Foot Structure and Pitch Contour Paper Review

------Arthur R. Toth------Language Technologies Institute Carnegie Mellon University 7/22/2004

Papers

- Esther Klabbers, Jan van Santen and Johan Wouters,
 "Prosodic Factors for Predicting Local Pitch Shape," IEEE
 2002 Workshop on Speech Synthesis
- Esther Klabbers and Jan P. H. van Santen, "Control and prediction of the impact of pitch modification on synthetic speech quality," Eurospeech 2003
- Esther Klabbers and Jan P. H. van Santen, "Clustering of foot-based pitch contours in expressive speech," SSW5, 2004.

1st Paper: IEEE 2002 Workshop

- * Investigate predictive power of different prosodic factoring schemes.
- Extend diphone voice by making additional recordings under different prosodic contexts.
- * Use foot structure to guide choice of prosodic contexts.

Introduction

- * Problem: corpora typically have 1 example per diphone coming from stressed context
 - These examples are sometimes bad matches for prosodic context, and much signal modification (with potential quality degradation) can be necessary.
 - Adding many examples to cover more possibilities could lead to a large database
 - Difficult to use in embedded devices
 - Difficult to keep speaker consistent across more examples
 - Need to find good "selection criteria"

Feet and Pitch

₩ "Left-headed foot"

- •Sequence of 1 or more syllables, 1st is accented
- •Followed by accented syllable or phrase boundary
- ***** Typical accent, up-down pitch movement
 - Monosyllabic: rise-fall on single syllable
 - •Polysyllabic: rise on first, fall on rest

Factorization Schemes

	Simple	Foot	Complex1	Complex2
	Stress {0,1 }	Last accent {0,1,2}	Accent{0,1}	Accent {0,1}
	Accent {0,1}	Next accent {0,1,(2)}	Last accent {0,1,2}	Last accent {0,1,2,3}
	Phrase-fin. Syll.{0,1,2 }	Phrase-fin. Foot{0,1,2}	Next accent {0,1,2}	Next accent {0,1,2,3}
Levels	12	19	54	96

Experiments

- ₭ Corpus
 - 472 sentences spoken by a female
 - Segmented and annotated by hand
 - 1493 of 8860 syllables were used
 - Only ones starting with a sonorant
- ✗ Measures
 - RMSE between one contour and another contour estimated from the second
 - Delta distance

Results

Mean	Simple	Foot	Complex1	Complex2
Levels	12	19	30	48
RMSE	13.1	12.8	12.7	11.9
Delta Distance	11.9	10.9	11.3	10.4

Discussion

- * Foot scheme performs better than Simple and similar/better than Complex1
- ₭ Complex2 performs best but has too many factors.
- * "Hypothesis 1: The distinction between medial, phrase-final and utterance-final feet is important for predicting pitch contour shapes."
- * "Hypothesis 2: The position of the previous accented syllable is irrelevant if the current syllable is the head of the foot."

Text Corpus Analysis

* Analyzed large text corpus

- 359,276 sentences from newspapers, novels, and bible
- Used Festival to compute foot factor levels for each diphone: 16,926,727 total of 22,865 types
- Simplified by disregarding consonant position and only having single versions of consonant-consonant diphones: 9,367,407 tokens of 21,458 types
- Using a standard database of 3353 diphones, only 6020 had to be added to cover 95% of diphone-foot tags.

2nd Paper: Eurospeech 2003

- Continues in the vein of trying to reduce the amount of signal modification necessary by using foot structure to improve selection.
- * Perceptual experiment to investigate degradation caused by pitch modification
- * Correlation of weighted perceptual score with different pitch and delta pitch distances

Speech Corpus Analysis

***** Same prosodic factorization as 1st paper

- ₩ Corpora
 - Duration corpus: corpus from 1st paper
 - Foot Corpus I
 - Recorded to testing effect of position on pitch contour
 - 285 sentences, spoken by a highly-expressive female
 - Each sentence target is an all-sonorant CVC syllable
 - Foot Corpus II:
 - Instructed speaker to be less expressive, speaker uncomfortable

