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Notes
• Class Schedule
• Simon Baker RI Seminar Friday 3:30 Face 

Tracking NSH 1305

Nov 29th, 2001Copyright © 2001-2003, Andrew W. Moore

Hidden Markov 
Models
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found 
this source material useful in giving your own lectures. Feel free to use these slides 
verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If 
you make use of a significant portion of these slides in your own lecture, please include this 
message, or the following link to the source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received. 
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

N = 3

t=0
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }
N = 3

t=0

qt=q0=s3

Current State
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next 
state is chosen randomly.

N = 3

t=1

qt=q1=s2

Current State
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next 
state is chosen randomly.

The current state determines the 
probability distribution for the 
next state.

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next 
state is chosen randomly.

The current state determines the 
probability distribution for the 
next state.

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1

Often notated with arcs 
between states

Copyright © 2001-2003, Andrew W. Moore Hidden Markov Models: Slide 8

Markov Property

s1 s3

s2

qt+1 is conditionally independent 
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the best 
Bayes Net structure to represent 
the Joint Distribution of ( q0, q1, 
… q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1
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Hidden Markov Models
• Question 1: State Estimation

What is P(qT=Si | O1O2…OT)
It will turn out that a new cute D.P. trick will get this for us.

• Question 2: Most Probable Path
Given O1O2…OT , what is the most probable path that I took?
And what is that probability?
Yet another famous D.P. trick, the VITERBI algorithm, gets 

this.
• Question 3: Learning HMMs:

Given O1O2…OT , what is the maximum likelihood HMM that 
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm
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Are H.M.M.s Useful?

You bet !!
• Robot planning + sensing when there’s uncertainty 
• Speech Recognition/Understanding

Phones → Words, Signal → phones
• Human Genome Project

Complicated stuff your lecturer knows nothing 
about.

• Consumer decision modeling
• Economics & Finance.
Plus at least 5 other things I haven’t thought of.
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HMM Notation
(from Rabiner’s Survey)
The states are labeled S1 S2 .. SN

For a particular trial….
Let T be the number of observations

T is also the number of states passed 
through

O = O1 O2 .. OT is the sequence of observations
Q = q1 q2 .. qT    is the notation for a path of states

λ = 〈N,M,{πi,},{aij},{bi(j)}〉 is the specification of an 
HMM

*L. R. Rabiner, "A Tutorial on 
Hidden Markov Models and 
Selected Applications in 
Speech Recognition," Proc. 
of the IEEE, Vol.77, No.2, 
pp.257--286, 1989.
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HMM Formal Definition
An HMM, λ, is a 5-tuple consisting of
• N   the number of states
• M   the number of possible observations
• {π1, π2, .. πN}  The starting state probabilities

P(q0 = Si) = πi

• a11 a22 … a1N

a21 a22 … a2N

: : :
aN1 aN2 … aNN

• b1(1) b1(2) … b1(M) 
b2(1) b2(2) … b2(M) 
: : :

bN(1) bN(2) … bN(M)

This is new. In our 
previous example, 
start state was 
deterministic

The state transition probabilities

P(qt+1=Sj | qt=Si)=aij

The observation probabilities

P(Ot=k | qt=Si)=bi(k)
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Here’s an HMM

N = 3
M = 3
π1 = 1/2 π2 = 1/2 π3 = 0

a11 = 0 a12 = 1/3 a13 = 2/3

a12 = 1/3 a22 = 0 a13 = 2/3

a13 = 1/3 a32 = 1/3 a13 = 1/3

b1 (X) = 1/2 b1 (Y) = 1/2 b1 (Z) = 0
b2 (X) = 0 b2 (Y) = 1/2 b2 (Z) = 1/2

b3 (X) = 1/2 b3 (Y) = 0 b3 (Z) = 1/2

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
__O0=__q0=

50-50 choice 
between S1 and 

S2

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
__O0=S1q0=

50-50 choice 
between X and Y

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
XO0=S1q0=

Goto S3 with 
probability 2/3 or 
S2 with prob. 1/3

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=S3q1=
XO0=S1q0=

50-50 choice 
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
XO1=S3q1=
XO0=S1q0=

Each of the three 
next states is 
equally likely

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

S2

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=S3q2=
XO1=S3q1=
XO0=S1q0=

50-50 choice 
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

ZO2=S3q2=
XO1=S3q1=
XO0=S1q0=

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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State Estimation

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

ZO2=?q2=
XO1=?q1=
XO0=?q0=

This is what the 
observer has to 

work with…

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Bayes’ Rule
• O={O1O2…OT}
• P(QT|O) = P(O|QT) P(O) / P(QT) 
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(Q)= P(q1,q2,q3)

=P(q1) P(q2,q3|q1) (chain rule)

=P(q1) P(q2|q1) P(q3| q2,q1)  (chain)

=P(q1) P(q2|q1) P(q3| q2) (why?)

