
Abstract. Based on mechanical analysis, three gait
descriptors are found which should be controlled to
generate cyclic gait of a seven-link humanoid biped in
the sagittal plane: (i) step length, (ii) step time, and (iii)
the velocity of the center of mass (CoM) at push off.
Two of these three gait descriptors can be chosen
independently, since the CoM moves almost ballistically
during the swing phase. These gait descriptors are
formulated as end-point conditions and are regulated
by a model predictive controller. In addition, continuous
controls at the trunk and knees are implemented to
maintain the trunk upright and to ensure weight
bearing. The model predictive controller is realized by
quadratic dynamic matrix control, which offers the
possibility of including constraints that are exposed by
the environment and the biped itself. Specifying step
length and CoM velocity at push off, the controller
generates a symmetric and stable gait. The proposed
control scheme serves as a general-purpose solution for
the generation of a bipedal gait. The proposed model
contains fewer parameters than other models, and they
are all directly related to determinants of bipedal gait:
step length, trunk orientation, step time, walking veloc-
ity, and weight bearing. The proposed control objectives
and the model of humanoid bipedal walking have
potential applications in robotics and rehabilitation
engineering.

1 Introduction

The synthesis of bipedal gait is a topic of interest in
robotics as well as in biomechanics. During the past few
decades several approaches have been published, and
different ‘bipedal walkers’ have been constructed in

attempts to predict or mimic human gait. Most ‘predic-
tive’ models are complex, contain many parameters,
demand tremendous computational effort, have poor
stability properties, and do not give much additional
insight in the control objectives needed to generate cyclic
gait (e.g., Yamaguchi 1989; Van de Belt 1997; Pandy and
Anderson 1999). In the field of robotics, most
bipedal walkers require complex control schemes and
consume much more energy than humans. Moreover,
most bipedal walkers do not walk very ‘naturally’
(for an overview of bipedal walkers, see Sardain et al.
1998).

The different approaches used to synthesize bipedal
gait can be roughly categorized as follows:

1. Open-loop control. This approach attempts to de-
termine the control-input patterns (e.g., joint
moments, muscle forces, or muscle activation) or
joint trajectories that will result in a cyclic gait.
Since information of the current system states is not
fed back to the controller, the solutions are unstable.
This approach is widely used in biomechanical
computer simulations (e.g., Yamaguchi 1989;
Koopman et al. 1995; Van de Belt 1997; Pandy and
Anderson 1999). This approach is characterized by
difficulties in finding feasible solutions and immense
computation times (Yamaguchi 1990; Anderson et al.
1995).

2. Trajectory control. In this approach every joint tra-
jectory during the cycle is prescribed. An important
issue within this approach is trajectory planning.
Sometimes these trajectories are derived from human
walking (e.g., Yang 1997), from kinematic con-
straints (e.g., Lum et al. 1999), from coherent pa-
rameters characterizing human gait (Hurmuzlu
1993), or they are obtained using learning algorithms
(e.g., Benbrahim and Franklin 1997; Salatian et al.
1997). It is important that the prescribed trajectories
are feasible in that the biped does not fall forward or
backward. To obtain such a trajectory the zero-
moment-point control strategy (Vukobratovic and
Stokic 1975) can be used. The local stability about
the operation point (joint angle trajectories) is
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guaranteed utilizing feedback schemes. However, to
ensure stability of walking, stability should not only
be addressed with respect to prescribed trajectories.
From our experience as humans, we all know that it
is sometimes necessary to take smaller or larger steps
when we are subjected to sudden perturbations, such
as a push or stumble. In such situations a ‘trajec-
tory-tracking’ strategy is not the best for preventing
falling.

3. Set-point control. Rather than specifying all joint
trajectories as a function of time, one can specify only
the values at specific times. Biped locomotion has
been realized by using linear state feedback and
specifying the configuration of the biped at the end of
the swing phase (Mita et al. 1984). The biped could
only make small steps; for larger steps the difference
between the biped’s configurations at begin and end
of the swing phase will be too large, and the linear
feedback controller will be unstable. For the built
biped, the motion of the center of mass (CoM) during
the swing phase was (indirectly) controlled. However,
when the CoM is relative high and the feet relative
small, as in humans, the control of CoM motion is
severely limited by the constraint that the feet should
be flat on the ground (Kuo and Zajac 1993). By
specifying set points in the support, the toe off, swing,
and straighten phases cyclic gait can be generated off
a seven-link, 12-degree-of-freedom biped (Pratt and
Pratt 1999).

4. Nonlinear dynamic system/ballistic walking approach.
In this approach, a cyclic gait pattern is the result of
dynamical system properties (e.g., joint impedance
and segment inertia) interacting with the environ-
ment. Ballistic walking down a slope is an old and
well-known example of this system approach (e.g.,
McMahon 1984; McGeer 1990). The ballistic walking
concept can be extended by including adjustable
springs (van der Linde, 1999) or ‘passivity-mimicking’
control laws (Goswami et al. 1997). Taga (1995a, b)
also demonstrated the capabilities of such a system
approach. By entrainment of neural oscillators, the
environment, and body mechanics, stable gait
emerges. In the system approach, the system is
structural stable for small disturbances. However,
stability for larger disturbances is not guaranteed and
not explicitly addressed.

In our opinion, existing models of bipedal walking and
control schemes for bipedal walkers have one or more of
the following problems:

1. The absence of a general-purpose solution for walking
with various speeds and different stride length.

2. Complex model structures and/or control schemes.
Most models contain a large number of parameters
that are not directly related to determinants of bi-
pedal gait. Most active control schemes use contin-
uous controls to track fully specified trajectories. In
our opinion this is not necessary; only those pa-
rameters that determine cyclic gait need to be con-
trolled.

3. Poor cyclic stability properties. Different methods
have been proposed for analyzing the stability of cy-
clic walking (Seo and Yoon 1995) and to enlarge the
stability of bipedal walkers. However, compared with
humans, existing models and robots have inferior
stability properties. We think this is due to inflexible
control laws and a lack of understanding of which
parameters should be controlled.

This paper presents an alternative and relatively simple
control scheme based on mechanical analysis of human
gait. Controlling walking speed, step length, and weight
bearing is sufficient for generating a stable cyclic gait in a
seven-link humanoid biped in the sagittal plane. Walk-
ing speed and step length and/or time are regulated with
an end-point controller. Weight bearing is regulated
with continuous controls at the trunk and knees.
Continuous and end-point controls are formulated
within one control scheme. This approach can be best
compared with Raibert’s (1986) approach for hopping
robots. He demonstrated very nicely that controlling
hopping height, forward speed, and body attitude are
sufficient for stable hopping and running of a walking
machine. This paper differs from Raibert’s approach in
that the movement of the body parts between initial and
end-point conditions are not specified. This allows the
body parts to move relatively freely between the
beginning and end of a phase, thereby exploiting their
natural dynamics. The temporal aspects of the control
objectives is also more explicitly addressed in this paper,
and is a direct result of the ballistic characteristics of
bipedal walking in the swing phase. However, the
computations are far more demanding than Raibert’s
approach, although not too demanding to make this
approach unsuited for real-time applications (see Sect.
4).

