Chapter O

Intr oductiont

Machine learning attemptsto tell how to automaticallyfind a good predictorbasedon pastexperiences.
Although you might argue that machinelearninghasbeenaroundaslong as statisticshas, it really only
becamea separatdopic in the 1990%. It draws its inspirationfrom a variety of academicdisciplines,
includingcomputersciencestatistics piology, andpsychology

In this classwe’re goingto look at someof the significantresultsfrom machindearning.Onegoalis to
learnsomeof thetechnique®f machindearning,but also,just assignificant,we aregoingto getaglimpse
of the researcHront andthe sort of approachesesearcherbave takentowardthis very netulousgoal of
automaticallyfinding predictors.

Researcheiisave approachethegeneragoalof machindearningfrom avarietyof approachesBefore
we delwe into detailsaboutthese,let’'s do a generalovervienv of machinelearningresearch. This also
constitutessomethingpf anoutline of this text: We’'ll spenda chapteton eachof the following topics.

0.1 Data mining

With the arrival of computingin all facetsof day-to-daybusinessthe amountof accessiblelatahasex-
ploded. Employerskeepinformationaboutemployeesbusinesse&eepinformationaboutcustomershos-
pitals keepinformation aboutpatients factoriesget informationaboutinstrumentperformancescientists
collectinformationaboutthe naturalworld — andit’ sall storedin computersreadyto accessn mass.

Datamining is graduallyproving itself as an importanttool for peoplewho wish to analyzeall this
datafor patterns. One of the mostfamousexamplesis from the late 1970s,when datamining proved
itself aspotentiallyimportantfor bothscientificandcommerciapurpose®n a particulartestapplicationof
diagnosinglisease soybearplants[MC80].

First the researcherfound an expert, who they interviewedfor alist of rulesabouthow to diagnose
diseasein a soybearplant. Thenthey collectedabout680 diseasedoybearplantsanddeterminedabout
35piecesnf dataon eachcase(suchasthe monththe plantwasfoundto have adiseasetheamountof recent
precipitation the size of the plant’s seedsthe conditionof its roots). They handedhe plantsto the expert
to diagnoseandthenthey performedsomedatamining techniquego look for rulespredictingthe disease
basednthecharacteristicthey measured.

Whatthey foundis thatthe rulesthe expert gave during the interview wereaccurateonly 70% of the
time, while the rulesdiscoveredthroughdatamining were accurate97.5%of the time. Moreover, after
revealingtheserulesto theexpert, the expertreportedlywasimpresseenougho adoptsomeof therulesin
placeof the onesgivenduringtheinterview!
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In thistext, we’'ll seeafew of the moreimportantmachinelearningtechniquesisedin datamining, as
well assurroundingssueghatapply regardlesof thelearningalgorithm. We’'ll emege from this familiar
with muchof the establishednachindearningresultsandpreparedo studylesspolishedresearch.

0.2 Neural networks

Cognitive scienceaimsto understandhow the humanbrainworks. Oneimportantpartof cognitive science
involves simulatingmodelsof the humanbrain on a computerto learn more aboutthe model and also
potentiallyto instill additionalintelligenceinto the computer

Thoughscientistsarefar from understandinghe brain,machindearninghasalreadyreapedhereward
of artificial neumal networks(ANNS). ANNSs are deployedin a variety of situations. One of the more
impressveis ALVINN, asystemthatusesanANN to steeracaron a highway[Pom93].ALVINN consists
of anarrayof camera®nthe car, whoseinputsarefed into asmallANN whoseoutputscontrolthesteering
wheel. The systemhasbeentestedgoingup to 70 milesperhourover 90 miles of apublic dividedhighway
(with othervehicleson theroad).

Herewe'll look briefly at humanneuronsand how artificial neuronsmodeltheir behaior. Thenwe’ll
seehow they might be networkedogethetto form anartificial neuralnetworkthatimproveswith training.

0.3 Reinforcementlearning

Throughthis point, we’'ll have workedexclusively with systemghat needimmediatefeedbackirom their
actionsin orderto learn. Thisis supervisedlearning, which thoughusefulis alimited goal.

Reinforcementlearning (sometimesalledunsupervisedlearning) refersto a brandof learningsit-
uation wherea machineshouldlearnto behae in situationswherefeedbackis not immediate. This is
especiallyapplicablein roboticssituationswhereyou might hopefor a robotto learnhow to accomplisha
certaintaskin the sameway adoglearnsatrick, without explicit programming.

Probablythe mostfamoussuccesstory from reinforcementearningis TD-Gammon,a programthat
learnsto play the gameof BackgammorTes93. TD-Gammonusesa neuralnetwork coupledwith re-
inforcementlearningtechniques.After playing againstitself for 1.5 million gamesthe programlearned
enoughto rankamongtheworld’'s bestbackgammoiplayers(includingbothhumansandcomputers).

