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Abstract 

In this work we study of the notion of “attractiveness” of faces in a machine-learning 
context. To this end, we collected human beauty ratings for datasets of facial images and 
used various techniques for learning the average attractiveness of a face. The results 
clearly show that beauty is a universal concept, which can be learned by a machine. Due 
to the limited size of the dataset, most of the information about the target is extracted 
from features that are simply correlated with facial beauty. 
  

 
1. Introduction 

The subject of human facial attractiveness has received attention from 
scientists for centuries, yet, the face of beauty, something we can recognize in an 
instant, is still difficult to formulate. This outstanding question has led to a large 
body of ongoing research by scientists in the biological, cognitive and exact 
sciences. 

The common notion in research has always been that beauty is "in the eye of 
the beholder", that individual attraction is not predictable beyond our knowledge 
of a person's particular culture, historical era or personal history. However, more 
recent work suggests that the constituents of beauty are neither arbitrary nor 
culture bound. Numerous studies have demonstrated high congruence over 
ethnicity, social class, age and sex [1][2], suggesting that properties of facial 
features are the same irrespective of the perceiver, and that people everywhere 
are using similar criteria in their judgements. This is further strengthened by the 
consistent relations demonstrated in experimental studies between attractiveness 
and various facial features [3], as well as by studies demonstrating that even 
infants and newborns show a preference for more attractive faces [4]. 

Research has found certain features and characteristics to be positively 
related to facial attractiveness (e.g. symmetry, averageness, full lips, large eyes), 
yet the relative importance of these traits and their interactions with other facial 
attractiveness determinants are still unknown.  

Different studies have examined the relationship between subjective 
judgements of faces and their objective regularity. Morphing software has been 
used to create average and symmetrized faces [1], as well as attractive and 
unattractive prototypes, in order to analyze their characteristics. Others have 
produced attractive faces from a collection of golden ratios, from a fractal 
geometry based on powers of two or by evolution using an interactive genetic 
algorithm [5]. Previous work has mainly involved averaging and morphing of 
digital images and geometric modeling to construct attractive faces. In this work 



  

we explore the notion of facial attractiveness using machine learning techniques: 
using only the images themselves, we try to learn and analyze the mapping from 
two dimensional facial images to their attractiveness scores, as determined by 
human raters. 

 
 

2. Data 
In order to reduce the effects of age, skin color, facial expression and other 

irrelevant factors, subject choice was confined to young Caucasian females. 
Images were constrained to frontal views with neutral expressions, with no 
accessories or obscuring items (e.g. jewelry). Furthermore, to get a good 
representation of the notion of beauty, the dataset was also required to encompass 
both extremes of facial beauty: very attractive as well as very unattractive faces. 

We obtained two datasets, which met the above criteria, both of relatively 
small size of 92 images: one contained images of young American women, and 
the second - of Israeli girls aged approximately 18. The distributions of the two 
datasets were found to be too different for combining the sets, and, therefore, all 
our experiments were conducted on each dataset separately. Images were 
converted to grayscale to lower data dimension and to simplify the computational 
task.  

Attractiveness ratings were collected for both datasets; 28 observers rated the 
images in the first dataset and 18 rated those in the second. Each facial image 
was rated on a discrete scale between 1 (very unattractive) and 7 (very attractive) 
by each rater. Ratings were tested for adequacy and consistency. The final 
attractiveness rating of a facial image used in subsequent analysis was the 
average of its collected ratings.  

 
 

3. Work and Results 
  
3.1 Face Representation 

In our analysis we adopted two different representations. The first is the raw 
grayscale pixel values, in which all relevant factors, such as texture, shading, 
pigmentation and shape, are represented, though not in form simple to extract. 
The second representation, motivated by golden ratio arguments, is based on the 
manual measurement of 37 facial feature distances that reflect the geometry of 
the face. These include, for example, the distance between eyes and width and 
length of mouth and of each eye. The facial feature points, according to which 
distances are defined, are shown in Fig. 1. All raw distance measurements, which 
are in units of pixels, are normalized by the distance between pupils, which 
serves as a robust and accurate length scale. To these purely geometrical features 
we added several non-geometrical measured features: The average face hue, the 
average hair color, and an estimate of skin smoothness. The latter was estimated 
by applying standard edge detection filters on the cheeks and forehead.  
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3.2 Mutual Information Maps 

We began our work with a preliminary study of our data and its relation to 
facial attractiveness using various data analysis methods. Within this framework, 
we applied a Mutual Information analysis to identify the features that are most 
"informative" for facial attractiveness determination. For this, we recast the 
problem of predicting facial attractiveness as a simpler one of discerning 
‘attractive’ faces from ‘unattractive’ faces. The reduced problem can naturally be 
translated into the binary classification task of separating the 25% highest rated 
images, which comprise the class of "attractive" faces, from the 25% lowest rated 
images, which comprise the class of "unattractive" faces. Not surprisingly, 
humans also find this task to be much simpler and very high correlations between 
human judgements are observed. Feature values were also made discrete by 
binning. 