The joint angles, joint moments, and energy balance
of the generated gait pattern are compared with those
of a human subject. Humans are considered as living
examples of how to walk. Comparing model predic-
tions with human data provides an insight into differ-
ences and similarities between how the model and how
humans walk. The comparison may result in improve-
ments to control algorithms for synthesizing bipedal
gait. The presented approach serves as a transparent
theoretical framework in the understanding of bipedal
gait.

Two important aspects of any control scheme that
generates bipedal gait are its robustness and flexibility.
To make a (future) comparison with other control
schemes possible, task adaptation and robustness
properties are evaluated. Robustness to structural
changes of the biped itself is studied by simulating
walking with a passive ankle, with a passive knee and
ankle, and with constraints on the control torques. The
flexibility of the proposed control scheme to changes in
environmental constraints is examined by simulating
uphill walking. The flexibility of the alternative control
scheme for different step lengths and walking velocities
is investigated by systematically varying the desired step
length and velocity of the CoM at toe off.
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2 Methods

2.1 Biped dynamics

A seven-link segment model is used to represent the
biped’s dynamics. The model is planar and accounts
only for anterior–posterior motion of the body. The
seven segments represent the trunk, the left and right
thighs, the shank, and the foot (Fig. 1).

The mass, position of the CoM, moment of inertia,
and length of each of the segments are scaled to the
dimensions of a human (body mass 80 kg, length 1.90 m)
using the regression equations of Chandler et al. (1975).
The segments are connected by friction-free hinge joints,
which are spanned with springs and dampers. The con-
trol inputs are torque actuators at each joint. The
equations of motion are derived following Lagrangian
formalism, and are given by

Mq€qq ¼ f q ð1Þ

where Mq is the mass matrix, fg is the vector of forces,
and q is the vector of generalized coordinates. Passive
structures – restricting the range of motion of a joint –
are modeled as nonlinear springs and dampers. The
characteristics of these springs and dampers are ob-
tained from human data (Yoon and Mansour 1982;
Mansour and Audu 1986).

Foot–floor interactions are modeled as soft con-
straints by springs and dampers at the ball and heel of
the foot. The offset of the vertical spring depends on a
given ground profile. When the toe or heel touches the
ground, a dynamic friction force models the horizontal
reaction force. When the contact point reaches zero
velocity, the horizontal reaction force is modeled by a
spring (see Appendix A). In this paper bipedal gait is
divided into the double-support phase and the single-
support or swing phase. In the model, the beginning of
the double-support phase is defined as the moment at
which the heel or toe of the previous swing leg reaches
zero velocity. The end of the double-support phase is
defined as the moment at which the toe of the back leg
leaves the ground.

2.2 Synthesis of bipedal gait

To obtain a cyclic gait it is not necessary to control all
joint angles as a function of time (Raibert 1986).
Specifying end-point control objectives associated with

both the forward speed of the CoM at the end of double-
support phase, and the placement of the swing leg at the
end of the swing phase, are sufficient to generate cyclic
gait. In addition, continuous controls on the trunk and
knees ensure an upright posture. In the proposed model,
only those parameters that are all directly related to
determinants of bipedal gait are controlled: step length,
trunk orientation, step time, walking velocity, and
weight bearing. This alternative control approach is
the result of the mechanical analyses of gait:

1. Due to the large moment of inertia around the ankle,
ankle moments can hardly accelerate or decelerate the
CoM. When the weight-bearing knees remains
straight and the trunk remains upright, the CoM will
move ballistically during the swing phase.

2. When the CoM moves ballistically, the step length (S),
the step time (T ), and the speed of the CoM at push
off (VTO) have a unique relationship. For a specific
configuration of the swing leg at heel contact (HC)
and a specific VTO, S can be reconstructed from
specified T or vice versa (see Appendix B).

3. In the double-support phase VTO has to be controlled
to maintain a constant walking velocity. It is possible
to derive the required VTO from specified S and T .

4. When we would be able to control the gait descriptors
(S, T and VTO), it is intuitively felt that a cyclic gait
will be generated. However, due to the ballistic nature
of bipedal gait, from these three gait descriptors, only
two descriptors can be chosen independently.

A control scheme for the synthesis of bipedal gait
(Fig. 2) is proposed. From a higher center, two of the
three gait descriptors are supplied to the global control-
ler (GC). The GC reconstructs the dependent from the
independent gait descriptors (Appendix B) and regulates
the control objectives:

1. Step length (S) at the end of the swing phase with
duration defined by the swing time (T ). During swing
the CoM is assumed to move ballistically around the

Fig. 1. Segment model

Fig. 2. Proposed model for the synthesis of bipedal gait. Two of the
three gait descriptors are supplied from the higher center: the step
length (S), the step time (T), and the velocity of the CoM at push off
(VTO). In addition the trunk orientation is supplied from the higher
center to the global control. At the start of the swing or double-
support phase the end conditions of the phase are reconstructed from
these higher command signals. The global controller (GC) regulates
end-point objectives in the swing phase (S&T) and double-stance
phase (VTO), and continuous objectives at the trunk and the knees
(weight bearing). The calculated control inputs (joint moments) are
applied to the model of the biped. The biped’s current orientation and
kinematics (maximal joint torques/joint powers) are fed back into the
GC. Environmental conditions can expose constraints to the biped,
which are supplied to the controller and the higher center
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ankle. For a given velocity at push off (VTO), the po-
sition of the CoM is known at the end of the swing
time. Specifying the knee and ankle angle at foot
contact, the thigh angle can be reconstructed, since at
the end of the swing the feet have to be on the ground
(Appendix B).

2. Horizontal velocity of the CoM at push off (VTO). The
duration of the double-support phase is specified.

3. Trunk orientation. In most conditions the trunk has
to be maintained upright.

4. Weight bearing. To prevent collapsing, the knee joint
of the leg that bears body weight has to be relatively
straight during the entire cycle. The knee of the stance
leg in the swing phase and the front knee in the
double-support phase are controlled.

Control objectives 1 and 2 are end-point control
objectives, and 3 and 4 are continuous control objec-
tives. Therefore, a control algorithm is needed which can
incorporate both types of control objectives. A model
predictive control (MPC) is well suited to handling this
mixture of control objectives.

2.3 Quadratic dynamic matrix control

The GC is implemented as an MPC, which uses an
internal model of the system. Using a finite prediction
horizon, future outputs of the system at discrete time
steps are predicted as a function of last control inputs
and future changes in control inputs. The MPC
calculates the future changes in control inputs that
minimize the differences between future and desired
output. We implemented the MPC with quadratic
dynamic matrix control (QDMC). This algorithm was
developed by Garcia and Morshedi (1986) at the Shell
Development Company for applications in the chemical
industry. The algorithm utilizes a quadratic program
(QP) to compute moves on process-manipulated vari-
ables in such a way that controlled variables are kept to
their targets and violation of process constraints is
prevented. QDMC is well suited to our control problem,
since it is capable of handling a mixture of end-point and
continuous control objectives. The mechanical system
and the environment can expose constraints to the
global controller, which can be incorporated using
QDMC. With some modifications we adopted the
QDMC algorithm described in Garcia and Morshedi
(1986). Although QDMC is a linear controller, with
some modifications it can be applied to nonlinear plants
(Lee 1994). By successive linearization of the nonlinear
mechanical system at the working point, future control
inputs are found by solving a linear QP. The future
control inputs are applied to the actual nonlinear
mechanical system only for the next discrete time step.
At the new working point, this procedure is repeated.

