Paper Introduction

 Modelling the Uncertainty in Recovering Articulation from Acoustics ~

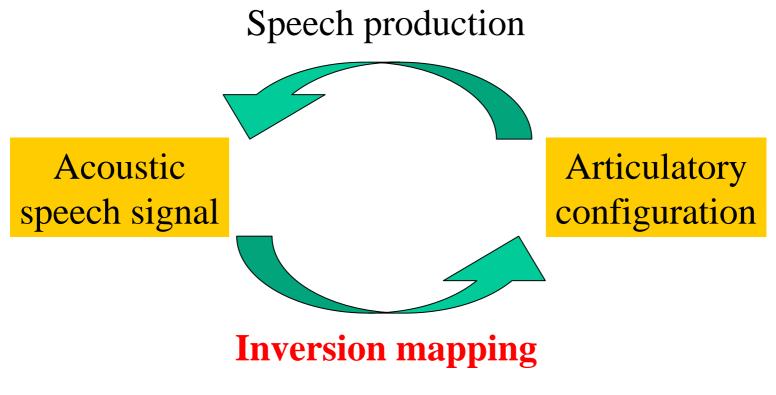
Korin Richmond, Simon King, and Paul Taylor

Tomoki Toda

November 6, 2003

Problem Addressed in This Paper

• Modelling the acoustic-to-articulatory mapping



✓ Acoustic-articulatory data✓ Statistical model

Contents

- Inversion mapping
- Acoustic-articulatory data (MOCHA)
- Mapping with multilayer perceptron (MLP)
- Mapping with mixture density network (MDN)
- Comparing MLP with MDN

Inversion Mapping

- Mapping from acoustic speech signal to articulatory configuration
 - Ill-posed problem (non-unique solution)
- Applications
 - Speech coding
 - Speech training
 - Speech recognition
 - Speech synthesis

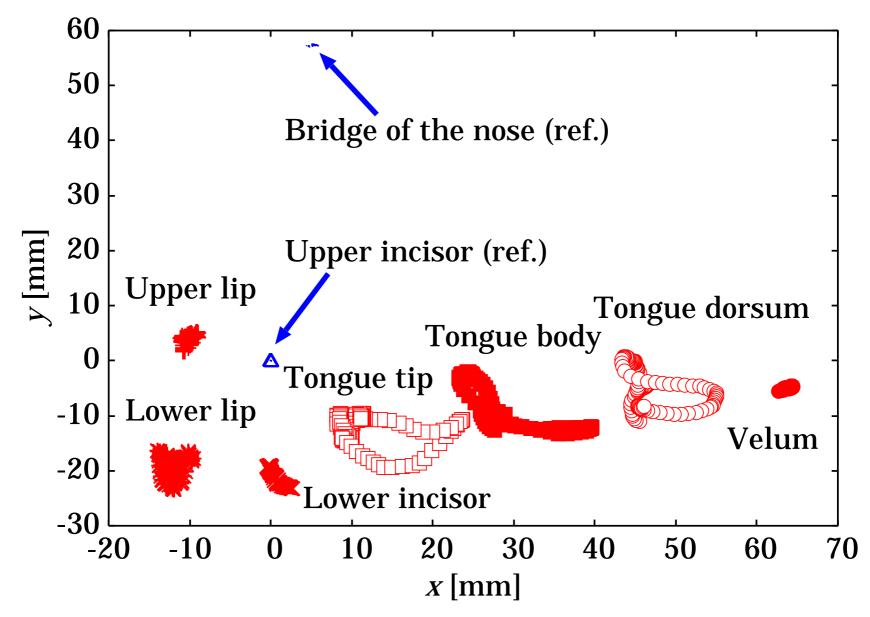
MOCHA database

- Multichannel articulatory database (MOCHA)
 - Queen Margaret University College
- Four data streams
 - Acoustic waveform (16 kHz, 16 bit)
 - Laryngograph (16 kHz, 16 bit)
 - Electropalatograph
 - Electromagnetic articulograph (EMA)
- 460 British TIMIT sentences
- 40 speakers
 - Available: 2 speakers, male and female