Example in the case Q = S1 S3 S3:

=1/2 * 2/3 * 1/3 = 1/9

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3

Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

P(O) would need 27 P(Q)

computations and 27 P(O|Q)

computations

A sequence of 20 observations would need 320 = 

3.5 billion computations and 3.5 billion P(O|Q)

computations So let’s be smarter…
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The Prob. of a given series of 
observations, non-exponential-cost-style

Given observations O1 O2 … OT

Define

αt(i) = P(O1 O2 … Ot ∧ qt = Si | λ)         where 1 ≤ t ≤ T

αt(i) =   Probability that, in a random trial,

• We’d have seen the first t observations 

• We’d have ended up in Si as the t’th state visited. 

In our example, what is α2(3) ?
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)

( ) ( )
( ) ( )

( ) ( )
=

=∧=
=

===

=∧=

+++ jtttt

ii

i

SqOOOOj

SqOSq
SqOi

11211

111

111

...P 
what?                                        

PP
P 

α

α
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )iOba

iSqOSqSq

iSqSqO

SqOOOSqOOOSqO

SqOSqOOO

SqOOOOj

SqOSq
SqOi

t
i

tjij

t
i

jttitjt

t
i

itjtt

N

i
ittittjtt

N

i
jttitt

jtttt

ii

i

α

α

α

α

α

∑

∑

∑

∑

∑

+

+++

++

=
++

=
++

+++

=

====

===

=∧=∧==

=∧∧=∧=

=∧=
=

===

=∧=

1

111

11

1
212111

1
1121

11211

111

111

PP

,P

...P...,P

...P

...P 
what?                                        

PP
P 
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in our example
( ) ( )
( ) ( )
( ) ( ) ( )iObaj

Obi
SqOOOi

t
i

tjijt

ii

ittt

αα

πα
λα

∑ ++ =

=

=∧=

11

11

21

  
..P

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
72
13     

72
12     01

12
13     02     01

03     02     
4
11

333

222

111

===

===

===

ααα

ααα

ααα

WE SAW   O1 O2 O3 = X X Z

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)

∑
=

N

i
t i

1

)(α

∑
=

N

j
t

t

j

i

1

)(

)(

α

α
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Most probable path given observations

( )

( )

( )
( )

( ) ( )QQOOO

OOO
QQOOO

OOOQ

OOOQ

OOO

T

T

T

T

T

T

P...P  

...P
)(P...P

  

...P       

:answer stupid Slow,

?...P     isWhat 

i.e.,...given path  probablemost  sWhat'

21
Q

21

21

Q

21
Q

21
Q

21

argmax

argmax

argmax

argmax

=

=
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Efficient MPP computation
We’re going to compute the following variables:

δt(i)=      max        P(q1 q2 .. qt-1 ∧ qt = Si ∧ O1 .. Ot)
q1q2..qt-1

=  The Probability of the path of Length t-1 with the 
maximum chance of doing all these things:

…OCCURING
and

…ENDING UP IN STATE Si
and

…PRODUCING OUTPUT O1…Ot

DEFINE: mppt(i) =  that path

So:                 δt(i)= Prob(mppt(i))
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The Viterbi Algorithm
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( )1

111

11

max

1

21121

maxarg

21121

max

PP
P  choice one

.....P  121

.....P  121

...

...

Ob
SqOSq

OSqi

OOOSqqqqtimpp

OOOSqqqqti

ii

ii

i

tittt

tittt

qqq

qqq

π

δ

δ

=

===

∧==

∧=∧−=

∧=∧−=

−

−

Now, suppose we have all the δt(i)’s and mppt(i)’s for all i.          