2.3.1 Formulation for single input–output systems. Since
the final structures of the matrices used in QDMC are
quite complex, for the sake of clarity the equations for a
single-input, single-output system are formulated first.

The derivation of Garcia and Morshedi (1986) is
followed. Subtle changes make it necessary to present
the QDMC equations used in our application. For a
linear system, for any future discrete time �kk þ m, m > 0,
the output (y) is given by

yð�kk þ mÞ ¼
Xm
i¼1

ai � Duð�kk þ m� iÞ þ y�ð�kk þ mÞ ð2Þ

where �kk denotes the present discrete time, Du is the
change in input variable or an input move, ai is a unit
step response coefficient of the system, and y� is the
output of the system in the case where the future control
inputs equal past control inputs, i.e., the system’s output
for Duð�kk þ m� iÞ ¼ 0, i ¼ 1; . . . ;m. The predictions of
future outputs over a finite prediction horizon of P
discrete time steps follows from (1), with m ¼ 1; . . . ; P :

yð�kk þ 1Þ
..
.

yð�kk þ P Þ

2
64

3
75 ¼ y � ð�kk þ 1Þ

..

.

y � ð�kk þ PÞ

2
64

3
75þA �

Duð�kkÞ
..
.

Duð�kk þ P � 1Þ

2
64

3
75
ð3aÞ

A ¼

a1 0 0
a2 a1

..

. ..
. . .

.

aP aP�1 � � � a1

2
6664

3
7775 ð3bÞ

where A is called the dynamic matrix of the system. The
control problem is to find the changes in control inputs
(Du) that minimize the differences between future
outputs and desired outputs (yref). Define a P -dimen-
sional deviation vector eð�kk þ 1Þ at time k þ 1:

eð�kk þ 1Þ ¼ yrefð�kk þ 1Þ � y�ð�kk þ 1Þ

¼
yrefð�kk þ 1Þ � y�ð�kk þ 1Þ

..

.

yrefð�kk þ P Þ � y�ð�kk þ PÞ

2
664

3
775 ð4Þ

and

Duð�kkÞ ¼ ½Duð�kkÞ � � �Duð�kk þ P � 1Þ	T ð5Þ

as a vector of P input moves.
The dynamic matrix control (DMC) problem is de-

fined as finding the P future input moves ½Duð�kkÞ	 so that
the sum of squared deviations between predicted future
outputs and the reference value (yref) is minimized. This
is equivalent to the least-squares solution of

e �kk þ 1
� 	


 A � Du �kk
� 	

ð6Þ

By premultiplying (6) with AT, the least-squares solution
of (6) is

Duð�kkÞ ¼ ATA
� 	�1

ATe �kk þ 1
� 	

ð7Þ
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2.3.2 Formulation for multivariable system. For a mul-
tiple-input, multiple-output system with nu inputs and ny
outputs, (7) can still be applied. However, the matrices
and vectors are redefined: A becomes a multivariable
dynamic matrix composed of blocks of dimension P � P
step response coefficients, as in (3b) relating the rth
output to the sth input:

A ¼

A1;1 A1;2 � � � A1;nu

A2;1 A2;2 � � � A2;nu

..

. ..
. ..

.

Any;1 Any;2 � � � Any;nu

2
6664

3
7775 ð8Þ

The vector of variables of future input moves is
redefined as

Duð�kkÞ ¼ ½Du1ð�kkÞTDu2ð�kkÞT � � �Dunuð�kkÞT	T ð9Þ

and eð�kkÞ becomes

eð�kk þ 1Þ ¼ ½e1ð�kk þ 1ÞTe2ð�kk þ 1ÞT � � � enyð�kk þ 1ÞT	T ð10Þ

2.3.3 Weighting of input and output variables. The
amplitude of input moves can be suppressed through
the application of weighting factors for the input moves
(Du) and the demand that the sum of all weighted input
moves is minimized. This can be incorporated in the
DMC, so that (6) now becomes

eð�kk þ 1Þ
0


 �
¼ A

K


 �
Du �kk
� 	

ð11aÞ

where

K ¼ diagðk1k1 � � � k1

j �P�!j
k2k2 � � � k2 � � � knuknu � � � knuÞ ð11bÞ

and ki > 0 is the ith input-move suppression coefficient.
It is also possible to make a distinction between the

importances of the different controlled output variables
by weighting the least-squares residuals ½eð�kkÞ	. This is
achieved by premultiplying the DMC equations (Eq. 6)
with the matrix of output weights ki > 0:

C ¼ diag c1c1 � � � c1
j �P�!j c2c2 � � � c2 � � � cnycny � � � cny

 !
ð12aÞ

End-point control can easily be incorporated in QDMC.
An end-point objective is implemented by weighting
these reference outputs with zeros for k ¼ 1; . . . ; P � 1,
and with positive scalars for k ¼ P :

C ¼ diag 0 0 � � � c1
j �P�!j 0 0 � � � c2 � � � 0 0 � � � cny

 !
ð12bÞ

Including the weighting matrices on input moves
and controlled output variables, the DMC equation
becomes

Ceð�kk þ 1Þ
0


 �
¼

CA

K


 �
Duð�kkÞ ,

ATCTCeð�kk þ 1Þ
0

" #
¼ ATCTCA

KTK

" #
Duð�kkÞ ,

ATCTCeð�kk þ 1Þ þ 0 ¼ ATCTCAþ KTK
� 	

Duð�kkÞ ð13Þ

The least-squares solution of (13) is

Du �kk
� 	
¼ ATCTCAþ KTK
� 	�1

ATCTCe �kk þ 1
� 	

ð14Þ

2.3.4 Handling of constraints. QDMC is a QP solution
of the DMC equations. The advantage of a QP solution
is that limits can be set on both the control input and
controlled output variables. Constraints on control
input variables are formulated as

�1L

. .
.

�1L

1L

. .
.

1L

2
66666666664

3
77777777775
Du �kk
� 	
�

u1ð�kkÞ � u1max

� 	
1

..

.
1

uny �kk
� 	
� unymax

� 	
1

u1min � u1
�kk
� 	� 	

1

..

.
1

unymin � uny �kk
� 	� 	

1

2
666666666664

3
777777777775

with

1L ¼

1 0 0 � � � 0

1 1 0 � � � 0

..

. ..
.

1 1 1 � � � 1

2
66664

3
77775 ðP� PmatrixÞ

1 ¼ 1 1 � � � 1ð ÞT ðP� 1 column vectorÞ ð15Þ

where uimin and uimax are the lower and upper limits of
the ith control input variable, respectively; and uið�kkÞ is
the present value of the ith control input variable. This
inequality reflects that the sum of the current input move
and all predicted future input moves should not exceed
the maximum and minimum limits for all future time
steps.

Constraints on controlled output variables are for-
mulated as

�A

A


 �
Du �kk
� 	
� ðyrefð�kk þ 1Þ � ymaxÞ 1� eð�kk þ 1Þ
ðyminð�kk þ 1Þ � yrefÞ 1þ eð�kk þ 1Þ


 �

¼ y � ð�kk þ 1Þ � ymax

ymin � yð�kk þ 1Þ�


 �
ð16Þ

where ymin and ymax are the lower and upper limits of the
controlled output variables, respectively. This inequality
reflects that future output variables should not exceed
their maximum and minimum limits for all future time
steps.

