
16-299 Lecture 7: Feedforward Control
So far we have focused on feedback control in this course. We will now shift

emphasis to include “feedforward” control, in which some function of the goal is
“fed forward” to the plant, independent of the plant state or any feedback.

Consider holding up your arm against gravity. If you just used feedback control,
there would have to be an error in order to generate any force to hold your arm up.
How could you actually reach the target?

• Integral Control: Gradually add force to lift your arm until it reaches the
target. If you overshoot, reduce the added force.

• Model-based Feedforward Control: Use a model of the arm to predict the
added force necessary to hold your arm up at the target, and add that force to
the output of a feedback controller.

• Model Learning: Remember what effect each added force had, and use this
information to create, alter, or correct the model used in model-based feed-
forward control.

• Policy Learning: Remember what added force worked for each target, and
based on the target, interpolate to find the amount of added force necessary.
The difference between model and policy learning becomes clearer when the
model is complicated or expensive to evaluate, and just remembering what
command or action to apply skips any model evaluation.

• Exploration-based learning: Search for the best added force by trying out
different added forces. Use your favorite optimization algorithm to decide
what force to try next.

1

Integral Control
We have focused on regulators so far, with the goal of keeping the plant at an

equilibrium point. In this case integral control is often useful:

uffnext = uff − ki ∗ error (1)

However, when the system is moving or changing, integral control is less useful
because the correction is based on past rather than current errors. In many cases
integral control is turned off during a movement or state change. Integral control
is only gradually turned back on, or uff is set to zero, so there is no discontinuity
in the command when integral is turned back on after the movement or change
is over. There are also situations where uff increases to unsafe levels because
movement or change is temporarily blocked, or the actuation is not turned on or
is saturated. When the problem stops, the large uff causes a large action. This is
known as integrator windup. Careful management of uff is necessary. The amount
of safety code (software) is often much larger than the control code. Ironically,
often the safety code itself is a source of bugs, errors, and accidents. I also note
that user interface code often dwarfs other types of code, and control experts spend
a lot of their effort on safety and user interface programming.

A simple way to manage integral control is to 1) not integrate new errors if
the velocity magnitude is above a low threshold of a blockage of the system is
detected, and 2) use a leaky integrator so the feedforward command decays over
time. On each tick of the controller:

uffnext = 0.99 ∗ uff − ki ∗ error (2)

where the error is set to zero when |velocity| > ε or blockage is detected.

2

PID Control
PID (or actually PD) control is a good place to start to get a system up and

running. At that point one can start collecting data to indentify what the state
dimensions are, build a model, and being optimizing a controller.

The first task is to get the signs right on all the controls. It is nice to have
positive force or torque move a degree of freedom (DOF) in the positive direc-
tion. Initially one often has to use numerically differentiated position to estimate
velocity.

I would gradually turn up the position gain until the system oscillates at the end
of a step reponse. I would then try to add enough damping to reduce the oscillation
to tolerable levels. I would repeat this process until either A) I couldn’t get rid of
the oscillations or B) The step response is fast enough. In this initial (PD) phase,
a key idea is “Don’t be greedy.” All you are trying to do is collect enough data
to make a model. It is a good idea to use data from different controllers (different
control gains) in makeing a model, so that the model does not inadvertently model
the controller rather than the plant.

As long as we are talking about PID control, I should mention that in cases
where the derivative of the state or the error is not measured directly, one should
ultimately use some kind of observer, ideally a Kalman Filter, to estimate velocity.
Numerically differentiating the position signal amplifies sensor noise. Adding a
low pass filter cleans up the velocity estimate, but also delays it, which degrades
controller performance. It is much better to take a state space approach, use a
Kalman Filter, and use optimization to choose the controller and state estimator
parameters.

State space approaches provide a natural way to handle delayed feedback as
well.

3

Model-based control
A typical attitude towards model-based control is revealed by this quote from

the textbook. “It is much better to achieve zero steady-state error by integral action
than by feedforward [ie. a prediction from a model], which requires a precise
knowledge of process parameters.” (page 11-4)

I must add that not only must the model parameters be known, but the model
structure needs to be sufficiently correct as well. People are lazy, and would like to
avoid thinking about, identifying, or correctly applying models. The complexity
of some models is daunting, and leads many roboticists and AI researchers to view
robots as stochastic systems that just don’t do what one wants because of random
perturbations.

