
CDM Homework Examples

0.1. Magic Words (XX)

Background The great magician Chidur poses the following problem to his apprentice. Being
exceedingly powerful, Chidur can associate words with special properties. In this case, he has chosen
to associate one of three properties with each word: healing, neutral or deadly. The apprentice is
fairly new, so Chidur only uses words over the uppercase Latin alphabet {A,B, . . . , Z}, words like
“ABRACADABRA”. Chidur abhors the empty word. The notation xop stands for the word x written
backwards.
Alas, Chidur refuses to explain directly how he has distributed the properties. All he will tell the
hapless apprentice is this:

• Every word has exactly one property.

• Some pairs of words are exalted. In particular:

– All pairs (XwX,w) are exalted where w is any word.
– If (u, v) is exalted then (Y u,Xv) is also exalted.
– If (u, v) is exalted then (Zu, vop) is also exalted.
– If (u, v) is exalted then (Wu, vv) is also exalted.

• If (u, v) is exalted and u is neutral then v is deadly.

• If (u, v) is exalted and u is deadly then v is neutral.

Task

A. Describe a formal model for this problem and explain how your model correctly represents
healing words.

B. Find all shortest healing words.

0.2. Dual Formulae (XX)

Background
For this problem let us only consider Boolean connectives ¬, ∨ and ∧ (no implication, xor etc.) For
any propositional formula φ dual φop to be obtained from φ by interchanging ∧ and ∨, as well as ⊥
and ⊤. For example, (p ∨ ¬q)op = p ∧ ¬q.
Similarly, for a truth assignment σ, define [[p]]σop = [[¬p]]σ (i.e., flip the truth values for all propositional
variables), and then generalize inductively to all formulae.
A formula φ is self-dual if φ and φop are equivalent. For example, p and ¬p are both self-dual but
p ∧ q is not.

Task

A. What would the dual of a biconditional φ ⇔ ψ be?

B. Show that the dual is an involution: (φop)op = φ.

C. Show that [[φop]]σ = [[¬φ]]σop .

D. Show that φ is a tautology if, and only if, φop is a contradiction.

E. Show that two formulae are equivalent, if, and only if, their duals are equivalent.

F. Find a non-trivial example of a self-dual formula in three variables. Generalize to any odd
number of variables.

Comment The first few properties are more or less obvious, but try to come up with clear, elegant
proofs. For the last part think about counting. It may help to think about Boolean functions rather
than formulae: f is self-dual iff f(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).

0.3. Presburger and Skolem Arithmetic (XX)

Background
Presburger arithmetic is the fragment of arithmetic that has addition but no multiplication; Skolem
arithmetic is the fragment that has multiplication but no addition. Both turn out to have decidable
first-order theory (in stark contrast to general arithmetic).
It is a folklore result that addition is rational and even synchronous. More precisely, there is a
synchronous relation α(x, y, z) that expresses x + y = z where the numbers are given in reverse

2

binary. There is no corresponding synchronous (or even rational) relation µ(x, y, z) for multiplication.
However, we can choose a different encoding from N+ to 2⋆ that makes multiplication rational. Alas,
this encoding is slightly strange and mangles addition badly.

Task

A. Show that the addition predicate α is rational for numbers in reverse binary.

B. Argue that α is actually synchronous.

C. Show that multiplication is not rational for numbers in reverse binary.

D. Concoct an encoding of the positive natural numbers that makes multiplication rational. Hint:
think about primes.

E. Exlain why your encoding does not work for addition.

Comment For part (A) you can either write a rational expression or draw a diagram. This is a
bit of a pain; whatever you do, try to make it look nice.
For part (C) you may freely use pumping lemmings and the like.
For part (E) no formal proof is necessary, just a reasonable explanation.

0.4. A Recursion (XX)

Background
Consider the following function f , presumably defined on the positive integers.

f(1) = 1
f(3) = 3
f(2n) = f(n)

f(4n+ 1) = 2f(2n+ 1) − f(n)
f(4n+ 3) = 3f(2n+ 1) − 2f(n)

For what it’s worth, here is a plot of the first few values.