These constraints (Eqs. 15, 16) can be expressed as a
system of linear inequalities:
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CDuð�kk þ 1Þ � cð�kk þ 1Þ ð17Þ

In addition, limits on individual input moves are defined
as

Dumin � Duð�kkÞ � Dumax ð18Þ

The least-squares solution of the DMC equations can be
expressed as the quadratic minimization problem of
equation

min
xð�kkÞ

1

2
ADuð�kkÞ � eð�kk þ 1Þ
� �T

CTC ADuð�kkÞ
��

�e �kk þ 1
� 	�

þ 1

2
Du �kk
� 	T

KTKDu �kk
� 	�

ð19Þ

In the absence of constraints the solution of (19) is given
by (14). Including the inequality constraints (Eqs. 17,
18), the following QP has to be solved:

min F ¼ 1

2
Duð�kkÞTHDuð�kkÞ � gð�kk þ 1ÞTDuð�kkÞ

subject to CDuð�kkÞ � cð�kk þ 1Þ(constraint equation)

Dumin � Duð�kkÞ � Dumax

in which ð20Þ
H ¼ ATCTCAþ KTK

and

gð�kk þ 1Þ ¼ ATCTCeð�kk þ 1Þ ð21Þ

2.4 Generation of gait

In order to generate a bipedal gait, the gait cycle was
divided into the double-support and swing phases. At
the beginning of these phases, the control objectives and
duration of both the phases were reconstructed from

higher-level commands (Fig. 2, Appendix B). These
continuous and end-point control objectives define the
output reference values ðyref, Appendix C); the control
inputs (u) were the joint moments of force.

The control objectives were met by applying QDMC
(Fig. 3):

0. From the desired duration of the phase and the
sample time used by QDMC, the initial prediction
horizon (P ) is reconstructed.

1. After linearizing the mechanical system at the current
state, a unit-step response model is obtained.

2. The weighting matrices are built from the control
objectives and weights of control input and controlled
output variables.

3. Integrating the nonlinear mechanical system with (as
input) the last calculated control inputs gives a pre-
diction of the system’s output if the control input
remains the same (y�). The deviation from the desired
outputs can be calculated from y� and desired output
values (yref) if the control input remains the same
[eðk þ 1Þ].

4. The limits of the control inputs and combining the
deviation vector[eðk þ 1Þ] with the limits on the out-
puts result in a set of constraint inequalities.

5. All matrices and vectors are now known to solve the
QP. The QP computes all moves on control input
variables over the total prediction horizon (P ). The
future control inputs are reconstructed from the old
control inputs.

6. From the future control inputs only the control inputs
for the next discrete time step are selected. The actual
(nonlinear) mechanical system is integrated with these
control inputs (joint moments) to the next discrete
time step.

7. The discrete time step is shifted from k to k þ 1, and
the prediction horizon is shortened from P to P � 1.
The calculation sequence (steps 2–7) is then repeated.

3 Results

3.1 Generation of basic gait

Continuous controls at the trunk and knees, and end-
point controls at the swing leg and at the horizontal
velocity of the CoM at toe off generate a cyclic gait (Fig.
4). A linear spring and damper at the ankle joint
stabilizes this joint (for simulation parameters, see
Appendix C).

The desired CoM velocity at push off (VTO ¼ 1:25 m/s)
and the desired step length (S ¼ 0:75 m) are supplied

Fig. 3. Flow chart of the generation of bipedal gait; see text for
explanation

Fig. 4. Stick-figure walking movement, showing the first ten gait
cycles. Only the right leg is displayed. The stick figure was traced every
0.05 s
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to the GC from a higher center (Fig. 2). The specified
double-support time was 0.17 s. From these gait descrip-
tors a step time of T=0.42 s is obtained. The resulting
average walking speed is 1.28 m/s. From initial conditions
(Figs. 4, 5), a symmetric cyclic gait is generated within one
step (Fig. 5).

The resulting cyclic gait was not sensitive to small
variations in initial conditions. Simulating one gait cycle
required 40 s of CPU time on an HP900. Most of this
was for the forward integration of the nonlinear me-
chanical system. Calculation of y� took on average
�40%, and integration of the real system (Eq. 1) took
�45%.

Model-predicted joint angles are compared with
measured joint angles of a human subject (body mass 80
kg, body length 1.9 m), walking at an average speed of
1.28 m/s (Fig. 6). Joint angles were averaged over the
first ten cycles. Predictions of a 2-D model are compared
with 3-D motion of a human subject who was not con-
strained to move in one plane. To make a comparison
possible, the desired step length (S ¼ 0:75) was chosen in
such a way that the model-predicted hip angles at HC
were approximately the same as those measured at HC.
The subject’s step length and step time were S ¼ 0:8 m
and T ¼ 0:57 s. The predicted and measured joint angles

of the hip and knee are similar. For humans, the ankle
joint of the stance leg shows more plantar flexion in the
earlier stance phase (t � 0:14–0.4 s).

In contrast with model predictions, at the end of the
stance phase, humans lift their heel from the ground,
thereby enlarging the step length (McMahon 1984). At
the end of the double-support phase ðt � 0:58–0.64 s),
the model predicted plantar flexion of the ankle joint
of the back leg is also smaller to that measured in hu-
mans. Foot clearance is not included in the controller as
an environmental constraint, but knee flexion during the
swing phase is sufficient.

For the subject, the joint moments of force are cal-
culated using inverse dynamics (Koopman et al. 1995)
and normalized to body weight. Human and model-
predicted joint moments are compared in Fig. 7. Model-
predicted and measured joint moments show similar
features. In the double-stance phase and at the begin-
ning of the swing phase (t � 0:5–0.7 s), hip flexion and
knee extension moves the (future) swing leg forward. At
the end of the swing phase (t � 0:8–1 s), hip extension
and knee flexion torques decelerate the leg. Strong
plantar flexion at the ankle joint moves the body for-
ward during push off (t � 0:5–0.6). Although the model-
predicted and measured patterns are quite similar, their
timing is a little different. Real plantar flexion is much
larger in the stance phase than predicted by the model.
This can be explained by the previously found differ-
ences in ankle joint angles (Fig. 6). Whereas in the model
the foot remains flat on the ground during single stance
phase, in reality people roll their feet over ground. The
amplitudes of model-predicted joint moments are larger
than measured values. This can be explained by the fact
that the impact losses for the planar model are larger
than for a 3-D human. The difference between the foot
rollover of the model and of humans can also be clearly
seen in the ground reaction forces (Fig. 8). The foot
rollover in the model shifts weight bearing from the left
foot to the right foot less fluently than in humans, as can
be seen from the high forces for the model at t �0.
Whereas in human walking the heel of the standing leg is
already lifted from the ground in the middle of the
stance phase (t � 0:3 s), causing a gradually increase of
the vertical ground reaction force, the heel of the model
foot remains flat on the ground and starts lifting from
the ground at the beginning of the push-off phase

Fig. 5. Phase portraits of the hip, knee, and ankle joint angles for the
first ten gait cycles. A steady state is reached within 1 cycle. The gait is
symmetric: steady cycles of the right (dashed lines) and left legs (dotted
lines) coincide

Fig. 6. Comparison of mean predicted and measured joint angles of
the right hip (solid lines), knee (dashed lines), and ankle (dotted lines).
Time is normalized to the cycle time. Hip and ankle flexions are
positive, and knee flexion is negative. Right HC (RHC, at t ¼ 0), left
toe off (LTO, t � 0:14 s), left heel contact (LHC, t � 0:5 s) and right
toe off (RTO, t � 0:64 s) are indicated in the graph by vertical lines,
dividing a cycle into a double-support phase (ds), a stance phase, and
a swing phase

Fig. 7. Comparison of predicted and measured joint moments of the
right hip (solid lines), knee (dashed lines), and ankle (dotted lines).
Moments are normalized to body weight; time is normalized to the
cycle time. Hip flexion is negative, and ankle plantar and knee flexions
are positive
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(t � 0:5 s), after which the vertical ground reaction force
of the model gradually increases.