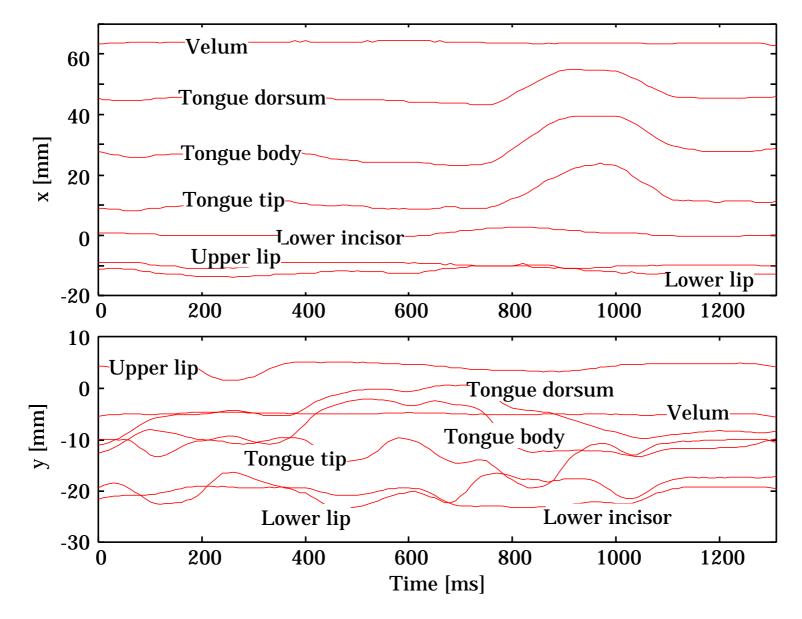
EMA: Electromagnetic Articulograph

- Sampling the movement of receiver coils attached to the articulators
 - 9 points (2 reference points)
 - Top lip, bottom lip, bottom incisor, tongue tip, tongue body, tongue dorsum, velum, (bridge of the nose, upper incisor)
 - x- and y-coordinates in the midsagittal plane
 - 14 channels
 - 500 Hz

Samples: 2-D plot

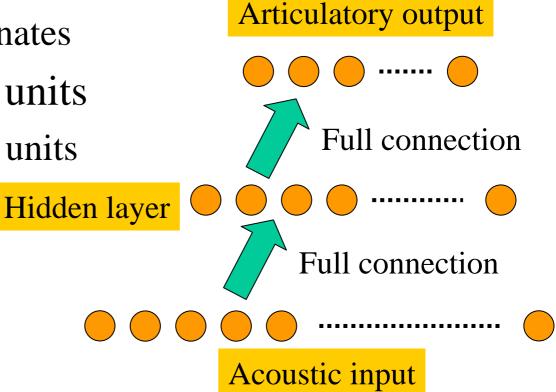


Samples: Time sequence



MLP: Multilayer Perceptron

- Input layer: 400 units
 - 20 frames of 20 filter bank coefficients
- Output layer: 14 units
 7 x- and y-coodinates
 - Hidden layer: 38 units
 - Pruning from 50 units



Features

- Acoustic feature
 - 20 mel-scale filterbank coefficients
 - 20 ms hamming window, 10ms shift
 - Normalization: 1/(4), 95% interval [0.0, 1.0]
- Articulatory feature
 - Lessening the effect of noise caused by measurement error in EMA machine
 - 10ms shift
 - Normalization: 1/(5), 95% interval [0.1, 0.9]
- Removing silence frames
- Data set
 - For training: 368 sentences
 - For validation: 46 sentences
 - For test: 46 sentences

Weight Optimization

• Error function

$$E = \sum_{N} \sum_{K} (y^{k}(\boldsymbol{x}_{n}; \boldsymbol{w}) - t_{n}^{k})^{2}$$

$$y^{k}(\boldsymbol{x}_{n}; \boldsymbol{w}^{*}) = \langle t_{n}^{k} | \boldsymbol{x} \rangle \qquad \boldsymbol{w}^{*} \text{ at the minimum of } E$$

• Gradient descent training

$$\boldsymbol{w}^{(i+1)} = \boldsymbol{w}^{(i)} + \Delta \boldsymbol{w}^{(i)}$$
$$\Delta \boldsymbol{w}^{(i)} = -\eta \frac{\partial}{\partial \boldsymbol{w}} E^{(i)}$$

- Scaled Conjugate Gradient (SCG)
 - Using not only first derivatives but also second derivatives

Experimental Evaluation

- Evaluation measures
 - Root mean square (RMS) error
 - Overall distance between two trajectories
 - Correlatin coefficient
 - Similarity of shape and synchrony of two trajectories
- Results
 - P. 7, Table 1
 - Average of RMS error: 1.62 mm
 - Estimated trajectories, p. 9, Figure 2

Shortcomings of MLP Mapping

- Discontinuity in estimated trajectories
 - Articulators move slowly and smoothly

Low-pass filtering ✓ Channel specific cutoff frequency

- Insufficient to model one-to-many mappings
 - Using context windows
 - Effective but insufficient