3

20 40 60 80 100

20

40

60

80

100

120

Task

A. Consider small values of f and conjecture an explicit, non-recursive definition of f .

B. Prove that your definition is correct and conclude that f is indeed a function from N+ to N+.

C. Is f primitive recursive?

Comment
Implement f and experiment.

0.5. The Busy Beaver Function (RM) (XX)

Background
The Busy Beaver function β is a famous example of a function that is just barely non-computable.
For our purposes, let’s define β(n) as follows. Consider all register machines P with n instructions
and no input (so all registers are initially 0). Executing such a machine will either produce a diverging
computation or some output xP in register R0. Define β(n) to be the maximum of all xP as P ranges
over n-instruction programs that converge.
It is intuitively clear that β is not computable: we have no way of eliminating the non-halting
programs from the competition. Alas, it’s not so easy to come up with a clean proof. One line
of reasoning is somewhat similar to the argument that shows that the Ackermann function is not
primitive recursive: one shows that β grows faster than any computable function.

4

Task

A. Show that, for any natural number m, there is a register machine without input that outputs
m and uses only O(logm) instructions.

B. Assume f : N → N is a strictly increasing computable function. Show that for some sufficiently
large x we must have f(x) < β(x).

C. Conclude that β is not computable.

D. Prof. Dr. Blasius Wurzelbrunft sells a device called HaltingBlackBoxTM that allegedly solves
the Halting Problem for register machines. Explain how Wurzelbrunft’s gizmo could be used
to compute β.

Comment
The bound in part (A) is far from tight in special cases: some numbersm have much shorter programs:
think about 22k . But, in general logm is impossible to beat (Kolmogorov-Chaitin program-size
complexity). Part (D) says that β is K-computable.

0.6. Placing Problems in the AH (XX)

Background
Let e be an index for a partial computable function N ↛ N. We write We for the support of ⟨e⟩, the
set {x | ⟨e⟩(x) ↓ }. So (We)e is a listing of all semidecidable sets. By cutting off the computation at
σ steps we get a finite approximation We,σ ⊆ We. In fact, x ∈ We,σ is primitive recursive. On the
other hand, x ∈ We is Σ1 in the AH, and x /∈ We is Π1. Note that

x ∈ We ⇔ ∃σ (x ∈ We,σ) and x /∈ We ⇔ ∀σ (x /∈ We,σ)

so quantifiers are useful to describe levels in the AH: ∃ corresponds to unbounded search, and ∀ to
the negation thereof.
Define

FIN = { e | We finite }
ALL = { e | We = N }

Task

A. Show that every finite set F ⊆ N is of the form We for some e.

B. Find the level of FIN in the arithmetical hierarchy.

C. Find the level of ALL in the arithmetical hierarchy.

D. Show that both sets are undecidable.

5

Comment
Start with a high-level description, and then rephrase things so that, in the end, there is a string
of quantifiers before a primitive recursive condition. The quantifiers tell you where in the AH the
problem lies.
No tight lower bounds are needed, but try to find the lowest possible level. For example, claiming
that both problems are Σ42 is quite useless. The problems actually are complete at their respective
levels.

0.7. Semilinear Counting (XX)

Background
It is often stated that “finite state machines cannot count.” To a point, this is correct, but there
are special cases when a finite state machine is perfectly capable of counting. Here are some fairly
involved examples of counting in zero space.

Recall that a set C ⊆ N is semilinear if it is a finite union of sets of the form r+mN, where r,m ∈ N
(for m = 0 this is just {r}). Let U, V ⊆ Σ⋆ be regular languages, s ∈ Σ and C ⊆ N a semilinear set.
Define new languages

L(U,C) = {x | x = u1u2 . . . uℓ, ui ∈ U, ℓ ∈ C }
K(U, s, V, C) = {x | #(x = usv, u ∈ U, v ∈ V) ∈ C }

Thus, in L(U,C) we collect all words that can be factored into some number ℓ ∈ C terms, each
term belonging to U . For K(U, s, V, C), we select words that have some number ℓ ∈ C of (U, s, V)
factorizations. For parts (C) and (D) below, let Σ = {a, b}, U the language of all words containing
an even number of as, and V the language of all words containing 1 modulo 3 as.