A novel visualization of the facial regions important for attractiveness 
determination emerged in the calculation of the mutual information between the 
(binned) raw pixel values and the target classes. Since the mutual information is a 
function of the pixels, the whole array of mutual information values can be 
represented as a face-like image, as shown in Fig. 2. The lighter areas are the 
pixels that were found to be more "informative" for facial attractiveness 
determination.  

 

Figure 1: Marked points are the 
facial landmarks used to compute 
the measurements for the feature-
based representation (e.g. 
distance between pupils, face 
width at eye level, face length). 



  

               
 
The eyes (shape and hue), eyebrows, nose (length and width) and mouth are 

all clearly visible. Additional important features are cheeks, contour of lower 
face and hair, which was also very highly correlated with the ratings.  

Results of a mutual information analysis on the constituents of the feature-
based representation were consistent with the pixel mutual information maps. 
 
3.3 Learning facial attractiveness 

Using the facial images in both representations and their respective human 
ratings, we perform learning and prediction of facial attractiveness. As the 
dimension of the initial pixel image data is extremely high, of the order of 
100,000, dimension reduction was required. Therefore, we reduced the 
dimension of the image data with Principal Component Analysis (PCA), a global 
dimension reduction technique, shown to relate reliably to human performance 
on face image processing tasks [6]. 

To produce sharper eigenfaces, all images were aligned before undergoing 
PCA. Faces were translated and rescaled to fix the location of the pupils at 
predefined positions. We further aligned the images according to a fixed vertical 
location of the center of the mouth. As this latter alignment changed face height 
to width ratio, the vertical scaling factor was added to the low-dimensional 
representation of each face.  

PCA was also performed on the feature-based measurements, in order to 
decorrelate the variables in this representation, as well. This was important since 
strong correlations, stemming, for example, from left-right symmetry, were 
observed in the data. 
 
Feature Selection 

To enable good prediction of ratings we performed feature selection, for both 
representations. We selected features by ranking them according to their 
correlation with the human ratings. We experimented with other ranking criteria, 
such as chi-square and mutual information, but those produced somewhat inferior 
results.  

Figure 2: Pixel mutual 
information  map  (values 
can be seen in the colorbar 
on the right of the image) 
 



  

Interestingly, in the pixel representation, features found most correlated with 
the attractiveness ratings were those pertaining to intermediate eigenvalues. This 
is in contrast to many face analysis applications, in which the largest eigenvalues 
are selected. Fig. 3 shows the eigenvectors from PCA on pixel images from the 
main dataset, where 3(a) shows those pertaining to the highest eigenvalues and 
3(b) shows the highest correlated ones. While the former show mostly general 
features of hair and face contour, the latter also clearly show lip size, nose tip and 
eye size and shape as important features. This feature selection improved results 
considerably: correlation of predicted ratings with the human ratings with KNN, 
for example, rose from 0.25 to 0.45. 

 

 
 

 
 

 
Prediction 

The data vectors were projected onto the top m eigenvectors from the feature 
selection stage, where m is a parameter with which we performed optimization. 
These new projection vectors were the low-dimensional, information-preserving 
representation of the data output from the PCA stage to the learners in the 
prediction stage.    

The main predictors we worked with were KNN and SVM. We also used 
linear regression, which serves as a baseline for the other methods. 

Due to the relatively small sample sizes, we evaluated the performance of the 
predictors using cross-validation; predictions were made in leave-n-out, with n = 
1 for linear regression and KNN and n = 5 for SVM. Predicted ratings were 
evaluated according to their correlation with the human ratings. 

The output of the KNN predictor for a test image was the weighted average 
of the targets of the image's k nearest neighbors, where the weight of a neighbor 
was the inverse of its distance from the test image. The predictor was run with k 
values ranging from 1 to 45. 

