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Problem Addressed in This Paper
• Modelling the acoustic-to-articulatory mapping

Acoustic
speech signal

Articulatory
configuration

Speech production

Inversion mapping

Acoustic-articulatory data
Statistical model



Contents
• Inversion mapping
• Acoustic-articulatory data (MOCHA)
• Mapping with multilayer perceptron (MLP)
• Mapping with mixture density network (MDN)
• Comparing MLP with MDN



Inversion Mapping
• Mapping from acoustic speech signal to 

articulatory configuration
– Ill-posed problem (non-unique solution)

• Applications
– Speech coding
– Speech training
– Speech recognition
– Speech synthesis



MOCHA database
• Multichannel articulatory database (MOCHA)

– Queen Margaret University College
• Four data streams

– Acoustic waveform (16 kHz, 16 bit)
– Laryngograph (16 kHz, 16 bit)
– Electropalatograph
– Electromagnetic articulograph (EMA)

• 460 British TIMIT sentences
• 40 speakers

– Available: 2 speakers, male and female



EMA: Electromagnetic Articulograph
• Sampling the movement of receiver coils 

attached to the articulators
– 9 points (2 reference points)

• Top lip, bottom lip, bottom incisor, tongue tip, tongue 
body, tongue dorsum, velum, (bridge of the nose, upper 
incisor)

– x- and y-coordinates in the midsagittal plane
– 14 channels
– 500 Hz



Samples: 2-D plot
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Samples: Time sequence
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MLP: Multilayer Perceptron
• Input layer: 400 units

– 20 frames of 20 filter bank coefficients
• Output layer: 14 units

– 7 x- and y-coodinates
• Hidden layer: 38 units

– Pruning from 50 units

Articulatory output

Full connection

Hidden layer

Full connection

Acoustic input



Features
• Acoustic feature 

– 20 mel-scale filterbank coefficients
• 20 ms hamming window, 10ms shift

– Normalization: 1/(4σ), 95% interval [0.0, 1.0]
• Articulatory feature

– Lessening the effect of noise caused by measurement error 
in EMA machine

• 10ms shift
– Normalization: 1/(5σ), 95% interval [0.1, 0.9]

• Removing silence frames
• Data set

– For training: 368 sentences
– For validation: 46 sentences
– For test: 46 sentences



Weight Optimization
• Error function

• Gradient descent training

– Scaled Conjugate Gradient (SCG)
• Using not only first derivatives but also second 

derivatives
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Experimental Evaluation
• Evaluation measures

– Root mean square (RMS) error
• Overall distance between two trajectories

– Correlatin coefficient
• Similarity of shape and synchrony of two trajectories

• Results
– P. 7, Table 1
– Average of RMS error: 1.62 mm
– Estimated trajectories, p. 9, Figure 2



Shortcomings of MLP Mapping
• Discontinuity in estimated trajectories

– Articulators move slowly and smoothly

• Insufficient to model one-to-many mappings 
– Using context windows

Some limitations of using the 
sum-of-squares error function

Low-pass filtering
Channel specific cutoff frequency

Effective but insufficient



MDN: Mixture Density Network
• Output: conditional probability density function

• Kernel: Gaussian function

– Weight

– Mean
– Spherical covariance

∑=
M

mmp )|()()|( xtxxt φα

∑
= M

j j

m
m

z
z

)exp(
)exp()(

)(

)(

α

α

α x

)()( µµ k
m

k
m z=x

)exp()( )(σσ mm z=x

1α 11µ 1σ 2α 21µ 2σ

)|( xtp


















 −
−= ∑

K m

k
m

k

K
m

Km
µt

2

2/ )(
)(

2
1exp

)()2(
1)|(

x
x

x
xt

σσπ
φ



Weight Optimization in MDN
• Error function

• K-means based initialization
– Unconditional density of the target data









−= ∑∑
M

nnmnm
N

E )|()(ln xtx φα

),()()( nnmnm
m

n

z
E txx παα −=

∂
∂







 −

=
∂
∂

)(
)(),( 2)(

nm

k
nn

k
m

nnmk
m

n t
z
E

x
xtx

σ
µπµ

∑












−






 −
−=

∂
∂

K nm

n
k
m

k
n

nnm
k

n t
z
E 1

)(
)(),(

2

)( x
xtx

σ
µπσ

∑
=

= M

j
nnjnj

nnmnm
nnm

1
)|()(

)|()(),(
xtx

xtxtx
φα

φαπ



Experimental Evaluation
• Results

– Output probability, p. 14, Figure 4, 5
• Low variance: accuracy is higher
• High variance: accuracy is lower

– Phonetic dependent variances, p. 16, Table 2.
• Low variance of critical articulator

– Tongue tip y [s, z, θ]
– Upper lip x   [m, w, b, p]

• Exceptional example
– Velum x  [m, n, η]

– Using characteristics of variance



Comparing MDN with MLP
• MLP

– Single Gaussian probability density function
• Mean: varied according to input (output of MLP)
• Variance: fixed (global variance in training data)

• MDN
– Multiple Gaussian probability density function

• Weight: varied according to input
• Mean: varied according to input
• Variance: varied according to input



Comparison with Mean Likelihood
• Results

– P. 18, Table. 3
– Y-coordinates is more improved except for velum

• Y: 13.3%, X: 4.8%

• Comparing probability density functions
– P. 19, Figure 6
– Effectiveness of multi density for modelling one-to-

many mappings



Conclusion
• Acoustic-to-articulatory mapping

– Ill-posed problem
• Using MOCHA database

– Speech waveform
– EMA

• Mapping with MLP or MDN
– MDN: more flexible and accurate model

• Effective to one-to-many mapping
• Variance varied according to input signal



Future Work
• Continuous trajectory

– Kalman smoothing with variance

• Using articulatory information
– Cost function in concatenative speech synthesis
– Spectral estimation
– Speech recognition



Proposed Algorithm
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2. Feature generation with ML for 
static and dynamic distributions

1. Estimating not only static 
but also dynamic probability
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