Reinforcementearningis muchmorechallengingthansupervisedearning,andresearcherstill don't
have agoodgrasponit. We'll seeafew of the proposedechniquesthough,andhow they canbeappliedin
situationdike theonethatTD-Gammortackles.

0.4 Artificial life

Finally, artificial life seeksto emulateliving systemswith a computer Our study of artificial life will
concentrateon geneticalgorithms,where systemdoosely basedon evolution are simulatedto seewhat
might evolve. They hopeto evolve very simple behaior, like that of amoebasthus gaining a greater
understandingf how evolution worksandwhateffectsit has.

In asensetheevolutionaryprocesdearn— thoughusuallytheverbwe useis adapt If youunderstand-
ing learningasimproving performancdasedn pastexperiencetheword learn hasa similar denotatiorto
adapt evenif the connotatioris different.

Geneticalgorithmsappeato be a promisingtechniquefor learningfrom pastexperiencegven outside
simulationsof pseudo-biologial. We’'ll look at this techniqueandthenwe’ll look at its usein attempting
to evolve simplebehaiors.



Chapter 1

Data mining

Datais ahundantin today's society Every transactionevery accomplishmengetsstoredaway somevhere.
We getmuchmoredatathanwe couldeverhopeto analyzeby hand.A naturalhopeis to analyzethedataby
computer Data mining refersto the varioustasksof analyzingstoreddatafor patterns— seekingclusters,
trends predictorsandpatternsn a massof storeddata.

For example,mary grocerystoresnow have customercards,rewardingfrequentusersof the grocery
storewith discountson particularitems. The storesgivesthesecardsto encourageustomeroyalty and
to collectdata— for, with this cards,they cantrack a customebetweenvisits to the storeand potentially
minethe collecteddatato determinepatternsof custometbehaior. Thisis usefulfor determiningwhatto
promotethroughadwertisementshelfplacementpr discounts.

A large bankingcorporationmakesmary decisionsaboutwhetherto accepta loan applicationor not.
On handis a variety of informationaboutthe applicant— age,employmentistory, salary credit history
— andaboutthe loan application— amount,purpose interestrate. Additionally, the bankhasthe same
informationaboutthousand®f pastloans,plus whetherthe loan proved to be a goodinvestmentr not.
Fromthis, the bankwantsto know whetherit shouldmakethe loan. Datamining canpotentiallyimprove
theloanacceptanceatewithout sacrificingon thedefaultrate,profiting both the bankandits customers.

1.1 Predicting from examples

We'll emphasize particulartype of datamining calledpredicting from examples In this scenariothe
algorithmhasacces$o severaltraining examples representinghe pasthistory. Eachtrainingexampleis a
vectorof valuesfor the differentattrib utesmeasuredin our bankingapplication.eachexamplerepresents
a singleloan application representetly a vectorholdingthe customerage,customeisalary loanamount,
andothercharacteristicsf theloanapplication.Eachexamplehasalabel, whichin thebankingapplication
mightbearating of how well theloanturnedout.

The learningalgorithmseesall theselabeledexamples,andthenit shouldproducea hypothesis— a
new algorithmthat, given a new vectorasan input, producesa predictionof its label. (Thata learning
algorithmproducesanotheralgorithmmay strikeyou asodd. But, giventhe variety of typesof hypotheses
thatlearningalgorithmsproducethisis thebestwe cando formally.)

In Sectionl.1,we briefly lookedat somedataminingresultsfor soybeardiseasa@iagnosidy Michalski
andChilausk/ [MC80]. Figurel.lillustratesa selectionof the datathey used.(I’'ve takenjust seven of the
680plantsandjustfour of the 35 attributes.)Therearesix trainingexampleshere, eachwith four attributes
(plantgrowth, stemcondition,leaf-spothalo,andseedmold) andalabel(thedisease)We wouldfeedthose
into thelearningalgorithm,andit would producea hypothesighatlabelsary plantwith asupposedisease.
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plant stem haloon moldon

growth  condition leafspots seed disease
PlantA  normal abnormal no no frog eye leaf spot
PlantB abnormal abnormal no no herbicideinjury
PlantC  normal normal yes yes downy mildew
PlantD abnormal normal yes yes bacterialpustule
PlantE  normal normal yes no bacteriablight
PlantF  normal abnormal no no frog eye leaf spot
PlantQ  normal normal no yes 2?7

Figurel.1: A prediction-from-gamplegproblemof diagnosingsoybeardiseases.

sepal sepal petal petal

length width length width species
IisA 4.7 3.2 1.3 0.2  setosa
IisB 6.1 2.8 4.7 1.2 versicolor
IisC 5.6 3.0 4.1 1.3 versicolor
IisD 5.8 2.7 5.1 1.9  virginica
InsE 6.5 3.2 5.1 2.0 virginica
Iris Q 5.8 2.7 3.9 1.2 ?2?2?

