesis, 2001 A. Black, K. Lenzo

Gist of Paper

- Goal
 - Find an optimal prompt set to record
 - for unit selection voices
 - designed towards targeted open domains
 - captures acoustic-phonetic range of speaker
- Innovation
 - use acoustic coverage as selection criteria
 - call these "clustered acoustic units"
 - use statistical distribution of cluster units

Optimality

- What is optimal?
 - see last paragraph of Section 2
 - Full Coverage
 - have examples of everything you need
 - Minimal Redundancy
 - without unnecessary recording
 - Working Definition
 - voice gets worse if you remove prompts
 - doesn't get much better if you add prompts
 - e.g. talking clock limited domain

Trouble on the Horizon

Results

- proposed method selects 241 prompts
 - hand pruned down to 221
 - "smaller than we expected" ... "in order to get more examples we ran the selection algorithm again"
 - second set of 146 prompts; combined 347
 - Arctic experience says this is too small
- Evaluation
 - combined set tested better than smaller pair
 - thus method under-represents speaker

Outlook

Opinion

- basic idea is solid
- parameterization isn't right
- so what's the deal?
- This talk
 - explore method, propose refinements
 - return to topic again later
 - vet results in a later SyRG meeting

General Constraints

- Unit Selection Synthesis
 - capable of high quality (easier modeling)
 - carries with it the style of recordings
 - stay within domain
 - e.g. not attempting to read stories based on newscast speech
 - don't perform unit modification
 - i.e. voice transformation enables a greater range of output with less recorded material

Text-only Prompt Selection

- Limited Domain
 - start with list of utterances (or generator)
 - greedy select on words
 - synthesize with word-sized units
 - for tighter phonetic control, select and synth words marked with preceding word
 - "word joins may be poor" (s2.2)
- Foreign Language
 - fallback if no letter-to-sound rules

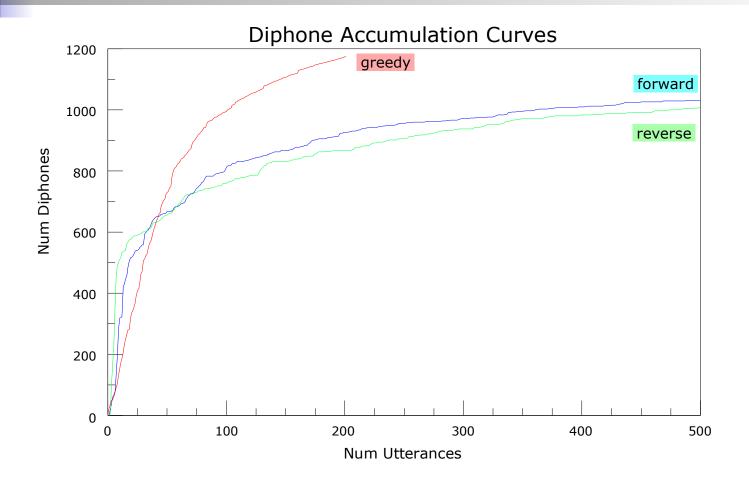
Phonetic-Symbol Selection

- Predict acoustics from text
 - from lexicon and lts rules
 - text to phonemes to units
 - many possible units
 - phones, diphones, triphones, syllables, demisyl
 - plus attributes that affect sound
 - Iexical stress, phrase posn, pitch, etc.
 - which factors are important is not known
 - exhaustive coverage impossible to collect [vanSanten 1997]

Coverage vs Distribution

- Complete Coverage
 - at least one example of each unit
 - diphone databases are designed to have exactly one of each (s2.6)
- Natural Distribution
 - frequency of selected units same as domain
 - provide more choices for common usage
 - Lenzo algorithm tries to avoid high frequency selection bias (s4)
 - unnecessarily complicated! [jk]

Coverage Volume on AiW


	Batch Utts	Incremental Utts Units		
Unstressed				
phone	6	3	41	601
diphone	196	192	1174	17405
triphone	1205	1199	10214	74455
Stressed				
phone	10	9	51	1015
diphone	235	229	1366	20376
triphone	1266	1262	10982	76862
words (CS)	894	887	2995	17123
words (CI)	764		2603	15916
di-words	1684		13299	24334
letters		3	27	757
di-letters		80	429	11683
tri-letters		395	3017	46414
	of 1000			

of 1920

Greedy Algorithm

- Basic idea
 - select items one-by-one that maximally improve the objective measure
 - unit coverage is a packing problem
- Two variants
 - recompute item scores after each selection
 - recompute scores after full insertion sweep
 - second variant is faster
 - second implemented in festvox