Distance Measures * Tried various distance measures

$$D_{p} = \sum (\log 10(F_{0i}) - \log 10(F_{0j}))^{2}$$

$$D_{wp} = \frac{\sum E(\log 10(F_{0i}) - \log 10(F_{0j}))^{2}}{\sum E}$$

$$D_{\Delta p} = \sum (\Delta \log 10(F_{0i}) - \Delta \log 10(F_{0j}))^{2}$$

$$D_{w\Delta p} = \sum E(\Delta \log 10(F_{0i}) - \Delta \log 10(F_{0j}))^{2}$$
where $E = \sqrt{E_{i} \times E_{j}}$

Results

 Foot annotation scheme performed better than Simple for all 3 corpora and was generally better then complex

- It appeared that some levels in the Foot scheme could be collapsed further
 - For Head, Doesn't matter whether unstressed syllables follow
 - For unstressed syllables, only matters whether they are immediately preceded by the head
 - For all syllables, important if foot is phrase-medial, phrase-final with continuation rise, or utterance-final.
 - New 12-level factorization scheme that is still better than simple

Perceptual Experiment

- * Use OGIresLPC algorithm
- ₭ Use data from Foot Corpus I
- * Sentences had carrier phrase and target word
 - Target word was sonorant CVC syllable from corpus
 - Two versions: one where syllable is in same prosodic context, another where it is in different context
 - Sentence parts were concatenated with Snack
 - 20ms pause inserted between carrier phrase and target word
- * Participants compared pairs on 7-point scale

Results

- Computed weighted score for each sentence, based on zscore normalization
- * Used linear regression with different distances to try to predict weighted scores
- * At first, appeared that pitch distance and delta distance caused highest variance
- * With more varied material, weighted distances might give better correlations.
- ***** Direction of pitch change important.
 - 2 new distance measures were created
 - Decreasing pitch was worse than increasing pitch

3rd Paper: 5th ISCA SSW ***** Concerned with categorizing foot-based pitch contours in expressive speech Clustering instead of prediction ***** Classifying emotions in speech is problematic, so focusing on what pitch contours actually occur

Models

- * TTS system used Generalized Linear Alignment Model
 - Pitch contour consists of phrase curves, accent curves, and segmental perturbation curves
 - Phrase curve has two linear components
 - Phrase start to syllable with nuclear pitch accent
 - There to end, with steeper decline
- * This paper uses Simplified Linear Alignment Model
 - Assumes accent is realized by up-down movement, where location depends on # syllables in foot

Corpus

* 2 children's stories by Beattrix Potter
* Read by semi-professional female speaker
* 10 minutes of speech, not counting pauses
* 2929 syllables

₩128 sentences

Annotation

- * Automatic phoneme segmentation by CSLU's phonetic alignment system
- * Phonetic transcription from Festival
- * Phonemes checked and alignments hand-corrected with Wavesurfer
- * Syllable transcription created by hand and aligned with phoneme labels
- ★ ESPS get_f0 used to extract pitch every 5ms
 - Wrote Wavesurfer plug-in to interpolate with lines

Pitch Normalization

- * Pitch contours are different lengths and need to be normalized for comparison.
 - •Simple interpolation doesn't work because peak location tends to differ between monosyllabic and polysyllabic feet.
 - Predicted peak locations were used to split intervals, and 50 points were sampled on each side.

Analysis

Distances between pitch contours were calculated as:

 $#1-cor(F_{0i},F_{0j})$

Clustering

- * Used S-PLUS "hclust" method for clustering (non-metrical hierarchical)
 - •Each object gets own clustered, then clusters joined until only 1
 - •Used "ward" method: minimum variance method that finds compact spherical clusters
 - •Final number of clusters determined empirically by looking and listening

Results

₭ 6 clusters were selected

* The paper has figures of medians of znormalized pitch contours for each cluster.

* There is a also a table showing bigram relative frequencies, with some discussion.

Conclusion

* Authors feel this paper has shown assumptions made in Generalized Linear Alignment Model are correct.

Discoveries

- "two feet (most frequently occurring at the end of a minor or major phrase) can be connected by what seems to be a different type of phrase curve consisting of an increasing movement on the first foot and a decreasing movement on the last foot."
- "continuation rise which was always assumed to be present at minor phrase boundaries was only observed in fewer than 10% of feet occurring at the minor phrase boundary in this corpus."
- ** Need to confirm these discoveries for other speakers