Figurel.2: A prediction-from-gamplegproblemof Iris classification.

PlantQ, representing new plantwhosediseasave wantto diagnoseillustrateswhatwe might feedto the
hypothesigo arrive ata prediction.

In thesoybeartdata,eachof thefour attributeshasonly two possiblevalues(eithernormalandabnormal,
or yesandno); thefull datasethassomeattributeswith more possiblevalues(the monthfound could be
ary monthbetweenApril or October;the precipitationcould be belov normal,normal,or abose normal).
But eachattributehasjust a smallnumberof possiblevalues.Suchattributesarecalleddiscrete attrib utes

In somedomains attributesmay be numeric instead.A numericattribute hasseveralpossiblevalues,
in ameaningfullinear order Considerthe classicdatasetcreatedoy Fisher a statisticianworking in the
mid-19309Fis36]. Fishermeasuredhe sepalsandpetalsof 150differentirises,andlabeledthemwith the
specificspecie®f iris. For illustrationpurposeswe’ll justwork with thefive labeledexamplesof Figurel.2
andthesingleunlabeledexamplewhoseidentity we wantto predict.

Thesawo examplesof datasetscomefrom actualdatasets put they aresimplerthanwhatonenormally
encounterén practice.Normally, datahasmary moreattributesandseveraltimesthe numberof examples.
Moreover, somedatawill be missing,andattributesareusuallymixedin characte— someof themwill be
discretqlike aloanapplicantsstateof residencejvhile othersarenumeric(like theloanapplicantssalary).
But thesethingscomplicatethe basicideas,which is whatwe wantto look at here,sowe’ll keepwith the
idealizedexamples.

1.2 Techniques

We're goingto look at threeimportanttechniquedor datamining. The first two — linear regressionand
nearest-neighbaearch— arebestsuitedfor numericdata.Thelast,ID3, is aimedat discretedata.
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Figurel.3: Fitting aline to a setof data.

1.2.1 Linear regression

Linear regressionis one of the oldestforms of machinelearning. It is a long-establishedtatisticaltech-
niquethatinvolvessimply fitting a line to somedata.

Single-attribute examples The easiestasefor linear regressions whenthe exampleshave a singlenu-
mericattributeandanumericlabel;we’ll look atthis casefirst. Saywe have n exampleswheretheattribute
for eachexampleis calledz;, andthelabelfor eachis y;. We canervision eachexampleasbeinga pointin
2-dimensionakpacewith anz-coordinateof z; anda y-coordinateof y;. (SeeFigurel1.3(a).)
Linearregressionwould seektheline f(z) = ma + b (specifyingthe prediction f(z) for ary given
single-attriuteexample(z)) thatminimizesthesum-of-squaseserror for thetrainingexamples,

(SeeFigurel.3(b).) Thequantity|y; — f(z;)| is thedistancdrom thevaluepredictedoy thehypothesidine
to theactualvalue— the errorof the hypothesidor this trainingexample.Squaringhis valuegivesgreater
emphasigo largererrorsandsavesusdealingwith complicatedabsolutevaluesin the mathematics.

For example wemightwantto predictthe petalwidth of aniris givenits petallengthusingthedata
of Figure1.2. Here z, is 1.3 (the petallengthof Iris A) andy; is 0.2. Fromlris B, wegetz, = 4.7
andy, = 1.2. Wegetsimilar datafromlris C, Iris D, andIris E. Figure 1.3 graphsthe points.

With a little bit of calculus,it’s not too hardto computethe exact valuesof m andb that minimize
the sum-of-squaresrror. We'll skip the derivationandjust showv theresult. Let z bethe averagez value
((3>2; z;)/n) andy betheaveragey value((>_; y;)/n). Theoptimalchoicesfor m andb are

o (i Tiys) —nzy 7 ma
(X f) — na? '

For theirises, we computethat ) ; z; = 20.3 andhencez = 4.05, >, y; = 6.6 andhencey =

1.32, 3, @y = 31.12, 3,22 = 92.61. Knowingthesewe computemn to be (31.12 — 5 - 4.05 -

1.32)/(92.61 -5 - 4.052) = 4.39/10.5975 ~ 0.4142 andb tobe 1.32 — 0.4142 - 4.05 = —0.3577.

Soour hypothesiss that, if the petallengthis =, thenthe petalwidth will be

0.41422 — .3577 .

Onlris Q, with a petallengthof 3.9, this hypothesisvould predicta petalwidth of 1.26, nottoo far
fromtheactualvalueof 1.2. (Ontheotherhand,thehypothesisvouldpredicta negative petalwidth
for a veryshortpetal,which is clearly notappropriate)
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Multiple-attrib ute examples Wheneachpieceof trainingdatais a vectorof several attributes,the prob-
lem becomesamore complicated. What we're going to do is to expandthe single-attrilute example by
expandingthe dimensionsof the space. If eachexamplehasjust two attributes,we could view eachla-
beledexamplein three-dimensionaspace,with an z-coordinatecorrespondingo the first attribute, the
y-coordinatecorrespondingo the secondattribute,andthe z-coordinatecorrespondingo the label. We'd
look for aplanef(z, y) = mgz + m,y thatminimizesthe sum-of-squaresrror.

