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Introduced Paper

Novel techniques for flexible speech synthesis

e \Volice conversion

— Training with non-parallel speech corpus
(ICASSP2004)

» Paper list for HMM-based speech synthesis
— Adaptation, eigenvoices, and speaker interpolation
(ICASSP, EUROSPEECH, ICSLP, ...)

SYRG, July 8 2004 - 1



Problem Addressed In This Paper

e Training of conversion function from a non-
parallel corpus
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Conventional Approach

e Using aparallel corpus consisting of the same
sentences uttered by source and target speakers

 Modeling ajoint probability by a GMM with
time-aligned source and target features

Correlation between
features can be
modeled directly.
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Proposed Approach

 Estimating conversion function from statistics of
a parallel corpuswith ML adaptation

Parallel corpus Non-parallel corpus
Source speaker A Source speaker C

X i GMM adaptatlon i x'
1

Conversion fur_1ct|on trained Adapted conversion function
by the conventional method
/

GMM adaptation
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Target speaker B Target speaker D
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Adaptation: MLLR (Leggetter et al.)

o Estimating linear transformation for each group
of mixtures so that alikelihood function is
maximized

Training data

3
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A,p+b,

* Covariance matrices can also be transformed.
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ML Stochastic-Transformation (MLST)
(Diakoloukas et al.)

» Estimating linear transformation for each
transformation-component under linear constraints
X' =Ax+b,
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MLST with Non-Parallel Corpus

Jointdensity' | Cﬂx+d CZyyCT
estimation
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ODbjective Experimental Evaluations

 Evaluation with an objective measure based on
spectral distance
 Investigation
— Effectiveness of the proposed method
— Effect of the number of adaptation parameters
— Effect of the amount of training data

e Experimental conditions
— Training set: 40 sentences
— Evaluation set: 10 sentences
— Number of mixtures. 16

SYRG, July 8 2004 - 8



Experimental Results (Table 1)

Paralléel Non-parallél

A set /
x 15utt.[ [ x - -
Two different pairs 10 utt. Two different pairs

Test 1and Test 2
(CaselandCase?) y il 15w [y )

/
B A X i i X' Two different pairs
Two different pairs 40 utt. , (Test 1 and Test 2)

(Case 1 and Case 2) V

v The proposed method can reduce the error in all cases.
v Paralldl training is better than non-parallel training.
v B set has better results than 4 set because of using a

larger number of training data.
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Experimental Results (Fig. 2)

e Fig. 2(a): effect of the number of adaptation
parameters

— The error decreases when increasing the number of
adaptation parameters.

— The improvement tendency is saturated.
* Fig. 2(b): effect of the amount of training data

— The error decreases when increasing the amount of
training data.
— The improvement tendency is saturated.
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Conclusions

* Proposing atraining method with a non-parallel
corpus

— Using aGMM trained with a parallel corpus as an
Initial model
— Adaptation based on ML under linear constraints
* Objective evaluations
— Showing the effectiveness of the proposed method
— Investigating some combinations of speakers

— Investigating effects of the number of adaptation
parameters and the amount of training data
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HMM-Based Speech Synthesis

(Tokudaet al.)

Contextual information
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