Humans are known to walk very energy efficiently.
To compare the energy consumptions of humans and
the model, the joint powers of the model and a human
subject (weight 80 kg, height 1.9 m) walking at the same
velocity are compared. For the subject, the joint powers
are calculated using inverse dynamics (Koopman et al.
1995). The integrals of positive and negative joint pow-
ers of a human subject for different phases of a gait cycle
are shown in Table 1. The total positive energy for one
gait cycle is 102.1 J. Normalized to body weight, the

positive energy required per walking distance is
Em=0.80 J/kg�m. The largest amount of positive energy
is needed to push off the body at the double-support
phase (left leg push off: 30.2 J; right leg push off: 26.6 J).
Although it is often assumed that the swing leg moves
ballistically, considerable positive and negative energy is
needed to move the swinging leg (Table 1: left swing, 9.0
J and �14:7 J; right swing, 6.6 J and �13:2 J.

The energy balance of a model-predicted bipedal gait
(Table 2) is compared with the energy balance of a hu-
man subject (Table 1). For the model the positive energy
required per walking distance, normalized to body
weight, is Em = 1.79 J/kg�m, which is about two times
larger than for a human subject (Em = 0.8 J/kg�m). The
model needs more energy to push off than does a human
subject (left leg push off: 70.9 vs 30.2 J; right leg push off:
69.8 J vs 26.6 J). The larger effort to push off can be
explained by the large energy loss due to impact, indi-
cated by the total difference between positive and neg-
ative energies for a whole cycle (51.9 J) and the much
higher ground reaction forces of the model at impact
compared to human walking data (Fig. 8). The larger
impact loss in the model is also seen in the total ab-
sorbed energy in the front leg in the double-support
phase (left push off: �8:4 J vs �25:6 J; right push off 7.0
J vs �26:7 J). Extension of the model to 3-D and

Fig. 8. Comparison of predicted and measured horizontal (dashed
lines) and vertical (solid lines) ground reaction forces of the right leg.
Forces are normalized to body weight; time is normalized to the cycle
time

Phase Rhip (J) Rknee (J) Rankle (J) Rleg (J) Lhip (J) Lknee (J) Lankle (J) Lleg (J) Rleg+Lleg (J)

L. Push off positive 2.3 1.4 0.6 4.2 5.7 1.1 23.49 30.2 34.5
negative )0.3 )5.0 )3.1 )8.4 )0.1 )3.4 0 )3.5 )11.9

L. Swing positive 1.7 4.6 2.0 8.3 7.1 1.2 0.7 9.0 17.3
negative )7.4 )2.3 )7.6 )17.2 )1.6 )12.5 )0.6 )14.7 )32.0

R. Push off positive 6.0 1.9 18.7 26.6 2.8 3.4 1.7 7.9 34.5
negative )0.2 )3.2 0 )3.5 )0.4 )5.2 )1.4 )7.0 )10.5

R. Swing positive 5.6 0.3 0.7 6.6 1.7 7.1 0.5 9.3 16.0
negative )0.3 )12.2 )0.6 )13.2 )5.2 )0.7 )18.7 )24.6 )37.8

Cycle positive: 45.7 56.4 102.1
Cycle negative: )42.3 )49.8 )92.1

Cycle total 3.5 6.6 10.1

Table 1. Time integrals of positive and negative joint powers (in
joules) of a human subject, based on measurements, walking at a
velocity of 1.28 m/s. For the human subject, the joint powers are
calculated using inverse dynamics. Sums of joint powers are given

for the different phases in a gait cycle and for a whole gait cycle.
Joint powers are given for each individual joint, for the right and
left legs, and for both legs

Table 2. Time integrals of positive and negative joint powers (J) of the model walking at a velocity of 1.28 m/s. Sums of joint powers are
given for the different phases in a gait cycle and for a whole gait cycle. Joint powers for each individual joint, for the right and left legs, and
for both the legs are given

Phase Rhip (J) Rknee (J) Rank (J) Rleg (J) Lhip (J) Lknee (J) Lank (J) Lleg (J) Rleg + Lleg (J)

L. Push off Positive 7.4 2.6 1.4 11.5 17.2 16.8 36.9 70.9 82.4
Negative )7.8 )11.6 )6.2 )25.6 )2.2 )1.4 )6.4 )10.0 )35.6

L. Swing Positive 5.2 6.6 0.6 12.4 3.4 7.4 0.3 11.1 23.5
Negative )16.5 )0.4 )4.8 )21.7 )0.8 )21.1 )3.7 )25.6 )47.3

R. Push off Positive 17.4 16.0 36.4 69.8 7.8 2.5 1.4 11.7 81.5
Negative )2.7 )0.6 )6.4 )9.7 )8.3 )12.2 )6.2 )26.7 )36.4

R. Swing Positive 4.9 7.8 1.2 14.0 6.8 7.3 0.6 14.6 28.6
Negative )0.6 )22.3 )3.0 )26.0 )14.6 0.0 )4.3 )18.9 )44.9

Cycle positive: 107.6 108.3 216.0
Cycle negative: )82.9 )81.2 )164.0

Cycle total: 24.7 27.2 51.9
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smoother transition between the swing phase and dou-
ble-support phase is expected to reduce the impact loss
and thereby the total required positive energy during
push off. A smoother transition at HC can be achieved
by realization of a foot rollover during swing phase that
is more human-like.

The energy absorbed by the knee of the swing leg is
much larger in the model than for a human subject (left
swing: J �21:1 vs �12:5 J; right swing: �22:3 J vs �12:2
J). The difference is mainly caused by the passive spring
and damper around the knee in the model (K = 35 Nm;
D = 3 Nm/s).

3.2 Robustness to structural changes
in the skeletal system

Humans are able to walk under a wide variety of
challenging conditions. The capability of prosthetic
walkers to adapt to their new situation demonstrates
the extreme flexibility of the human nervous system.
This adaptation demands intensive rehabilitation, espe-
cially for above-knee amputees. To investigate whether
the model is able to walk in similar challenging
conditions, below- and above-knee amputation is sim-
ulated by removing the active controls around the ankle
and knee. Walking with limited muscle torques (cf.
reduced muscle strength in humans) is simulated by
constraining the active joint moments.