Task

A. Construct the minimal automaton for LC = { 0ℓ | ℓ ∈ C }.

B. Show that L(U,C) is regular by constructing a machine.

C. Show that K(U, s, V, C) is regular using closure properties.

D. Describe the minimal DFA for K(U, a, V, {3}) in detail.

E. Draw a picture of the natural NFA for K = K(U, b, V, {3}).

F. Using a pebbling argument on the last NFA, describe a DFA for K.

G. Argue that your DFA for K is already minimal.

6

Comment For (A) and (B), make sure to take a close look at all the closure properties we talked
about; if you pick the right ones, the argument is very short. For part (C), first figure out which
words of the form aℓ can be factored as required. Needless to say, the last part won’t work unless
you have built the “canonical” DFA in part (E). For what it’s worth, here is a picture of the machine
(it has 250 states).

0.8. Palindromes (XX)

Background
A palindrome is a word that reads the same left-to-right and right-to-left. Thus abba is a palindrome,
but abab is not.
Suppose we have a word w over some alphabet Σ. Since single letters are palindromes, we can always
find a decomposition

w = u1u2 . . . uk

where all the ui are palindromes. However, it’s not so clear how one can minimize the number k of
palindromes. This is the palindrome decomposition problem.
Slightly more challenging is the following type of decomposition based on erasing palindromes. Sup-
pose w = xuy where u is a palindrome. Then in one step we can rewrite w to xy. Clearly, after
at most |w| steps, we can rewrite w to ε, the empty word. Again, the challenge is to minimize the
number of steps. This is the palindrome erasure problem.

Task

A. Find a cubic time algorithm to solve the palindrome decomposition problem. Your algorithm
should return a list of the corresponding palindromes.

7

B. Find a cubic time algorithm to solve the palindrome erasure problem. Your algorithm should
return a list of the corresponding erasures.

Comment You might find dynamic programming helpful.

For part (B), return a list of pairs (i, j) where 1 ≤ i ≤ j ≤ |w| that indicate that one is supposed
to remove the palindrome from wi to wj. Note that there may be gaps from previous erasures, but
keep the original indexing.

Here are pictures for the sorts of tables the come up in the dynamic programming solution.

0.9. MSO and Regular Languages (XX)

Background
According to Büchi’s theorem, monadic second-order logic defines exactly the regular languages.
However, we gave no proof for the direction “MSO implies regular.” Here goes. We are trying to
show that for every sentence φ in MSO[<] the associated language

L(φ) = {w ∈ Σ⋆ | w |= φ }

is in fact regular. The proof uses induction on the buildup of φ. Alas, there is the usual problem
with semantics: the components of a sentence typically contain free variables, they are not sentences
themselves. To deal with free variables it is best to consider augmented words over the alphabet

Γ = Σ × (2)k

where k is the number of variables, both first-order and second-order. In other words, we add an
appropriate number of binary tracks to the original word that can be used to interpret the free

8

variables in the quantifier-free part. There is no need for padding, the additional tracks have the
same length as w. This is essentially the same machinery as for monadic second-order logic on infinite
words discussed in class.
Also recall our formula even(X) for “X has even cardinality” from class.

Task

A. Prove by induction on the buildup of φ that L(φ) is regular. You may safely assume that the
formula is in prenex normal form.

B. What can you say about the state-complexity of L(φ)? Specifically, how large is the machine
for the quantifier-free part and what happens when you deal with the quantifiers?

C. Translating even(X) into a FSM following your inductive definition and the formula from class
would produce a large and ugly machine. Construct a small machine directly for this formula.