For the SVM method, we tried several kernels: linear, polynomial of degree 2 
and 3 and gaussian with different values of γ, where log2γ ∈ {-6, -4, -2, 0}. We 
performed a grid search over the values of slack parameter, c, and the width of 
regression tube, w, such that log10C ∈{-3, -2, -1, 0, 1} and w∈{0.1, 0.4, 0.7, 1.0}. 
In all runs we use a soft-margin SVM implemented in SVMlight [7]. 

 
Fig. 4 depicts the results of the predictors on the images of one of the 

datasets. The top figure shows the correlations reached with the pixel-based 
representation, where KNN was run with k = 31, and the bottom figure shows the 
results for the feature-based representation, where KNN correlations are for k = 

Figure 3a: Eigenfaces with highest 
eigenvalues 

Figure 3b: Eigenfaces with highest 
correlations with attractiveness ratings 



  

42. The results for the pixel images show a peak near m=25 features, where the 
maximum correlation, achieved with KNN, is approximately 0.45. The figure for 
the feature-based representation shows a maximum value of nearly 0.6 at m=15 
features, where the highest correlation is achieved both with SVM and linear 
regression. Results obtained on the second dataset were very similar. Highest 
SVM results in both representations were reached with a linear kernel. 

 
 

 
 
 
 
 
It is interesting to note that the simple linear regression predictor is as good 

and in certain cases, such as in the feature representation, even better than the 
KNN predictor. SVM performance was, for the most part, as good as and slightly 
better than that of the other methods.  

In general, performance with the feature-based measurements was better, 
enabling a correlation of nearly 0.6 vs. a correlation of 0.45 with the pixel 
images. This implies that a feature-based representation, more "natural" than the 
pixel values, might be more informative for facial attractiveness determination.  
 
 

Figure 4: Results of all three predictors for the pixel images (top figure) and for 
the feature-based representation (bottom figure) 



  

4. Discussion 
In this work we present a predictor of facial attractiveness, trained with 

female facial images and their respective average human ratings. Images were 
represented both as raw pixel data and as measurements of key facial features. 
Prediction was carried out using KNN, SVM and linear regression, and ratings 
predicted achieved a correlation of approximately 0.6 with the human ratings. 

Given the high dimensionality and redundancy of visual data, the task of 
learning facial attractiveness is undoubtedly a difficult one. Nonetheless, our 
predictor achieved significant correlations with the targets. Yet, given the results 
of the prediction process and additional data analysis, we believe our success was 
limited by a number of hindering factors.  

The most meaningful limiting factor was probably the relatively small size of 
the datasets. We confirmed this by iteratively running the predictor for a growing 
dataset size. Fig. 5 shows the results for KNN on the feature-based representation 
of one of the datasets with k=16 and m=7 features. Results shown are the average 
correlation of 10 runs with different subsets of images. The graph clearly shows 
improvement as the number of images increases. The slope of the graph is still 
positive with 92 images and does not asymptotically level off, implying that there 
is considerable room for improvement with a larger dataset. The size of the 
dataset also limited our ability to estimate the posterior distribution of the 
attractiveness ratings given feature value. 

 

                 
 
 
 

Another limiting factor was most probably insufficient data representation. 
Our data analysis showed the relation of the features and pixels with the 
attractiveness ratings to be lower than initially expected, demonstrating the 
difficulty in learning from these data representations.  

While producing better results than the pixel images, the feature-based 
representation is, nonetheless, insufficient; it includes only Euclidean distance-
based measurements, and, therefore, lacks shape and texture information. Hues 
are totally omitted, and the shape of facial features is represented in a very coarse 
manner. 

Figure 5: Correlation as a function of the number of images 



  

The relatively lower results with the pixel images show that this 
representation is, likewise, not informative enough for the discriminatory task of 
facial attractiveness evaluation. In addition to its high dimensionality and 
redundancy, the representation of a face in this vector space is “unnatural”, as, 
for example, an average of two faces will not necessarily produce a face-like 
image. 

Future work should incorporate an encoding that is perceptually or 
cognitively more realistic, such as the output of Gabor filters or wavelets. 
Furthermore, as PCA operates independently of higher-level perceptions, 
combining feature extraction from pixel information with feature-based 
approaches, such as "eigenfeatures" [8], would probably result in improved 
performance. 

 

In conclusion, our work, novel in its application of learning methods in the 
analysis of facial attractiveness, has produced promising results. Significant 
correlations with human ratings were achieved despite the difficulty of the task 
and several hindering factors. The entirety of our findings show promise of even 
better results in future research ameliorating these factors and overcoming the 
obstacles inherent in our work.   
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