For agenerahumberof attributesd, we'll view eachlabeledexampleasapointin (d 4 1)-dimensional
spacewith a coordinatefor eachattribute, plus a coordinatefor the label. We'll look for a d-dimensional
hyperplanef(zq, z2,...,2zq4) = Zg-l:l m;x; thatminimizesthe sum-of-squaresrror.

This is slightly differentthanthe two-dimensionatasebecausehis f(z) is forcedto go throughthe
origin (0, 0, . .., 0). Forcingthis keepghe mathematicgrettier If we wantto beableto learnahyperplane
that doesnt necessarilygo throughthe origin, we can get aroundthis limitation by simply insertingan
additionalattributeto every vectorthatis alwaysl (sothatm;z; for thatcoordinatéds justthe constantn;).

For theiris examplewe'rein 6-dimensionaspace We'readdingtheextra always4 attribute,giving
usatotal of d = 5 attributesin ead example,andthenwe havethe label. Thelabel needgo be
numeric thoughtheiris examplelabelsarent. Whatwe’ll dois saythatthelabelis 1 if thespecies
is versicolorand 0 otherwise Thusif the predictedvalueis large (at least0.5), the hypothesiss
thattheiris is probablyversicolorandif the predictedvalueis small (lessthan0.5), the hypothesis
is that it is probablynot. Thuslris A is at the point (1,4.7,3.2,1.3,0.2,0). Iris B is at the point
(1,6.1,2.8,4.7,1.2,1).

We’'ll usethe notationz;; to referto the:th examples jth attribute valueandthe notationy; to referto
the:th exampleslabel. Thusour examplesareasfollows.

( Z11, <*12, 213, ---y, Tid, Y1 )
( 21, X22, 23, ...y, T2d, Y2 )
( Tnly; Tn2y, Tp3, -+ Tndy, Yn )

We wantto find asetof coeficientsm; sothatthefunction f(z) = s°4_, m,z; ascloselyapproximateshe
y; aspossible(still usingthe sum-of-squaresrror). To computethis f(z), it turnsoutthatwe needto solve

a setof equations.

(Cizazia)mi 4+ (O, znzi)me + + OCizinzid)ma = YTy
(> zigzin)m1 4+ (X, zipxiz) me + + O ziozig)mag = Y T2y
(O zigzin) mi + O, migziz) me + oo+ (O TidTid) Md = Y, Tidy

Herewe have d equationandd unknavns(namely m; throughm,). After we solve for them;, the best-fit
hyperplanas thefunction f(z) = >, m;z;. Givenanexample(zy, ..., z4) for which we wantto makea
prediction,we would predict f({z1, ..., z4)).

Soto computehebest-fithyperplandor our versicolorlabeling,we’ll haveto find our setof equa-
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tions. To dothat we needto computea lot of sumsHere wego.

Zi Ti1T41
Zi L1252
Zi L3143
Zi L1544
Ei Ti1T45
D Ty

Ei Ti2T42
Do Tigi3
Zi Ti2T44
D i Tiais
D i Ty

Ei T;3%43
Zi L3544
Ei Z;3%45
D i T3y

Zi Ti4T44
Ei Li4T45
> TiaYi

D TisTis
> TisYi

> Tiels

124124124124+ 17
47+4+1-614+1-56+1-5.8+1-
3241-2841-3.04+1-2.7+1-
13+4+1-474+1-414+1-51+1-
024+1-1241-134+1-1.9+1-
1-0+1-14+1-141-04+1-0

4.7 +6.12 + 5.6% + 5.82 4+ 6.5?

1
1
1
1

6.5
3.2
5.1
2.0

47-32461-2845.6-3.0458-2.74+6.5-3.2
47-13461-474+56-414+58-514+6.5-5.1
47-02461-1.2456-1.34+58-1.946.5-2.0
47-046.1-1456-14+58-0+6.5-0

3.22 42824 3.0242.72 4+ 3.22

3.2-1.3428-4743.0-41427-5143.2-5.1
3.2-02428-1.243.0-1.342.7-1.943.2-2.0
32:-0428-143.0-14+27-0+3.2-0

1.32 4+4.72 4+ 412+ 5.1%2 + 5.12

1.3-024+4.7-124+41-13+5.1-1.9+5.1-2.0
13-0+4.7-14+41-14+5.1-045.1-0

0.22 +1.22 +1.32 4+ 1.9%2 + 2.0?

