Handling uncertainty over time:
predicting, estimating,
recognizing, learning
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Why do we care?

Speech recognition makes use of dependence
of words and phonemes across time.

Knowing where your robot is makes use of
reasoning about processes that unfold over
time.

So does most reasoning, actually.

Medical diagnosis, politics, stock market, and
the choices you make every day, for example.

Examples

How tall am I? (continuous)
What room am | in? (discrete)

Discrete states and measurements

What room am | in?

State: Kitchen vs. Den

Measurement: Do | smell food?

Priors: p(K) = 0.7, p(D) = ? = 1-p(K)
Measurement model: p(F|K) = 0.8, p(F|D)
=0.1, p(~F|K) =?, p(~FID) = ?

What is p(K|F)? p(K|~F)?

Bayes’ Rule

* p(A&B) = p(A|B)p(B) = p(B|A)p(A)

* So p(A[B) = p(B|A)p(A)/p(B)

+ Example: p(K|F) = p(F|K)p(K)/p(F)

* Note that p(F) = p(F|K)p(K) + p(F|D)p(D)




What happens with a second
measurement?

+ Same formulas, new prior.
» First measurement: F: p(K|F) = 0.95

The Numbers

pP(F) = p(FIK)p(K) + p(F|D)p(D)

0.59 = ?.8 0.7 +0.1*0.3 . State - p(F.FIK) = p(FIK), eto.

P(KIF) = p(FIK)p(K)/p(F) + p(FFIF) = p(F.FIKIp(KIF) + p(F, FID)p(DIF) =
0.95 = 0.8+0.7/0.59 0.77

 o(KI~F) = p(~FIK)p(KYIp(~F * B(KIF.F) = p(F,FIK)*p(KIFYp(F,FIF)

pE~||:) =)1 E( (Fl) PUIPER) + 0.99 = 0.8*0.95/0.77

o b . * B(KIF,~F) = p(F,~FIK)*p(KIFYp(F,~FIF)

» So p(K|~F) =0.34 = 0.2*0.7/0.41 . 0.83 = 0.2*0.95/0.23
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Shorthand: We say X ~ N(u,62) to mean “X is distributed as a Gaussian
with parameters p and c?”.

In the above figure, X ~ N(100,15?)

The Central Limit Theorem

 If (X;,X,, ... X,)) are i.i.d. continuous
random variables La
» Then define z= f(xl,xz,...xn):fzxi
n

i=1

* As n-->infinity, p(z)--->Gaussian with
mean E[X|] and variance Var[X]

Somewhat of a justification for assuming
Gaussian noise is common

Combining Measurements: 1D

True value x

Measurements m,, m2: E(m,-x) = 0, Var(m,) = ¢,2,
E(m,-x) = 0, Var(m,) = 5,2, independent

Linear estimate x = kym; + k,m,

Unbiased estimate means k, =1 - k; so E(x ) = x
Minimize Var(x ) = k26,2 + (1 — k)2 0,2

So dVar(x )/oky=0 -> 2k4(c2 + 6,2) - 26,2=0
So ki = 0,2/(c)* + 6), ky = 6,%/(0)* + 5,?)

So Var(x ) = 6,2 6,2/(5,2 + 5,2)

What happens when 6,2 = 0? 5,2 = infinity?
BLUE: Best Linear Unbiased Estimator

Handling Measurements Over Time

 Just keep doing what we did before:
p(state|new-measurement) = ...

What is a “state”

Everything you need to know to make the best
prediction about what happens next.

Depends how you define the “system” you care about.
States are called x or s. Dependence on time can be
indicated by x(t).

States can be discrete or continuous.

Al researchers tend to say “state” when they mean
“some features derived from the state”. This should be
discouraged.

A “belief state” is your knowledge about the state,
which is typically a probability p(x).

Processes with state are called Markov processes.

Dealing with time
» The concept of state gives us a handy way of
thinking about how things evolve over time.

* We will use discrete time, for example 0.001,
0.002, 0.003, ...

State at time t, x(t,), will be written x, or x[K].
Deterministic state transition function x4 = f(x,)
Stochastic state transition function p(x,.4|Xy)
Mildly stochastic state transition function

X1 = (X)) + €, with € being Gaussian.




Hidden state

+ Sometimes the state is directly
measurable/observable.

+ Sometimes it isn’t. Then you have “hidden
state” and a “hidden Markov model” or
HMM.

+ Examples: Do you have a disease? What
am | thinking about? What is wrong with
the Mars rover? Where is the Mars rover?

X1 Xy Xi+1
} ! !
measurements  Yk-1 Yk Vi1

Measurements

+ Measurements (y) are also called evidence (e)
and observables (0).