3.2.1 Walking with constrained joint torques. Active
controls at all joints are constrained to
�60 Nm < u < 60 Nm. The specified step length is S
= 0.75 m, and the specified velocity at toe off is
VTO ¼ 1:25 m/s. When the active controls are not
constrained, maximal active control torques at the hip,
knee, and ankle are 92, 17, and 140 Nm for these
objectives. Minimum active controls at the hip, knee,
and ankle are �118, �66, and �7 Nm when the active
controls are not constrained. When the active control is
constrained, the average CoM velocity at toe off is
VTO ¼ 1:18 m/s, the average walking velocity is v ¼ 1:14
m/s, and the average step length is S = 0.7 m. Due to
limited active control torques, the specified control
objectives for VTO and S are not met. Surprisingly,
cyclic gait is still generated.

Compared to walking with unconstrained control
inputs, the hip and ankle joint moments for walking with
constrained control inputs are smaller (Fig. 9). However,
the knee moments in the single-stance phase (t � 0:15–
0.5 s) are larger for walking with constrained control
inputs. Note that the absolute joint moments are larger
than 60 Nm. Since the joint moments are the sum of
active control torques and passive torques (springs and
dampers), the resulting joint moments can be larger than
60 Nm or smaller than �60 Nm.

3.2.2 Walking with a passive left ankle. In this case
active controls around the left ankle are removed, and
the passive left ankle consists of a linear spring and
damper (K = 173 Nm/rad; D = 0.88 Nms/rad). Again,

the desired CoM velocity at push off (VTO ¼ 1:25 m/s)
and the desired step length (S = 0.75 m) are supplied to
the model. For these reference values, the resulting
average walking velocity is v ¼ 1:13 m/s, and the average
step length is S = 0.78 m. Step lengths are similar for the
right and left legs, but step times (T ) are asymmetric
(T ¼ 0:50 and 0.55 s, respectively). Push off with the left
leg is affected by loss of active control around the left
ankle: the velocity at push off (VTO) is lower than
specified. Consequently, to obtain the same step length
the swing time of the left leg is larger. Note that in this
paper, S and VTO are supplied as reference values; if for
example T and VTO are supplied, a symmetric step time
and an asymmetric step length are expected.

The absence of active controls at the left ankle can
clearly be seen in the predicted joint moments (Fig. 10).
The ankle moments of the right ankle are larger than of
the passive left ankle, and the hip moments are larger
than in normal walking.

3.2.3 Walking with a passive left ankle and a passive
knee. In this case active controls around the left ankle
and knee are removed. The stiffness and damping of the
passive ankle joint are the same as in Sect. 3.2.2. The
passive left knee is locked during the left stance phase
and unlocked during the other phases. Knee locking is
realized by a stiff spring and large damper around the
artificial knee (K ¼ 333 Nm/rad; D ¼ 9 Nms/rad). When

Fig. 10. Simulation of walking with a passive left ankle, showing joint
moments of the right and left hips (solid lines), knee (dashed lines), and
ankle (dotted lines). Moments are normalized to body weight; time is
normalized to cycle time. Hip flexion is negative, and ankle plantar
and knee flexions are positive

Fig. 9. Comparison of joint moments when the amplitude of the
control inputs are constrained to �60 Nm < u < 60 Nm (right panel)
and when the control inputs are not constrained (left panel), for the
right hip (solid lines), knee (dashed lines), and ankle (dotted lines).
Moments are normalized to body weight; time is normalized to cycle
time. Hip flexion is negative, and ankle plantar and knee flexions are
positive
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the knee is unlocked the stiffness around the ankle is
K ¼ 55 Nm/rad, and the damping is D ¼ 7 Nms/rad.
For an average walking speed of V ¼ 1:03 m/s the step
length for the right leg is S ¼ 0:56 m and that for the left
leg is S ¼ 0:67 m. The step times are similar for the right
and left legs (T ¼ 0:38 s). Apparently, the model has
some difficulties in regulating step length. In order to
obtain a cyclic gait, the desired velocities at push off
(VTO) are chosen differently for the left and right legs: for
the right leg VTO ¼ 1:1 m/s, and for the left leg VTO ¼ 1
m/s. The model becomes unstable when the same VTO is
supplied for the left and right legs, since the desired VTO

for left toe off cannot be obtained due to loss of active
controls at the left leg.

The ankle moments of the left leg are much smaller
than for the right leg in the double-support phase (Fig.
11). Whereas the right knee produces a flexion torque
during push off, the left knee produces an extension
torque. The hip moments are much larger than for the
results of normal walking (Fig. 7, left panel).

3.3 Flexibility to changes in tasks
and environmental constraints

The effects of changes in tasks and in environmental
constraints on the proposed control scheme for gener-
ating walking was investigated. Walking uphill is an
example of a change in environmental constraints;
walking with various walking speeds and step lengths
are examples of changing tasks.

3.3.1 Walking uphill. For walking over level ground the
swing leg is specified to be straight at the end of the
swing phase. However, for walking uphill this is not
desired. Instead, specifying the shank to be vertical at
the end of the swing phase will give a more appropriate
configuration of the swing leg at the end of swing.

With this modification the model walks up a slope of
r ¼ 0:1 with an average progression speed of V ¼ 1:05
m/s and a step length of S ¼ 0:51 m (Fig. 12). (Note that
r is the direction coefficient of the slope, with a value
r ¼ 0:1 corresponding to a slope of 5:7�, i.e., atan(0.1/
1).) As expected, the required positive energy (Em =
5.27 J/m�kg) per unit distance is much larger than for
level walking (Em = 1.79 J/m�kg). Em is defined as the
time integral of the positive joint powers over a complete

gait cycle, divided by the stride length and body weight.
For larger slopes the model falls backwards; the knee
flexion at HC increases when the step length remains
constant. Consequently, larger knee moments are
needed to extend the knee. To prevent falling for larger
slopes, the distance between the horizontal position of
the CoM and the foot in the swing phase should be
reduced. This can be realized by bending the trunk
forward. By specifying a trunk orientation of 10� instead
of 0�, the model is able to walk up a slope of r ¼ 0:2 with
an average progression speed of V ¼ 1:05 m/s and a step
length of S ¼ 0:62 (Fig. 13). The required positive en-
ergy per unit distance is Em = 6.5 J/m�kg. When the
trunk is specified to be upright, the model falls back-
ward. An alternative to forward trunk bending is re-
ducing the step length. As a consequence of the larger
energy required for walking uphill, the moments during
the double-support phase increase. To prevent the model
from ‘flying,’ the desired velocity at toe off (VTO) has to
be reduced for larger slopes. An alternative is to increase
the double-support time.

3.3.2 Walking with various stride lengths at various ve-
locities. Humans can walk at different combinations of
walking speeds and step lengths. Combinations of
feasible walking velocities and step lengths of the model
are determined by systematically varying these descrip-
tors. The flexibility of the model to adjust its step length
is demonstrated by its ability to walk asymmetrically
(Fig. 14).