Comment
For part (B) don’t try to get precise results, just a rough estimate of a how large these machines
could be compared to the size of the formula. Part (C) is important: sometimes one can streamline
machines quite a bit compared to the cookie-cutter result from the algorithm. In particular it may
be helpful to enlarge the language by certain predicates with pre-defined machines.

0.10. Tilings (XX)

Background
Informally, a Tiling Problem consists of a collection of square tiles with colored edges. We want
to know whether it is possible to place the tiles on an infinite chess board in a way that the colors
of adjacent edges match, filling up the whole board in the process. The tiles cannot be rotated or
reflected, only translated; we assume an unlimited supply of tiles of each type. This infinite version
of the problem is undecidable; the proof rests on encodings of a computation of a Turing machine
and is quite messy (the original proof used a tile set of cardinality 20,426).

To push things down to NP, we restrict our tilings to a board of size n × n. Technically, we have a
finite set C of colors and a tile set T ⊆ C4. A tiling is now a placement of n2 tiles so that adjacent
tiles share the same color. In the anchored square tiling problem (ASTP) we are given an instance
⟨C, T, 0n, t1, t2⟩: the colors, the tiles, the grid size n (coded in unary as 0n) and two anchor tiles. Tile
t1 must be placed in the North-West corner of the grid, and t2 in the South-West corner.

Task

A. Show that ASTP is in NP.

B. Show that ASTP is NP-hard by a direct simulation of polynomial time Turing machines.

9

C. Explain how to get rid of the South-West anchor tile, without affecting hardness.

Comment Here is an example of a 12 × 12 tiling using 16 tiles with colors red, green, blue and
yellow.

Comment For the simulation in part (B), think of row k in the tiling as corresponding to the
configuration of the machine at time k. This won’t quite work out, you will need several rows to
simulate a single step of the Turing machine. Also, you may want to make some harmless assumptions
about the machine to simplify the construction.

0.11. Son of Collatz (XX)

Background
A function defined by an apparently simple arithmetic operation can behave in a rather unpredictable
way under iteration, the Collatz function being a prime example. Here is an example that looks
somewhat similar to the Collatz function, but this one is based on recursion. Define a function F on
the positive integers by

F (x) =
x/2 if x is even,
F (F (3x+ 1)) otherwise.

Note the double application of F in the odd case. It is not really clear that this is well-defined, there
might be some infinite loop – but there isn’t. Here is a plot of F on up to x = 100.

10

Task

A. Determine what the lines in the picture are. More precisely, determine a simple description of
the x-coordinates of all the points belonging to a single one of these lines (the y-coordinates
are then easy to get).

B. Give a reasonably simple non-recursive description of F .

C. Prove that your description is correct, and conclude that F is really well-defined: for any
positive integer x there is exactly one y such that F (x) = y.

D. Define d(x) to be the number of recursive calls made in the computation of F (x). For example,
for all even x, d(x) = 0, d(1) = 2 and d(3) = 4. Find a simple description of d.

Comment
It is a good idea to try to figure out how this function is related to the Collatz function C. A little
experimental computation might also be helpful. If you think that part (A) is a bit vague you are
quite right. This builds character.

0.12. The DASZ Operator (XX)

Background
For this problem, consider non-decreasing lists of positive integers A = (a1, a2, . . . , aw). We transform
any such list into a new one according to the following simple recipe:

• Subtract 1 from all elements.

• Append the length of the list as a new element.

• Sort the list.

11

• Remove all 0 entries.

We will call this the DASZ operation (decrement, append, sort, kill zero) and write D(A) for the
new list (note that D really is a function). For example, D(1, 3, 5) = (2, 3, 4), D(4) = (1, 3) and
D(1, 1, 1, 1) = (4).
A single application of D is not too fascinating, but things become interesting when we iterate the
operation: as it turns out, Dt(A) always has a finite transient (and period), no matter how A is
chosen. For example, the transient and period of (1, 1, 1, 1, 1) are both 3:

0 1 1 1 1 1
1 5
2 1 4
3 2 3
4 1 2 2
5 1 1 3
6 2 3

Here is a plot of the transients and periods of all starting lists A = (n) for n ≤ 50.