02-0412-1413-1419-04+2.0-0

02_|_12_|_12+02_|_02

Fromthesewederivea setof five equationswith five unknowns.

5.077"&1
28.7my
14.9m,
20.3m,

5.5'm1

_|_
_I_
_I_
_I_
_I_

28.70my + 14.90m3 +  20.30my4
166.55my + 85.38m3 + 120.47my
85.38my + 44.61lmsz +  59.71my
120.47my + 59.71msz +  92.61my
39.56my + 19.43msz 4+ 31.12my4

_|_
_|_
_I_
_I_

_I_

5.50ms5
39.56ms5
19.43ms
31.12ms

5.0
28.7
14.9
20.3

6.6

2.0

166.55
85.38

120.47
39.56
11.7
44.61
59.71
19.43

5.8
92.61
31.12

8.8
10.78

2.5

2.0

2.0
11.7
5.8
8.8
2.5

Nowwe solvethis to getthe hyperplaneénypothesis(You cantry to doit by hand,but at this point |
brokedownandwentto a computel) Theanswerturnsoutto bethefollowing.

f(l‘h T2,T3,y T4, .’E5) = 0308$1 + 0736$2 — 100.’E3 — 0278.’E4 — OOQO.’EE,

For Iris Q, the predictedansweris

0.308-1+0.736-5.8 -1.00-2.7-0.278-3.9-0.020-1.2 = 0.767 .

Thuslinear regressionindicatesthatweare fairly confidenthatlris Q is versicolor(asindeedit is).

Analysis Linearregressions really bestsuitedfor problemswvheretheattributesandlabelsareall numeric
andthereis reasorto expectthatalinearfunctionwill approximatehe problem.Thisis rarelyareasonable

expectation— linearfunctionsarejusttoo restrictedto represena wide variety of hypotheses.

Advantages:

e Hasrealmathematicatigor.



8 Datamining

e Handlesirrelevant attributessomeavhat well. (Irrelevant attributestendto get a coeficient closeto
zeroin thehyperplanes equation.)

e Hypothesidunctionis easyto understand.
Disadvantages:

e Oversimplifiesthe classificatiorrule. (Why shouldwe expecta hyperplando be agoodapproxima-
tion?)

e Difficult to compute.
e Limited to numericattributes.

e Doesnt atall represenhow humandearn.

1.2.2 Nearestneighbor

Our secondapproactoriginatesin the ideathat givena query the training examplethatis mostsimilar to

it probablyhasthe samelabel. To determinewhat we meanby most“similar”, we have to designsome
sortof distancefunction. In mary casesthe bestchoicewould be the Euclidean distancefunction, the

straight-linedistancebetweerthe two points (z;1, z;2, . . ., z;4) and(z;y, z;2, ..., z;4) in d-dimensional
space Theformulafor this would be

\/(962'1 — 1) (T2 — i)+ (T — T50)?
Anothercommonpossibility is to usethe Manhattan distancefunction,
|z — 21|+ |22 — zje| + - -+ |2id — zj4] -

In practice peoplegenerallygo for the Euclideandistancefunction. They don't really have muchmathe-
maticalreasoningo backthis up; it just seemgo work well in general.

In thelris example we’ll computehe Euclideandistancefromead of the vectorsfor the training
examplego thequeryvectorrepresentingris Q.
example distance label

IisA /(47 -5.8)2+ (32— 72+ (13-392+(02-1.2)2 =3.04 setosa
Iris B V(6.1 -5.8)2+ (2.8 —-2.7)2+ (4.7-3.9)2+ (1.2-1.2)2 =0.86 versicolor
IisC /(5.6 — 5.8)2+ (30—27)2+(4 1-39)2+ (1.3-1.2)2 =0.42 versicolor
IisD /(5.8 —5.8)24+ (2.7-2.7)2+ (5.1 —-3.9)24+ (1.9- 1.2)2 =1.39 virginica

Iris E V(6.5-5.8)2+ (32-27)24+ (5.1-3.9)2+(2.0-1.2)2 =1.68 virginica
Sincelris C is the closestthe nealest-neighbomlgorithm would predictthat Iris Q hasthe same
labelaslris C: versicolor

Therearetwo commonrefinementgo the nearest-neighbaalgorithmto addressommonissueswith
thedata.Thefirstis thatthetheraw Euclideandistanceoveremphasizeattributesthathave broadetrranges.
In thelris example the petallengthis givenmoreemphasishanthe petalwidth (sincethe lengthvariesup
to four centimeterswhile the width only variesup to two centimeters) Thisis easyto fix by scalingeach
attributeby themaximumdifferencen theattributevaluesto ensureghatthe distancebetweertwo attribute
valuesin the sameattribute never exceedsl.

v = :
77 maxy Tg; — Ming Tk;
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By applyingthedistancefunctionto thev;; insteadof the z;;, this artificial overemphasislisappears.