Step length (S) and horizontal CoM velocity at toe off
(VTO) are supplied as reference values. S is systematically
changed from 0.5 m to 0.85 m with small increments.
This is also done for VTO ¼ 0:8; 0:9; . . . ; 1:5 m/s. Recall
that T can be reconstructed from S and VTO. The model
walks for a wide range of different step lengths and

Fig. 11. Simulation of walking with a passive left knee and ankle,
showing the joint moments of the right and left hips (solid lines), knee
(dashed lines), and ankle (dotted lines). Moments are normalized to
body weight; time is normalized to cycle time. Hip flexion is negative,
and ankle plantar and knee flexions are positive

Fig. 12. Walking up a slope of r ¼ 0:1. The stick diagram was traced
every 0.1 s. Average walking speed was 1.05 m/s, step length was 0.51
m, and the sum of positive joint powers per walking distance is Em =
5.27 J/m�kg

Fig. 13. Walking up a slope of r ¼ 0:2. The stick diagram was traced
every 0.1 s. Average walking speed was 1.05 m/s, step length was 0.62
m, the sum of positive joint powers per walking distance is Em = 6.5
J/m�kg
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walking velocities (Fig. 15). The almost linear relation
between step length and stride frequency at a specific
walking velocity (Fig. 15) is also seen in human walking
(Grieve and Gear 1966). This figure also shows that for
faster walking the minimal feasible step length increases.
For large walking velocities and small step lengths, the
swing leg has to move forward very fast (i.e., small T ),
which causes problems for very fast movements. For
small walking velocities, the maximal feasible step length
decreases (Fig. 15). When a step is too large and the
velocity is too low, the body falls backward like an in-
verted pendulum with an initial velocity that is too low.

Although humans are able to walk at various com-
binations of progression speed and step length, they tend
to walk with a specific step length at a specific speed
(Inman et al. 1981). For a specific CoM velocity at push
off, the positive energy cost per unit distance (Em) de-
pends on the step length (Fig. 16), and there is an op-
timal step length (S�) for which Em shows a minimum
(Em�). The optimal step length scales linearly with
walking velocity (Fig. 17). The relation found in humans
between step length and walking velocity is also linear
(Koopman 1989). The required positive energy per
walking distance (Em�) when walking with the optimal
step length (S�) increases for larger walking velocities
(Fig. 18). This is in agreement with experimental data of
a human subject (Fig. 18).

4 Discussion

We have presented a general-purpose solution for
generating bipedal gait. A cyclic gait was generated
by regulating only a few descriptors of the gait. The
predicted joint angles and moments resemble those of
humans. The total positive energy required for the
model to walk is about 2 times larger than in a human
subject walking with the same velocity. In this paper

the focus was on the control objectives that are needed
to generate cyclic gait and not on the energy con-
sumption of gait. Energy consumption was not includ-
ed in the object function of the MPC. The gait
descriptors that are controlled have a clear correspon-
dence to the determinants of cyclic gait: step length,
progression speed, stride time, weight bearing, and
orientation of the upper body. This paper also shows
that there is no need to control all joint angles as a
function of time.

The number of model parameters is smaller than in
other models, and the control objectives are clear and
transparent. Other models (Yamaguchi 1989; Van de Belt
1997; Pandy and Anderson 1999) try to find a sequence of
input patterns (e.g., joint moments, muscle forces, or
muscle activations) that generates cyclic gait with minimal
energy consumption. Hundreds of variables are found by
optimization. The solutions are unstable since no feed-
back is incorporated, and hence the solutions do not give

Fig. 16. Model-predicted sums of positive joint powers per walking
distance (Em) for different CoM velocities at push off (VTO) and step
lengths (S). Sums of joint powers are normalized to body weight

Fig. 17. Model-predicted optimal step length S� at different walking
speeds, V (diamonds). The relation between S and V is approximated
by a least-squares fit of S� ¼ aV þ b (solid line; a ¼ 0:31; b ¼ 0:33).
The step lengths of a human subject (weight 80 kg, height 1.90 m) at
three different walking speeds are also shown (circles, experimental
data)

Fig. 18. Model-predicted sum of positive joint powers per walking
distance (Em�) at optimal step length S* at different walking speeds V
(diamonds). The sums of positive joint powers of a human subject
(weight 80 kg, height 1.90 m) at three different walking speeds are also
shown (circles, experimental data). Sums of joint powers are
normalized to body weight

Fig. 14. Stick diagram for asymmetric walking, with the stick traced
every 0.005 s. Left leg took large steps (S ¼ 0:89, T ¼ 0:42), and right
leg took small steps (S ¼ 0:58, T ¼ 0:46); v ¼ 1:23 m/s

Fig. 15. Relation between step length (S) and stride frequency at
different velocities at push off (VTO)
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insight in the control objectives underlying bipedal
walking; the intelligence is in the optimization algorithms.
The models developed by Taga (1995a) include (non-
conventional) feedback. However, the numerous feed-
back gains are difficult to relate to the gait pattern. In all
aforementioned models it takes much effort – trial and
error and immense computation times – to find feasible
solutions (e.g., Anderson et al. 1995; Yamaguchi 1990). In
the present approach it is clear which variables are
controlled, in contrast with other computer models. By
controlling these parameters cyclic gait is guaranteed,
without significant trial and error and with modest com-
putation times compared to the aforementioned models.

4.1 Towards efficient walking

In ballistic walking cyclic gait is the result of an
interaction between a neuromechanical system and the
environment. Energy losses mean that energy has to be
supplied to the system. In earlier concepts of ballistic
walking this energy was supplied by gravity, limiting the
approach to walking downhill. By triggered (van der
Linde 1999) or constant input forces (McGeer 1990),
‘ballistic walking’ on level ground can be generated.
Adjusting the control inputs can generate various types
of gait with different speeds and step lengths. In most
ballistic walkers, feedback is not incorporated. This
makes it difficult to find a cyclic gait and it limits the
region of stability, especially when the number of
degrees of freedom increases.

The basic idea of ballistic walking is to walk with
minimal energy consumption by using optimally the
mechanical properties of the biped and the mechanical
interactions of the biped with the environment. This basic
idea can be incorporated into the presented model. The
intriguing question is then whether the control effort of
the GC (active joint moments) can be minimized by ad-
justing the passive properties of the mechanical system.
The dynamics of the mechanical system could be adjusted
such that for a given step length and walking speed, energy
is optimally stored and freed in elastic elements, and en-
ergy is optimal transferred across joints by biarticular
springs (Van Ingen Schenau 1989). This concept can
be extended with triggered or reflex-like input or muscle
actions, acting as a low-level or peripheral controller (van
der Linde 1999). Ideally, the GC is supervising the gen-
eration of gait, whereas the actual gait is generated by the
interaction of the mechanical system and the environment
and controlled by low-level triggered control actions. The
global control ensures stability, especially in the case of
perturbations or sudden changes in task and environ-
mental constraints.

4.2 Real-time applications

In our approach it is not necessary to prescribe all
individual joint trajectories, in contrast with most
control schemes of existing bipedal walkers. Prescribing
consistent end-point conditions for the CoM velocity at

push off and the swing leg at HC, as well as continuous
controls on the knees and trunk, are sufficient to
generate bipedal gait. However, the required computa-
tion time is too large for real-time control of a biped.
Most of the CPU time is used for integrating the
nonlinear equations to calculate the system’s output (Y �)
for DU ¼ 0. The use of lookup tables or parallel
computing will drastically reduce the processing time.
Moreover, the use of QDMC is not the backbone of our
concept; the main message is that controlling progres-
sion speed and step length at push off and HC,
respectively, in combination with continuous control at
the trunk, is sufficient to generate cyclic gait. Other
control schemes might be well suited to meeting the
same control objectives. Reduction of CPU time and
real-time applications will be a topic of future research.