10 20 30 40 50

10

20

30

40

DASZ

transient

period

Note the fixed points D(A) = A, the few red dots at the bottom.

Task

A. Show that all transients must be finite.

B. Characterize all the fixed points of the DASZ operation.

C. Determine which initial lists A = (n) lead to a fixed point.

12

0.13. Floyd on Steroids (XX)

Background
Recall Floyd’s cycle finding algorithm that allows one to compute the period of a point under some
function f : A → A where A is a finite ground set. In the classical version, the two pebbles move at
speeds 1 and 2, respectively. Let us refer to this as the (1, 2) version of the algorithm; correspondingly,
we can also consider a (u, v) version of the algorithm for other natural numbers u and v. Naturally
one wonders whether other speeds could be used to find a point on the limit cycle.

Define the Floyd-time of (τ, π, u, v) to be the time when the speed u and v pebbles meet on a lasso
with transient τ and period π. Here is a picture of the Floyd-times for u = 1 and v = 2 on the left,
and u = 2, v = 4 on the right; τ, π ≤ 50.

Task

A. Does the (2, 3) algorithm still work for all possible inputs? Justify your answer.

B. Characterize the values of u and v for which the (u, v) algorithm works (of course, works here
means that it finds a point on the limit cycle for all possible inputs).

C. Find an algebraic way to determine the Floyd-time. Does your solution explain the much more
complicated Floyd-times for v − u > 1?

D. Produce a simple closed form for the Floyd-time when v = u+ 1.

E. Suppose the (u, v) algorithm works. How does the running time compare to the standard
version? By running time we mean the number of applications of f .

13

Comment
A little computational experimentation might be a good idea; it’s a bit tricky to get a completely
correct answer.

For part (C) I suspect there is no easy closed form in general, you will need to write a little program
using modular arithmetic.

Here is a helpful function, a generalization of the ordinary mod function.

t mod τ :π =
t if t < τ ,
τ + (t− τ mod π) otherwise.

Thus, t mod τ :π describes the position of a speed-one pebble at time t on a lasso with transient τ
and period π. Here we assume that the lasso uses carrier set {0, 1, . . . , τ, . . . , τ + π − 1}.

0.14. Reversing Digits (XX)

Background
For any number x, let R(x) be the number obtained by reversing the sequence of digits in the binary
expansion of x, without leading 0’s. For example, R(6) = 3, R(8) = 1 and R(15) = 15. Here is a
picture of the first values of R for x < 210.

200 400 600 800 1000

200

400

600

800

1000

Make sure you understand the staircase in this picture.

14

Task

A. Show that for any x we have one of the following four situations:

R(x) = x R2(x) = x R2(x) = R(x) R3(x) = R(x)

B. Show that a number x is divisible by 3 iff R(x) is divisible by 3.

C. Give a purely algebraic proof of part (B).

D. Give yet another proof of part (B) based on the idea of scanning the binary digits from MSD
to LSD and keeping track of remainders.

Comment

0.15. Flipping Pebbles (XX)

Background
An interesting class of problems deals with the question whether a certain system can ever reach a
particular state, given a collection of possible transitions the system can make.
As an example, consider a collection of tokens, blue on one side, and red on the other. We have 2n
tokens aligned on a 2 × n grid, initially all tokens are blue side up. The admissible transitions are
described as follows:

Pick an arbitrary token, and flip it over; also, flip over its two neighbors.

Can the system reach the all-red state?

Task

A. Show that order of the flip operations does not matter.

B. Show that flipping the same token twice undoes the first flip, and so two flips have no effect.

C. Show that all 2 × n grids of tokens can reach the all-red state by flipping tokens and their
neighbors, starting from all-blue.

D. (Extra Credit) Repeat for 3 × n grids.

Comment This actually works for arbitrary m× n grids, but the proof is much harder.