» Measurements can be discrete or continuous.
+ Deterministic measurement function y, = g(x,)
+ Stochastic measurement function p(y,|x,)

+ Mildly stochastic measurement function

Y = g(x,) + v, with v being Gaussian.

Standard problems

* Predict the future.

 Estimate the current state (filtering).

+ Estimate what happened in the past
(smoothing).

+ Find the most likely state trajectory
(sequence/trajectory (speech) recognition).

» Learn about the process (learn state transition
and measurement models).

Prediction, Case 0

+ Deterministic state transition function x4 = f(x,)
and known state x,: Just apply f() n times to get
Xian-

* When we worry about learning the state
transition function and the fact that it will always
have errors, the question will arise: To predict
X4 18 it better to learn x4 = f,(x,) and iterate,
or learn X,, = f,(x,) directly?

Prediction, Case 1

+ Stochastic state transition function p(x,.4|x,),
discrete states, belief state p(x,)

+ Use tables to represent p(x,)

» Propagate belief state: p(x,.1) = Zp(X11X)P(X,)

Matrix notation:

Vector p,, Transition matrix M, M; = p(x;[x;); i, j,
components, not time.

Propagate Belief state: p,,, = Mp,

Stationary distribution M* = lim(n-> o) M"

Mixing time: n for which M" ~ M=

Prediction, Case 2

+ Stochastic state transition function p(x,.4[x,),
continuous states, belief state p(x,)

» Propagate belief state analytically if possible

P(Xyq) = J.p(xk+1lxk)p(xk)dxk

« Particle filtering (actually many ways to
implement).

« Sample p(x,).

» For each sample, sample p(X,.4/X)-

+ Normalize/resample resulting samples to get
P(Xs1)-

* lterate to get p(Xy.,)




Prediction, Case 3
+ Mildly stochastic state transition function
with p(x,) being N(u,%,), X,y = f(x,) + &,
with & being N(0,%,), ¢ independent of
process.

* E(Xyaq) = (1)

* A = offox

* Var(X ) ~ AL AT+ 3,

* P(Xiaq) 1S N(E(Xyisq),Var(xes))-

* Exactif f() linear.

* lterate to get p(Xy.n)-

* Much simpler than particle filtering.

Filtering, in general
« Start with p(x,.4*)
* Predict p(x,)
* Apply measurement using Bayes’ Rule to
get p(x," ) = P(Xylyy)
* P(XdlYi) = P(YiIXi)P () P(Y)

» Sometimes we ignore p(y,) and just
renormalize as necessary, so all we have

to do is p(X,|Yx) = ap(Y,X)P(X,)

Filtering, Case 1

+ Stochastic state transition function p(x,.4|x,),
discrete states, belief state p(x,), p(YilXy)

* Use tables to represent p(x,)
» Propagate belief state:

P(Xye1) = X P(Xce11Xi)P(X™)

» Weight each entry by p(y,|x,):
P(Xie1™) o€ P(YiIXi)P (X1

* Normalize so sum of p() = 1

» This is called a Discrete Bayes Filter

Filtering, Case 2

Stochastic state transition function p(X,.4|X),
continuous states, belief state p(x,)

Particle filtering (actually many ways to
implement).

Sample p(x,).

For each sample, sample p(X.4|X;)-

Weight each sample by p(y,|x,)-
Normalize/resample resulting samples to get
P(Xyr1)-

Iterate to get p(Xy.n)

EEE 581 Lecture 16

Particle Filters:

a Gentle Introduction
http://www.fulton.asu.edu/~morrell/581/

Particle Filter Algorithm

» Create particles as samples from the initial
state distribution p(x,).
* For k going from 1 to K

— Update each particle using the state update
equation.

— Compute weights for each particle using the
observation value.

— (Optionally) resample particles.




Initial State Distribution: Samples
Only

Xo

Importance Sampling

« |deally, the particles would represent
samples drawn from the distribution p(x).

— In practice, we usually cannot get p(x) in
closed form; in any case, it would usually be
difficult to draw samples from p(x).

* We use importance sampling:

— Particles are drawn from an importance
distribution.

— Particles are weighted by importance weights.

Samples and Weights

— Each particle has a value and a weight

State Update
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Things are more complicated if have multimodal p(x,|x,)

Compute Weights

Use p(y|x) to alter weights

Before
X1

w 9 After

Can also draw samples with replacement using p(y|x)*weight as p(selection)

Resampling

* In inference problems, most
weights tend to zero except @ @~+o---r
a few (from particles that
closely match
observations), which
become large.

* We resample to concentrate
particles in regions where
p(x|y) is larger.
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Advantages of Particle Filters

Under general conditions, the particle filter
estimate becomes asymptotically optimal
as the number of particles goes to infinity.

Non-linear, non-Gaussian state update
and observation equations can be used.
Multi-modal distributions are not a
problem.