The secondcommonrefinementis to addresghe issueof noise— typically, a small but unknovn
fraction of the datamight be mislabeledor unrepresentate. In theiris example,lris C may not really be
versicolor. Or perhapdris C’s dimensionsareuncharacteristiof versicolorspecimensWe cangetaround
this usingthelaw of largenumbers:Selectsomenumberk andusethe k£ nearesheighborsThe prediction
canbethe averageof thesek nearesheighborsf thelabel valuesarenumeric,or the plurality if the label
valuesarediscrete(breakingtiesby choosinghe closest).

If wechoosek to be 3, wefind thatthethreeclosestrisesto Iris Q are IrisesB, C, and D, of which
two are versicolorand oneis virginica Theeforewestill predictthatlris Q is versicolot

Analysis Thenearest-neighbalgorithmandits variantsareparticularlywell-suitedto collaborative fil-
tering, wherea systemis to predicta given persons preferencébasedon otherpeoples preferencesFor
example,amovie Web site might askyou to ratesomemoviesandthentry to find moviesyou'd like to see.
Here,eachattribute is a singlemovie thatyou have seenandthe Web site looks for peoplewhosemovie
preferencearecloseto yoursandthenpredictsmoviesthattheseneighbordiked but thatyou have notseen.
Or you might seethis on book-shoppingites,wherethe site makeshook recommendationlsasedon your
pastorderhistory.

Collaboratve filtering fits into the nearest-neighbaearchwell becausattributestendto be numeric
andsimilarin nature soit makessenseo give themequalweightin the distancecomputation.
Advantages:

e Representsomple spacewverywell.

e Easyto compute.
Disadvantages:

e Doesnot handlemary irrelevantattributeswell. If we have lots of irrelevantattributes,the distance
betweerexampleds dominatedy thedifferencesn theserrelevantattributesandsobecomesnean-
ingless.

e Still doesnt look muchlike how humandearn.

e Hypothesidunctionis too complex to describesasily

1.2.3 1D3

Linear regressionand nearest-neighbaosearchdon’t work very well whenthe datais discrete— they're
really designedor numericdata.lD3 is designedvith discretedatain mind.

ID3's goal is to generatea decisiontree that seemsto describethe data. Figure 1.4 illustratesone
decisiontree. Givenavector the decisiontreepredictsa label. To getits prediction,we startat thetop and
work downward. Saywe takePlantQ. We startat the top node. SincePlantQ’s stemis normal,we go to
theright. Now we look for mold on PlantQ’s seedsandwe find thatit hassome sowe go to theleft from
there. Finally we examinethe spotson PlantQ’s leaves; sincethey don't have yellow halos,we go to the
right andconcludethatPlantQ musthave downy mildew.

Decisiontreesarewell-suitedfor discretedata. They represent goodcompromisebetweersimplicity
andcompl«ity. Recallthatoneof our primary complaintsaboutlinear regressionwasthatits hypothesis
wastoo constrictedo representery mary typesof data,while oneof our primarycomplaintsaboutnearest-
neighborsearchwasthatits hypothesisvastoo comple to be understandableDecisiontreesareeasyto
interpretbut canrepresena wide varietyof functions.
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stem
condition

abnormal norma

mold
on seed

abnorma

herbicide frog eye plant bacterial
injury leaf spot growth blight
abnorrn?l/ \frmal
bacterial downy
pustule mildew

Figurel.4: A decisiontreeexample

Givena setof data,the goal of ID3 is to find a “good” decisiontreethatrepresents. By good the
generapoalis to find a smalldecisiontreethatapproximateshetruelabel prettywell.

Constructing the tree automatically D3 follows a simple techniquefor constructingsucha decision
tree.We bagin with a singlenodecontainingall thetrainingdata. Thenwe continuethe following process:
We find somenodecontainingdatawith differentlabels,andwe split it basedon someattribute we select.
By split, | meanthatwe takethe nodeandreplaceit with new nodesfor eachpossiblevalueof the chosen
attribute. For example,with the soybeardata,if we hase a nodecontainingall the examplesandchooseo
split on plantgrowth, the effect would be asfollows.

AB,C,D,EF B,D ACEF
beforethe split afterthesplit

We stopsplitting nodesvhenevery nodeof thetreeis eitherlabeledunanimouslyor containdgndistinguish-
ablevectors.

How doesID3 decideon which attributeto split a node?Beforewe answetthis, we needto definethe
entropyof a setof examples.Theentropy of asetS is definedby thefollowing equation.

Entropy(S) = Y —pilnp
labelst
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Herep;, is thefractionof pointsin the setwith thelabel’.

In thetraining dataof Figure 1.1, there are five labels: 2 /6 of the exampleshavefrog eyeleaf spot,
and1/6 of theexampleshaveead of thefour otherdiseasesSothe entropyis

202 11 L L
66" 66" 66" 66" 6 g U

Thisentropyis ratherlarge,quantifyingthe factthat the setisn't labeledconsistentlyat all.