15

0.16. Fibonacci Polynomials mod 2 (XX)

Background
We will work in the polynomial ring F2[x], where F2 denotes the two-element field. We can define
the Fibonacci polynomials as usual by

π0(x) = 0
π1(x) = 1
πn(x) = x πn−1(x) + πn−2(x)

We write cnk for the coefficent of xk in πn, k < n. Here are the coefficents of these polynomials up
to n = 64.

Write bin(n, k) for the kth binary digit of n. According to a theorem by Lucas,
(

a
b

)
is odd iff

bin(b, k) ≤ bin(a, k).

Task

A. Give a recursive description of cnk and exploit it to write these coefficents in terms of binomial
coefficents.

B. Exploit Lucas’ theorem to produce a linear time algorithm to compute πn (at least with uniform
cost function).

C. Show that for m < n we have πn = πm+1πn−m + πmπn−m−1.

D. Conclude that m | n iff πm | πn.

Comment

16

0.17. Rotations (XX)

Background
Let Σ be an alphabet of size n, and X the language of all words that are permutations of Σ. The
symmetric group Sn acts naturally on X on the right as

x · f = (xf−1(1), . . . , xf−1(n))

If you find the f−1 irritating, use the corresponding left action instead. Clearly, the action is transi-
tive.
Given a set Γ of generators of Sn and f ∈ Sn, define the word length of f over Γ to be the least k
such that f = g1g2 . . . gk where gi ∈ Γ , in symbols wlΓ (f). The word length of Γ is the maximum of
the all the wlΓ (f) for f ∈ Sn.
In the following, we will be using a redundant set Γ of generators based on right rotation: in cycle
notation, gij = (i, i+ 1, . . . , j). Thus, gij has the effect of cyclically rotating the block xi, xi+1, . . . , xj

in x, the rest of the word is unchanged. Γ has cardinality n(n− 1)/2.
Below is a picture of all possible short rotation sequences turning edcba into abcde.

edcba

decba cedba bedca aedcb

cdeba bdeca adecb bceda acedb abedc

bcdea acdeb abdec abced

abcde

Task

A. Show that the word length of Γ is n − 1. Hint: look at the chain of subgroups defined by
Gk = Stabk+1,...,n.

B. Find a polynomial time algorithm to compute wl(x) given x ∈ X.

C. Now consider the problem of finding the shortest sequences of generators such that x·g1 . . . gk =
y.

17

Comment
There is a trade-off between the size of a generating set and the corresponding word length: our
example is n(n− 1)/2 versus n− 1. With more effort one can also produce n− 1 versus n(n− 1)/2;
and even more effort produces n log n versus 2n log n.
You can think of the rotations as “super-bubble-sort”: instead of using only transpositions, we can
use arbitrary right rotations.

0.18. Floyd goes Algebraic (XX)

Background
One of the most elementary results about finite semigroups is that every element in the semigroup
has an idempotent power. Recall that x is idempotent if x2 = x. Then the claim is that for S any
finite semigroup and a ∈ S, there exists some integer r ≥ 1 such that ar is idempotent.
Ignoring algebraic aspects for a moment, note that the powers of a (the points ai, i ≥ 1) must
form a lasso since S is finite. Hence we can associate a with a transient t = t(a) ≥ 0 and a period
p = p(a) ≥ 1.

We can think of the powers of a as the orbit of a under the map x 7→ ax, so we can apply Floyd’s
trick to find a point on the loop (the big, red dot above). Let’s call the time when the algorithm
finds this point the Floyd time τ(t, p), an integer in the range 0 to t+ p− 1. The next picture shows
the Floyd times for t = 70 and p = 1, . . . , 100 . The red dots indicate the values of p where the Floyd
time is t = 70.

18

Inquisitive minds will wonder if there is any connection between the Floyd time and the idempotent
from above.

Task

A. Prove the claim about idempotents in finite semigroups. Hint: think about the Floyd time.

B. Show that there is exactly one idempotent among the powers of a.

C. Give a simple description of the Floyd time τ(t, p) in terms of the transient t and period p.

D. Explain the plot of the Floyd times above.

E. Show that the powers of a that lie on the loop form a group with the idempotent as identity.

Comment
For extra credit you might (re-)consider the question of what happens in Floyd’s algorithm when
one changes the velocities of the particles to 1 ≤ u < v.

