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• Voice conversion
– Training with non-parallel speech corpus 

(ICASSP2004)

• Paper list for HMM-based speech synthesis
– Adaptation, eigenvoices, and speaker interpolation

(ICASSP, EUROSPEECH, ICSLP, …)

Introduced Paper

Novel techniques for flexible speech synthesis
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• Training of conversion function from a non-
parallel corpus

Problem Addressed in This Paper

Hello.
Good morning.
How are you?

Hello.
Good morning.
How are you?

That’s fine.
Good bye.
I like it.

Conventional training

Proposed training
Source 
speaker

Target 
speaker
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• Using a parallel corpus consisting of the same 
sentences uttered by source and target speakers

• Modeling a joint probability by a GMM with 
time-aligned source and target features

Conventional Approach

Correlation between 
features can be 
modeled directly.
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• Estimating conversion function from statistics of 
a parallel corpus with ML adaptation

Proposed Approach

Parallel corpus
Source speaker A

Target speaker B

x

y

Conversion function trained 
by the conventional method

Non-parallel corpus
Source speaker C

Target speaker D

x′

y′
GMM adaptation

GMM adaptation
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?Adapted conversion function



• Estimating linear transformation for each group 
of mixtures so that a likelihood function is 
maximized

Adaptation: MLLR

11 bµA +

22 bµA +
* Covariance matrices can also be transformed.

Training data

x x′

(Leggetter et al.)
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• Estimating linear transformation for each 
transformation-component under linear constraints
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Training data

x x′

(Diakoloukas et al.)
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ML Stochastic-Transformation (MLST)

11 bxAx +=′

22 bxAx +=′



MLST with Non-Parallel Corpus

yxΣ

bAµx + ΤAAΣ xx

dCµx + ΤCCΣ yy
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Joint density 
estimation
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• Evaluation with an objective measure based on 
spectral distance

• Investigation
– Effectiveness of the proposed method
– Effect of the number of adaptation parameters
– Effect of the amount of training data

• Experimental conditions
– Training set: 40 sentences
– Evaluation set: 10 sentences
– Number of mixtures: 16

Objective Experimental Evaluations
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Experimental Results (Table 1)

x
y

x′
y′

Parallel Non-parallel

Two different pairs
(Test 1 and Test 2)Two different pairs

(Case 1 and Case 2)
40 utt.

x
y

x′
y′

Two different pairs
(Test 1 and Test 2)Two different pairs

(Case 1 and Case 2)
10 utt.

B set

A set
15 utt.

15 utt.

The proposed method can reduce the error in all cases.
Parallel training is better than non-parallel training.
B set has better results than A set because of using a 

larger number of training data.
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Experimental Results (Fig. 2)

• Fig. 2(a): effect of the number of adaptation 
parameters
– The error decreases when increasing the number of 

adaptation parameters.
– The improvement tendency is saturated.

• Fig. 2(b): effect of the amount of training data
– The error decreases when increasing the amount of 

training data.
– The improvement tendency is saturated.
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• Proposing a training method with a non-parallel 
corpus
– Using a GMM trained with a parallel corpus as an 

initial model
– Adaptation based on ML under linear constraints

• Objective evaluations
– Showing the effectiveness of the proposed method
– Investigating some combinations of speakers
– Investigating effects of the number of adaptation 

parameters and the amount of training data

Conclusions
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HMM-Based Speech Synthesis
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(Tokuda et al.)



• Adaptation
– MLLR

• Spectrum: Tamura et al., Proc. ESCA/COCOSDA Workshop pp. 273-276, Nov. 1998
• F0: Tamura et al., Proc. ICASSP, pp. 805-808, May. 2001
• Duration: Tamura et al., Proc. EUROSPEECH, pp. 345-348, Sep. 2001

– Average voice
• STC: Yamagishi et al., Proc. ICSLP, pp. 133-136, Sep. 2002
• STC+SAT: Yamagishi et al., Proc. ICASSP, pp. 716-619, Apr. 2003

– Context clustering decision tree
• Yamagishi et al., Proc. ICASSP, pp. 5-8, May 2004

• Eigenvoices
– Shichiri et al., Proc. ICSLP, pp. 1269-1272, Sep. 2002

• Speaker interpolation
– Yoshimura et al., Proc. EUROSPEECH, pp. 2523-2526, Sep. 1997

Reference list
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