Theentropyis aweird quantitythat peopleusemoreor lessjustbecausét works. Whenthe entropyis
small,thisindicateghatthingsarelabeledpretty consistently As anextremeexample,if everythinghasthe
samelabel?, thensincep, = 1 theentropywould bejust —p, In p, = 0. We're aimingfor a smalldecision
treewherethetotal entropyof all theleavesis assmallaspossible.

Now let’s look at whathappenavhenwe split a node. This splitsthe setof examplesit representinto
pieceshasedn thevaluesof theattribute. To quantifyhow goodthe split is, we definethe gain of splitting
anodeona particularattribute: It is the entropyof the old setit representedninustheweightedsumof the
entropiesof thenew sets.Say S representsheold set,and.S, representshe examplesof S with thevalue
v for theattributeunderconsiderationThe gainwould be

Entropy(S) — > |[S;||
valuesv
At the bgginning of the algorithm, all the examplesare in a singlenode Let's considersplitting on
the plant growth. We just computedhe entropy of all six training exampleso be 1.5607. After we
split on plant growth, we gettwo setsof plants: B and D haveabnormalplant growth (this sethas
entropy—(1/2)In(1/2)+—(1/2)In(1/2) = 0.6931); andA, C, E, andF havenormalplantgrowth
(thissethasentropy1.0397). Sothe gain of splitting on plantgrowthis

Entropy(S,) .

2 4
1.5607 — <60'6931 + 61'0397) = 0.6365.

We cando similar calculationsto computehe gain for stemconditioninstead.Thisdividesthe
plantsinto a setof A, B, andF (entropy0.6365) anda setof C, D, andE (entropy 1.0986). Thegain
of splitting on stemconditionis

3 3
1.5607 — (60.6365 + 61.0986) = 0.6931

Thisis largerthanthegainfor plant growth,sosplitting on stemconditionis preferable

After computingthe gainsof splitting for eachof the attributes,we choosethe attribute that givesthe
largestgainandthensplit onit, giving usanew tree.We continuesplittingnodeauntil the examplesn every
nodeeitherhave identicallabelsor indistinguishabk attributes.

Wewouldalsoconsidersplitting on leaf-spothalos(gain of 0.6931)andsplitting on seedmold(gain
of 0.6367).0f thesewe could go with eitherstemconditionor leaf-spothalos: They bothhavethe
samegain, 0.6931.We'll choosestemcondition,givingusa new tree

stem
condition

abnormal norma

A B F C,D,E
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We repeatthe procesdor ead of theremainingsets.We first considerPlantsA, B, andF. They
don't havethe samediseasesowe’ll look for an attribute on which to split them. Thatturnsout to
be easy asthey disagreeonly on the plant-growth attribute (noneof themhaveleaf-spothalosor
seedmold),sowe’ll splitthatnodebasedon plantgrowth. (Thegain of thiswouldbe0.6365 while
splitting on leaf-spothalosor seedmoldgivesa gain of 0.) Nowwe havethefollowing tree

stem
condition

abnormal norma

C,D, B

abnorma

B A F

Thesetof A and F isn’t a problem,as they both havethe samedisease Sothe next setwe’ll
considerfor splittingis C, D, andE. Thewe, thegain for splitting basedon plantgrowthis 1.0986 —
((2/3)0.6931+ (1/3)0) = 0.6365. Thegainfor splitting on leaf-spothalosis 0, sincethey all have
leaf-spothalos. Thegain for splitting on seedmoldis 1.0986 — ((2/3)0.6931+ (1/3)0) = 0.6365.
We couldgofor eitherplant growthor seedmold; saywe chooseseedmold.

stem
condition

abnormal norma
mold
on seed

B A F C,D E

Finally, we considerhow to split Plants C and D. Splitting on plant growth givesa gain of
0.6931 while splitting on leaf-spothalosgivesa gain of 0. We mustsplit on plant growth,givingus
thetreeof Figure 1.4.

abnorma normal

Analysis Advantages:
e Representsomple spacesvell.
e Generateasimple,meaningfulhypothesis.
e Filtersoutirrelevantdata.

Disadvantages:
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Figurel.5: Overfitting somedata.

e Doesnt handlenumericattributeswell.

e Still doesnt look muchlike how humandearn.

1.3 Generalissues

Thereareanumberof overarchingdataminingissueghatapplyregardlesof thetechnique Theimportance
of theseissueanakeshemworth studyingseparatelyWe’ll look atjusta few.

Data selection Choosingthedatais animportantelemenif applyingdatamining techniquesOf course
we wantthe datato have integrity — thoughtheres a naturaltradeof betweenintegrity andquantitythat
we have to balance We certainlyneeda goodsampleof data,or elsethelearnechypothesisvon’t beworth
much.But we alsoneedalarge sampleto work from.