HOW TO GET δt+1(j) and mppt+1(j)?  

mppt(1) Prob=δt(1)

mppt(2) 

:

mppt(N) 

S1

S2

SN

qt

Sj

qt+1

Prob=δt(N)

Prob=δt(2)
?:
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The Viterbi Algorithm
time t time t+1

S1
: Sj

Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj



7

Copyright © 2001-2003, Andrew W. Moore Hidden Markov Models: Slide 37

The Viterbi Algorithm
time t time t+1

S1
: Sj

Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

= δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has 

Si* as its penultimate state
where  i*=argmax δt(i) aij bj (Ot+1)

i
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The Viterbi Algorithm
time t time t+1

S1
: Sj

Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

= δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has 

Si* as its penultimate state
where  i*=argmax δt(i) aij bj (Ot+1)

i

} with i* defined 
to the left

Summary:
δt+1(j)  =  δt(i*) aij bj (Ot+1)
mppt+1(j)  =  mppt+1(i*)Si*
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What’s Viterbi used for?

Classic Example

Speech recognition:

Signal → words

HMM → observable is signal

→ Hidden state is part of word 
formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not 
one big jump.
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HMMs are used and useful
But how do you design an HMM?

Occasionally, (e.g. in our robot example) it is reasonable to 
deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to infer 
it from large amounts of data.  O1 O2 .. OT with a big “T”.

O1 O2 .. OT

O1 O2 .. OT

Observations previously
in lecture

Observations in the 
next bit
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Inferring an HMM
Remember, we’ve been doing things like

P(O1 O2 .. OT | λ )

That “λ” is the notation for our HMM parameters.

Now We have some observations and we want to 
estimate λ from them.

AS USUAL: We could use

(i) MAX LIKELIHOOD   λ = argmax P(O1 .. OT | λ)
λ

(ii) BAYES
Work out P( λ | O1 .. OT )

and then take E[λ] or max P( λ | O1 .. OT )
λ
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Max likelihood HMM estimation

( )

( ) =∑

=∑

−

=

−

=

1

1

1

1

,
T

t
t

T

t
t

ji

i

ε

γ

Define
γt(i) = P(qt = Si | O1O2…OT , λ )
εt(i,j) = P(qt = Si ∧ qt+1 = Sj | O1O2…OT ,λ )

γt(i)  and εt(i,j)  can be computed efficiently   ∀i,j,t
(Details in Rabiner paper)

Expected number of transitions 
out of state i during the path

Expected number of transitions from 
state i to state j during the path
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HMM 
estimation

( ) ( )
( ) ( )
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ε
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EM for HMMs
If we knew λ we could estimate EXPECTATIONS of quantities 

such as
Expected number of times in state i
Expected number of transitions i → j

If we knew the quantities such as
Expected number of times in state i
Expected number of transitions i → j

We could compute the MAX LIKELIHOOD estimate of
λ = 〈{aij},{bi(j)}, πi〉

Roll on the EM Algorithm…

Copyright © 2001-2003, Andrew W. Moore Hidden Markov Models: Slide 45

EM 4 HMMs
1. Get your observations  O1 …OT

2. Guess your first λ estimate λ(0), k=0

3. k = k+1

4. Given O1 …OT, λ(k) compute
γt(i) , εt(i,j)      ∀1 ≤ t ≤ T,      ∀1 ≤ i ≤ N,      ∀1 ≤ j ≤ N

5. Compute expected freq. of state i, and expected freq. i→j

6. Compute new estimates of aij, bj(k), πi accordingly.  Call 
them λ(k+1)

7. Goto 3, unless converged.

• Also known (for the HMM case) as the BAUM-WELCH 
algorithm.
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Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the 
data.

• EM does not estimate the number of states. That must 
be given.

• Often, HMMs are forced to have some links with zero 
probability. This is done by setting aij=0 in initial estimate 
λ(0)

• Easy extension of everything seen today: HMMs with 
real valued outputs
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Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the 
data.

• EM does not estimate the number of states. That must 
be given.

• Often, HMMs are forced to have some links with zero 
probability. This is done by setting aij=0 in initial estimate 
λ(0)

• Easy extension of everything seen today: HMMs with 
real valued outputs

Trade-off between too few states (inadequately 
modeling the structure in the data) and too many 
(fitting the noise).

Thus #states is a regularization parameter.

Blah blah blah… bias variance tradeoff…blah 
blah…cross-validation…blah blah….AIC, 
BIC….blah blah (same ol’ same ol’)
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What You Should Know
• What is an HMM ?
• Computing (and defining) αt(i)
• The Viterbi algorithm
• Outline of the EM algorithm
• To be very happy with the kind of maths and 

analysis needed for HMMs
• Fairly thorough reading of Rabiner* up to page 266* 

[Up to but not including “IV. Types of HMMs”].
*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, 
pp.257--286, 1989.

DON’T PANIC: 
starts on p. 257.