0.19. Grid Actions (XX)

Background
Dihedral groups describe rigid motions (rotations plus reflections) of regular polygons in the plane
that return the polygon to its original position. This carries over to more complicated grids, but with
the caveat that the dihedral group needs to be embedded into a permutation group of appropriate
degree (the number of nodes in the grid).
We will consider the grids below:

the plain square grid SG6 and the hexagonal grid HG3,3,3.

19

Task

A. Determine the automorphism group of SG6, find generators and determine the cycle structure
of the group elements.

B. Compute the orbits of the vertices under the group action. What are the orbit sizes for SGn?

C. Compute the orbits of the edges under the group action. What are the orbit sizes for SGn?

D. Repeat for HG3,3,3 instead of SG6.

Comment
You probably don’t want to do this by hand.

0.20. Building Reversible Cellular Automata (XX)

Background
For applications in cryptography and also in physical simulations (non-dissipative systems) it is
desirable to be able to construct injective cellular automata. There is an old trick due to Fredkin
that constructs an injective automaton from a given arbitrary one. Here is the idea, you will have to
supply the details. Suppose ρ is the local map of an arbitrary binary cellular automaton. The orbits
produced by ρ are of the form

Xn+1 = Gρ(Xn) = Gn
ρ(X0).

For arbitrary, irreversible ρ there is no way in general to reconstruct Xn from Xn+1. But now consider

Xn+1 = Gρ(Xn) ⊕Xn−1

where ⊕ is exclusive ’or’ (or addition mod 2), as usual. Then

Xn−1 = Gρ(Xn) ⊕Xn+1

and we can go backward – though we need two consecutive configurations to obtain the previous
one. This also means we have to have two starting configurations X0 and X1.
So far, all we have is a second-order automaton, but we really want an ordinary injective cellular
automaton ρ′ based on ρ. To this end, we have to combine two binary configurations into a single
configuration over a larger alphabet. Here is the result of this construction applied to ECA 77 (this
picture really requires colors, there should by cyan, blue, purple and red).

20

With a bit of imagination you can almost see how this CA is reversible (there is no loss of information
from time t to time t+ 1), but pictures can be very deceptive.

Task

1. Explain exactly how the Fredkin construction of ρ′ from ρ works.

2. Prove that your automata ρ′ are indeed injective, regardless of the properties of ρ.

3. Let ρ be the CA that is obtained by applying the Fredkin construction to the trivial ECA with
number 0. Analyze the behavior of ρ (it’s quite boring).

Comment
Needless to say, if you start from an arbitrary ECA ρ and apply Fredkin’s trick things become quite
interesting. For example, the pseudo-random rule ECA 30 is not reversible, but if we use it to
construct a reversible rule we get the following behavior on a one-point seed: first things are fairly
regular, but then the patterns become chaotic.
The first 120 steps for n = 50.

21

Incidentally, for n = 20, 21, 22, 23, 24 the periods are 85, 044; 887, 258; 2, 217, 902; 381, 601 and
15, 588, 247, respectively.

22

	Magic Words (XX)
	Dual Formulae (XX)
	Presburger and Skolem Arithmetic (XX)
	A Recursion (XX)
	The Busy Beaver Function (RM) (XX)
	Placing Problems in the AH (XX)
	Semilinear Counting (XX)
	Palindromes (XX)
	MSO and Regular Languages (XX)
	Tilings (XX)
	Son of Collatz (XX)
	The DASZ Operator (XX)
	Floyd on Steroids (XX)
	Reversing Digits (XX)
	Flipping Pebbles (XX)
	Fibonacci Polynomials mod 2 (XX)
	Rotations (XX)
	Floyd goes Algebraic (XX)
	Grid Actions (XX)
	Building Reversible Cellular Automata (XX)