4.3 Flexibility and robustness
of the proposed control scheme

The proposed control scheme was robust to structural
changes in the skeletal system. Cyclic gait with one
passive ankle and/or knee is generated without adjusting
the structure of the control scheme. To be of use in the
design process of new and prosthetic systems, the model
should be able to generate a cyclic gait without active
controls at the ankle and/or knee. The preliminary
results presented in this paper are promising. Further
research has to explore the possibilities and benefits of
the proposed control scheme in the design process.
Whether the assumptions underlying the proposed
control scheme are valid for normal and pathological
human walking is still an open question.

Controlling the walking velocity is possible by vary-
ing the desired velocity of the CoM at the end of double
support. Controlling the step length is possible by
varying the desired step length. Variation of only two
end-point objectives generates various types of gait. For
the proposed control scheme there is no need to adjust
the planning of desired trajectories when desired speed
or step length is altered, in contrast with conventional
control schemes were trajectory planning and control
are separated. Except for the trunk orientation and knee
angle, the joint trajectories are not defined between the
beginning and the end of the double-support or swing
phase. Most joints are relatively ‘free’ during these
phases. By varying only two variables directly related
with speed and step length, the proposed control scheme
is very flexible.

Although various combinations of walking speeds
and step lengths are possible, the energetic costs differ.
For a specific speed, the required energy per unit dis-
tance depends on the step length. For every speed there
is an optimal step length which requires less energy per
unit distance than other step lengths. For larger walking
velocities the optimal step length increases. This relation
between step length and walking speed is also seen in
human walking (Koopman 1989). The minimal energy
per unit distance – energy for the optimal step length –
depends on the walking velocity.
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5 Conclusion

We have developed a general-purpose solution for the
generation of biped gait. Only a few control objectives are
regulated by an MPC: (i) trunk orientation, (ii) knee angle
of the leg that bears body weight, (iii) horizontal velocity
of the CoM at the end of the double-support phase, and
(iv) the configuration of the swing leg at the end of the
swing phase. Objectives iii and iv are reconstructed from
the gait descriptors: step length, step time, and walking
velocity. Since the CoM moves ballistically during the
swing phase, two of these gait descriptors can be chosen
independently. Environmental and bipedal constraints
can easily be incorporated into the MPC.

Task adaptation and robustness to changes in skeletal
dynamics were evaluated. Using only four control ob-
jectives, this control scheme was able to generate a cyclic
gait at various combinations of speeds, step lengths, and
step frequencies. The model was even able to walk uphill,
asymmetrically, and with passive knees and ankles.

Appendix A: Foot–floor interactions

The horizontal and vertical reaction forces at the heel
and toe are given by

F heel;toe
gy ¼ Kgy ½yheel;toe � fgyðxheel;toeÞ	

�
þDgy _yyheel;toe

�
l½yheel;toe � fgyðxheel;toeÞ	 ðA1Þ

if F heel;toe
gx

��� ��� � lF heel;toe
gy

��� ���)
F heel;toe

gx ¼ Kgxðxheel;toe � fgxÞ
�
þDgx _xxheel;toe

�
l½yheel;toe � fgyðxheel;toeÞ	 ðA2Þ

if _xxheel;toe 6¼ 0) F heel;toe
gx ¼ lF heel;toe

gy mð _xxheel;toeÞ ðA3Þ

lðxÞ ¼ 0 for x � 0; lðxÞ ¼ 1 for x < 0 ðA4Þ

mðxÞ ¼ �1 for _xxheel;toe > 0; mðxÞ ¼ 1 for _xxheel;toe < 0

ðA5Þ

where xheel;toe and yheel;toe are the positions of the heel
and toe. Kg and Dg represent the stiffness and damping,
fgy is a ground profile function, fgx is the offset of the
horizontal springs, and l is the friction coefficient. When
the heel or toe touches the ground, the horizontal
reaction force is modeled as a dynamic friction force
(Eq. A3). When the toe or heel reaches zero horizontal
velocity, the horizontal reaction force is modeled by a
spring and damper (Eq. A2). The offset of this spring
(fgx) is the position of the heel or foot at which it reached
zero horizontal velocity. However, when this horizontal
reaction force is larger than the maximal friction force,
the horizontal reaction forces are modeled as dynamic
friction forces (Eq. A3).

Appendix B: Relation between S, T, and VTO

The CoM is assumed to move passively during the swing
phase, since due to the large moment of inertia around
the stance leg’s ankle, ankle moments hardly influence
CoM motion during this phase. CoM motion during the
swing phase is modeled as an inverted pendulum. The
body mass is concentrated at the end of the pendulum,
and the rod has no mass. When the CoM position and
velocity (VTO) at the begin of the swing phase (t0) is
known, the position of the CoM at the end of the swing
phase (tf ) can easily be calculated (Fig. 19A).

The hip position is known from CoM position. By
specifying knee and ankle angles of the swing leg at the
end of swing phase, the thigh angle can be reconstructed
and the step length (S) is calculated (Fig. 19B), since by
definition the HCs ground at the end of swing.

So, for a given VTO and T , S can be reconstructed.
Reconstruction of VTO from S and T , or T from S and
VTO is straightforward.

Appendix C: Simulation parameters

The parameters for foot–floor interaction (Eqs. A1–A5)
were as follows: the stiffnesses of horizontal and vertical
springs were Kgx ¼ 1� 105 and Kgy ¼ 1� 106, and the
damping factors were Dgx ¼ 1� 103 and Dgy ¼ 1� 104,
respectively. The friction coefficient was l ¼ 0:5. The
stiffness and damping of the various joints are given in
Table C1.

For the shown gait patterns, the specified double-
stance time was 0.17 s. The duration of the swing phase

Fig. 19. A During the stance phase the CoM moves ballistically. The
initial position and velocity, and the CoM position at the end of the
swing phase are known. B Hip position is reconstructed from CoM
position. Since at the end of the swing phase the heel should make
floor contact, the thigh angle can be reconstructed from the known
hip position and the specified ankle and knee angle

Table C1. Parameters of springs and dampers acting across dif-
ferent joints

Joint K
(Nm)

D
(Nm/s)

Joint K
(Nm)

D
(Nm/s)

Swing Hip 5 4 Front Hip 5 4
Stance Hip 5 4 Back Hip 5 4
Swing Knee 35 3 Front Knee 35 3
Stance Knee 35 3 Back Knee 35 3
Swing Ankle 58 1.32 Back Ankle 58 1.32
Stance Ankle 58 1.32 Back Ankle 58 1.32
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(T ) was reconstructed from the desired step length and
velocity at push off (Appendix A). The outputs of the
system, which are controlled by the GC, are given in
Table C2. These outputs are either specified or recon-
structed (Appendix A). The global controller regulates
these output objectives that are either end-point or
continuous conditions.
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Table C2. Control objectives for the global controller: controlled output variable, desired output value (yref), and weighted output variable
(c); and type of control objective (continuous or end point)

Swing phase Push off phase

Controlled variable yref c Objective Controlled variable yref c Endpoint

Swing Knee 4 200 endpoint Speed CoMx R 100 endpoint
Swing Femur R 2e3 endpoint Front Knee 20 100 endpoint
Stance Knee 0 60 continuous
Trunk 0 200 continuous Trunk 0 200 continuous
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