Accumulation Curves

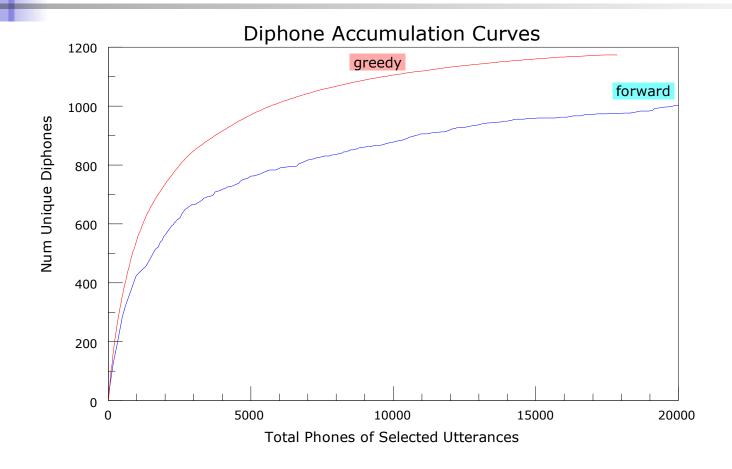
Comparing Greedy Variants

- Specification
 - unit type diphones
 - algorithm
 - 1. iterative at block granularity
 - 2. iterative at utterance granularity
 - utterance scoring
 - num new units
 - (num new units) / (utterance length)

Utterance Scoring

frequency weighted by units

- selects common speech (e.g. by diphone count)
- count of new units
 - favors long utterances
- ratio of new units to utterance length


favors short utterances

- new unit count x f(utterance length)
 - e.g. hat function H(5,20) used in festvox
 - e.g. Gaussian G(16,8)

Prompt Files Examples

- Compare 3 score functions
 - new item count
 - new item ratio
 - new item ratio with length weighting
- Examples for Alice in Wonderland

Accumulation Curves (2)

How much is enough?

- Problem
 - counting symbols isn't same thing as measuring acoustics
 - relation between two isn't known
 - needed redundancy isn't known
- Black & Lenzo proposition
 - start with augphones as speech units
 - cluster units by phonetic features
 - hypothesis one example of each is enough

Augmented Phones

- Important detail
 - clustered segments are "augphones"
 - phoneme plus 50% of previous phone
 - Why? Join continuity
 - see ref [3]

Cluster Trees

- Example
 - ((R:SylStructure.parent.syl_break is 4) ((n.name is pau) ((name is s) ((p.ph_cvox is 0) ((45 986 324 892))))))
 - If the current phone /s/ is followed by a pause and we are at a large phrase break (val 4), and the previous phone a consonant has unknown voicing, then in this context an /s/ is represented by the unit set with id numbers {45,986,324,892}

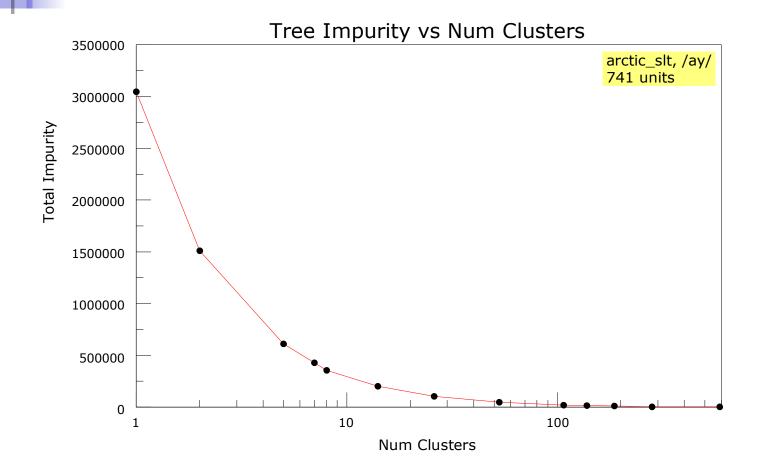
Distance Metric

Distance measure for clustering

- weighted ceptral frames with length alignment
 - j: iterates n mel frequency cepstral coefficients
 - i: iterates over frames in U
 - σ: stdev for Mahalanobis distance
 - W: weights on ceptral components
 - P: penalty term for length disparity

$$D(U,V) = P(\frac{|U|}{|V|}) \frac{1}{n|U|} \sum_{i=1}^{|U|} \sum_{j=1}^{n} \frac{W_{j}}{\sigma_{j}} \left| F_{ij}(U) - F_{(i \, round(\frac{|V|}{|U|}))j}(V) \right|$$

Impurity vs Cluster Count


What is the right stopping threshold?

- balance between cluster purity and number of cluster representatives
- one example per cluster is too few
- redundancy needs greater when database has not been hand recorded

Note

selection tree doesn't have to be synthesis tree

Impurity Curve for AY

Alternative Clusterer

- HMM acoustic training
 - use senomes as clusters
 - each tied triphone state represents a distinct phonetic segment
 - problems
 - subphone segments of speech
 - num senomes is a free parameter

example wavefiles

see www.festvox.org/dataselect