Particle filter solutions to inference
problems are often easy to formulate.

Disadvantages of Particle Filters

* Naive formulations of problems usually
result in significant computation times.

* Itis hard to tell if you have enough
particles.

* The best importance distribution and/or
resampling methods may be very problem
specific.

Conclusions

Particle filters (and other Monte Carlo
methods) are a powerful tool to solve difficult
inference problems.

— Formulating a filter is now a tractable exercise
for many previously difficult or impossible
problems.

— Implementing a filter effectively may require
significant creativity and expertise to keep the
computational requirements tractable.

Particle Filtering Comments

Reinvented many times in many fields:
sequential Monte Carlo, condensation,
bootstrap filtering, interacting particle
approximations, survival of the fittest, ...

Do you need RY samples to cover space? R is
crude measure of linear resolution, d is
dimensionality.

You maintain a belief state p(x). How do you
answer the question “Where is the robot now?”
mean, best sample, robust mean, max
likelihood, ... What happens if p(x) really is
multimodal?

Return to our regularly scheduled
programming ...

* Filtering ...

Filtering, Case 3
» Mildly stochastic state transition function
with p(x,) being N(u,%,), X,y = f(x,) + &,
with € being N(0,XZ,) and independent of
process.

+ Mildly stochastic measurement function

Y = 9(x,) + v, with v being N(0,Z ) and
independent of everything else.

» This will lead to Kalman Filtering

* Nonlinear f() or g() means you are doing
Extended Kalman Filtering (EKF).




Filtering, Case 3
Prediction Step

* E(Xr) = f(n)

« A = offox

* Var(x,) ~ AZ AT + 3,

* P(Xer?) is N(E(Xr1),Var(xy.1))

Filtering, Case 3
Measurement Update Step

* E(x") = E(x¢) + Ki(ye — 9(E(x,)))

» C = oglox

0% = Var(x,)

Var(x*) = £, - K,C 2

*+ S, =CECT+3

* K, =2, CTS,"

* p(x)is N(E(x,"),Var(x"))

* This all comes from Gaussian lecture ...

Unscented Filter

* Numerically find best fit Gaussian instead
of analytical computation.

* Good if f() or g() strongly nonlinear.

What | would like to see

» Combine particle system and Kalman
filter, so each particle maintains a simple
distribution, instead of just a point
estimate.

Smoothing, in general

Have y,., want p(xy;.x)

Know how to compute p(x,|y,.) from filtering
slides

P(XY1n) = POXlY 10 Yicr1:n)

PV 1:n) € POKY 15 (Vies1:nlY 10 Xi)

P(XY1:n) € POGY 4P (Vics1:n1Xi)

PVie1:n1%0) = 2/ PV ietnlXio X1 )P XK1l %) A
= 3/ P(Yicwr X1 )P Kt ]:X0) Ay

= 2/ DYt X1 )PVicwan X1 P X1 ]:Xi) A
Note recursion implied by p(Yy.is1:nXksi)

Smoothing, general comments

* Need to maintain distributional information
at all time steps from forward filter.

« Case 1: discrete states: forward/backward
algorithm.

» Case 2: continuous states, nasty dynamics
or noise: particle smoothing (expensive).

» Case 3: continuous states, Gaussian
noise: Kalman smoother.




Finding most likely state trajectory

+ Goal in speech recognition

* P(XpXgs- - XnlY 1) #
P4 1Y 4:0)P O]V 1:0) - - - P (XY 1:n)

» Are we screwed? Computing joint
probability is hard!

Viterbi Algorithm
max p(XlY+)
= max p(y1:k|X1:k)p(X1:k)
= max P(Y1eq Yl X110P(X44)
= max P(Y g1 Xq40)P(YilXi)P(X14)
= MaX PVt X111 )PVilXi )P X X 1164 )P (X 44)
= maXx [P(Y1.x-11X1:-1) PX1) IPYilXi )P (i X 16-1)
= max P(Xqyeq 1Y 14-1)PYilXi)P (Xl Xic.1)
Note recursion

Do we evaluate this over all possible
sequences?

Viterbi Algorithm (2)
» Use dynamic programming

(V%P (XXy1)

GG

States at time k-2 States at time k-1 States at time k

Max P(XqpqY14)PYidXiP (XX 1)
over predeCeSSOrS

Viterbi Algorithm (3)

Well, this still only really works for discrete
states.

Continuous states have too many possible
states at each step.

D dimensions, R resolution in each dimension
implies RP states at each time step.

Ask me about local sequence maximization.

Learning

+ Given data, want to learn
dynamic/transition and sensor models.

* Smooth, choose most likely state at each
time, learn models, iterate.

 This is known as the EM algorithm.
« Discrete case: Baum-Welch Algorithm