Some limitations of using the sum-of-squares error function

MDN: Mixture Density Network

- Output: conditional probability density function $p(t \mid x) = \sum_{M} \alpha_m(x) \phi_m(t \mid x)$
- Kernel: Gaussian function

$$\phi_{m}(t \mid \mathbf{x}) = \frac{1}{(2\pi)^{K/2}} \sigma_{m}^{K}(\mathbf{x}) \exp\left\{-\frac{1}{2} \sum_{K} \left(\frac{t^{k} - \mu_{m}^{k}(\mathbf{x})}{\sigma_{m}(\mathbf{x})}\right)^{2}\right\} p(t \mid \mathbf{x})$$

$$- \text{ Weight } \alpha_{m}(\mathbf{x}) = \frac{\exp(z_{m}^{(\alpha)})}{\sum_{j}^{M} \exp(z_{j}^{(\alpha)})} \qquad \alpha_{1} \quad \mu_{11} \quad \sigma_{1} \quad \alpha_{2} \quad \mu_{21} \quad \sigma_{2}$$

$$- \text{ Mean } \mu_{m}^{k}(\mathbf{x}) = z_{m}^{k(\mu)}$$

$$- \text{ Spherical covariance} \sigma_{m}(\mathbf{x}) = \exp(z_{m}^{(\sigma)})$$

Weight Optimization in MDN

• Error function

$$E = -\sum_{N} \ln \left\{ \sum_{M} \alpha_{m}(\boldsymbol{x}_{n}) \phi_{m}(\boldsymbol{t}_{n} \mid \boldsymbol{x}_{n}) \right\}$$

$$\frac{\partial E_{n}}{\partial z_{m}^{(\alpha)}} = \alpha_{m}(\boldsymbol{x}_{n}) - \pi_{m}(\boldsymbol{x}_{n}, \boldsymbol{t}_{n}) \qquad \pi_{m}(\boldsymbol{x}_{n}, \boldsymbol{t}_{n}) = \frac{\alpha_{m}(\boldsymbol{x}_{n}) \phi_{m}(\boldsymbol{t}_{n} \mid \boldsymbol{x}_{n})}{\sum_{j=1}^{M} \alpha_{j}(\boldsymbol{x}_{n}) \phi_{j}(\boldsymbol{t}_{n} \mid \boldsymbol{x}_{n})}$$

$$\frac{\partial E_{n}}{\partial z_{m}^{k(\mu)}} = \pi_{m}(\boldsymbol{x}_{n}, \boldsymbol{t}_{n}) \left\{ \frac{\mu_{m}^{k}(\boldsymbol{x}_{n}) - t_{n}^{k}}{\sigma_{m}^{2}(\boldsymbol{x}_{n})} \right\}$$

$$\frac{\partial E_{n}}{\partial z_{k}^{(\sigma)}} = -\pi_{m}(\boldsymbol{x}_{n}, \boldsymbol{t}_{n}) \sum_{K} \left\{ \left(\frac{t_{n}^{k} - \mu_{m}^{k}(\boldsymbol{x}_{n})}{\sigma_{m}(\boldsymbol{x}_{n})} \right)^{2} - 1 \right\}$$

K-means based initialization
 Unconditional density of the target data

Experimental Evaluation

- Results
 - Output probability, p. 14, Figure 4, 5
 - Low variance: accuracy is higher
 - High variance: accuracy is lower
 - Phonetic dependent variances, p. 16, Table 2.
 - Low variance of critical articulator
 - Tongue tip y [s, z,]
 - Upper lip x [m, w, b, p]
 - Exceptional example
 - Velum x [m, n,]
 - Using characteristics of variance

Comparing MDN with MLP

- MLP
 - Single Gaussian probability density function
 - Mean: varied according to input (output of MLP)
 - Variance: fixed (global variance in training data)
- MDN
 - Multiple Gaussian probability density function
 - Weight: varied according to input
 - Mean: varied according to input
 - Variance: varied according to input

Comparison with Mean Likelihood

- Results
 - P. 18, Table. 3
 - Y-coordinates is more improved except for velum
 - Y: 13.3%, X: 4.8%
- Comparing probability density functions
 - P. 19, Figure 6
 - Effectiveness of multi density for modelling one-tomany mappings

Conclusion

- Acoustic-to-articulatory mapping
 - Ill-posed problem
- Using MOCHA database
 - Speech waveform
 - EMA
- Mapping with MLP or MDN
 - MDN: more flexible and accurate model
 - Effective to one-to-many mapping
 - Variance varied according to input signal

Future Work

- Continuous trajectory
 - Kalman smoothing with variance

- Using articulatory information
 - Cost function in concatenative speech synthesis
 - Spectral estimation
 - Speech recognition

Proposed Algorithm