Lessolviousis theimportanceof a selectinggoodattributes. Sometimeave needto do someprepro-
cessingo getgooddata.For example,with loanapplicationsthe applicants dateof birth is probablywhat
is really storedon the computer but really this isn’t significantto the application(neglectingastrological
effects)— what’s importantis the applicants age. So, thoughthe databaserobablyholdsthe birthday
we shouldcomputethe ageto give to the learningalgorithm. We canseea similar thing happeningn the
soybeardata(Figure1.1): Insteadof giving the plantheight(which afterall, coupledwith the monththe
plantwasfoundimplieswhethergrowth is stunted) thedatasetjust includesa featuresayingwhetherplant
growth is normalor abnormal. The researcherberedid somepreprocessingo simplify the taskfor the
learner

Overfitting  In applyinga machinelearningtechniquewe needto be carefulto avoid overfitting. This
occurswhenthe algorithm adaptsvery carefully to the specifictraining datawithout improving general
performance For example,considerthe two graphsin Figurel.5. Althoughthe graphat the right fits the
dataperfectly it’ slikely thatthe graphatleft is a betterhypothesis.

Overfitting appliesto just aboutary learningalgorithm. ID3 is particularly proneto overfitting, as
it continuesgrowing the tree until it fits the dataperfectly Machinelearningresearcherbave ways of
workingaroundthis, but they getrathercomplicatedandsowe’re choosingto skip theirapproaches.

Theresatradeof: Do we go for the perfectfit (which maybe anoverfit), or do we settlefor a simpler
hypothesighat seemdo be pretty close? The answeris that this is part of the art of applyingmachine
learningtechniqueso datamining. But anaidto thisis to beableto evaluatetheerrorof agivenhypothesis.

Evaluating hypotheses Oncewe geta hypothesidrom alearningalgorithm,we often needto getsome
sortof estimateof how goodit is. Themosttypical measuras theerror: the probabilitythatthe hypothesis
predictsthewronglabelfor arandomlychosemew example.
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It' s very temptingto feedall the datawe have into the learningalgorithm,but if we needto reportthe
hypothesigrror, this is a mistake.We alsoneedto usesomedatato computethe error, andwe cant reuse
thetraining datafor this computation (This would be analogoudo giving studentsall theanswerdo atest
thedaybefore:Of coursethey’ll dowell onthetest,but whathave they learned?)

Soin situationswherewe needto computethe error, we separateéhe datainto two sets— thetraining
set which holdsthe exampleswe give to the learningalgorithm— and the test set which we usefor
computingthe error. The error we reportwould be the fraction of the examplesin the testseton which
the learningalgorithm’s hypothesigpredictswrongly. Typically two-thirds of the datamight go into the
training setanda third into the testset,to give areasonabléradeof onthe accurag of the hypothesisand
theaccuray of thereportederror.

In mary situationsthe datajustisn’t plentiful enoughto allow this. U S Presidentiaklectionswould
beagoodexample:It’s notasif we cango outandgeneratenew electionssowe’re stuckwith the handful
we have. If we wantto applyalearningalgorithmto pastpolling dataandtheir effect on thefinal result,we
wantto useall thedatawe canfind. Machinelearninghasproposedeveraltechniquegor bothusingall the
dataandgettinga closeestimateof the error, but they’re beyondthe scopeof this surey.

Ethics Obviously ary time you dealwith personainformation, ethicalconsiderationsirise. Databases
often include sensitie information that shouldnt be released. Social Securitynumbersare just one of
several piecesof datathat one canuseto gain accesdo a persons identity, which you don't wantto get
aroundtoo much.

Lessolviously, dataminersalsoneedto be carefulto avoid discrimination. For example,a bankthat
intendsto usedatamining to determinewvhetherto approve loansshouldthink twice beforeincludingrace
or genderasone of the attributesgivento the learningalgorithm. Even zip codesshouldprobablynot go
into thelearningalgorithm,asimplicit discriminationcanarisedueto communitieswith a particularlyhigh
densityof onerace.

For theseapplicationsthe datamining practitionershouldreview the generatedhypothesido look for
unethicalor illegal discrimination. Algorithms that generataneaningfulhypothesiglike linearregression
or ID3, but notnearest-neighb@earchpreparticularlyusefulfor suchapplicationghatneedhumanreview
attheend.

1.4 Conclusion

We have seena sampleof datamining techniques— linear regressionnearest-neighbasearchandID3
— andotherissueghatdatamining practitioneramustheed.Thetopic of datamining s rich andjust now
becomingawidely appliedfield. We couldeasilyspenda completesemestestudyingit — it involvesmary
interestingapplicationsof mathematicso this goalof dataanalysis.I’d personallylove to spendmoretime
onit — but I alsoknow what'sto come,andit’ s every bit asintriguing!