I feel your pain. However, almost all of the progress in areas like bipedal legged
locomotion have been due to more accurate models and better state estimation.
Modeling effort pays off. Using some form of learning (which is what integral
control is) to make up for a lack of effort on modeling usually turns out to be a bad
decision, and not much progress is made. Learning complements modeling, and
the “more the agent knows, the better and faster it can learn.”

4

Robot dynamics
Robot dynamics equations generally have the following form:

M(q)q̈+ q̇TC(q)q̇+G(q) + F(q̇) = ττ + J(q)f (3)

where

• q are the position or configuration variables of the robot.

• q̇ are the velocity variables of the robot.

• q̈ are the acceleration variables of the robot.

• M(q) is the inertial matrix of the robot, which depends only on its configu-
ration. It is the multidimensional equivalent of a the one dimensional mass
or moment of inertia. You see what it is for a TWIP robot in the assignment.

• q̇TC(q)q̇ represents the Coriolis and centripetal forces, which are quadratic
in velocity. C() only depends on configuration variables.

• G(q) are the gravitational forces, which depend only on configuration vari-
ables.

• F(q̇) are the frictional forces, which ideally depend only on velocities.

• ττ are the joint torques.

• J(q)f uses a Jacobian matrix J(q) to map contact forces f into joint torques.

5

My thesis was about learning models
I started graduate school in 1981. At the time, it was thought that learning

(identifying) accurate models of robot dynamics was not practical since there were
so many parameters. Even if such models could be created, they could not be used
for real time control since they were very complex, and thus too computationally
expensive. Colleagues worked on learning kinematic models and creating recur-
sive models of robot dynamics which could be evaluated in real time. Now, when
computers are a million times faster, it seems silly to worry about computation
time, but it was a real issue then.

In my thesis work I wanted to show that accurate dynamic models could be
identified. Humans can do amazing things (just watch the Olympics) that would
seem to require models (or some stored information), given the delays in the ner-
vous system. I initially set out to identify a global (works for any behavior) model
of inertial forces, and then worked on local models for specific behaviors.

A large part of a robot dynamics model tries to capture the rigid body dynamics.
My key insight is that for rigid body dynamics the inertial parameters of mass,
moments of inertia, and mass moment (the product of the mass and the center
of mass ofset from a reference point) appear linearly in the rigid body dynamics
equations. Each rigid link has 10 parameters (1 for mass, 3 for mass moment, and
6 for the 3x3 symmetric moment of inertia matrix). Since rigid body dynamics is
based on

force = mass ∗ acceration (4)

we can see that mass appears linearly, and forces sum linearly. The complexity
of these equations comes from expressing the linear and angular accelerations of
mass “particles” or “bodies”, which are combinations of lengths (offset vectors),
trigonometric functions of angles, and quadratic velocity terms. For a single rigid

6

link, we can write the dynamics as

MatrixOfAccelerations(q, q̇)∗

m
mcx
mcy
mcz
Ixx
Ixy
Ixz
Iyy
Iyz
Izz

= VectorOfForcesAndTorques(q) (5)

For a robot we combine equations like these with unknown inertial parameters
for all the robot’s (rigid) parts. Note that the parameter mcxx is a single parame-
ter, rather than a product of two parameters, m and cxx. That is what makes the
unknown parameters appear linearly in these equations.

Because the motions of the robot’s proximal links have limited degrees of free-
dom (the first link can only rotate around the base joint) if the robot is bolted down,
it is not possible to identify all parameters. However, the parameters that can’t be
identified don’t affect the dynamics, and thus don’t matter. Similarly, sometimes
only linear combinations of parameters can be identified but not the individual
parameters. This is not a problem either, since only the linear combination of
parameters affect the dynamics. The individual parameters don’t independently
affect the dynamics.

7

8

TWIP example.

(Iw
r2w

+mp +mw lp ∗mp ∗ cos(θ)
lp ∗mp ∗ cos(θ) Ip + l2p ∗mp

)(
ẍ

θ̈

)
=

(
rw ∗ (−τ + θ̇2 ∗ lp ∗mp ∗ rw ∗ sin(θ))

τ +G ∗ lp ∗mp ∗ sin(θ)

)
(6)

• mw: ẍ

• Iw: ẍ/r2
w

• mp: ẍ

• lpmp: (ẍ+ θ̈) cos(θ)− θ̇2 ∗ r2
w ∗ sin(θ)−G ∗ sin(θ)

• I∗p: θ̈

• right hand side:
(
−rw ∗ τ

τ

)

9

Learning trajectories from practice
Another part of my thesis focused on how robots could learn to execute trajec-

tories perfectly by practicing them. I assumed we had already done the best job we
could to identify a global robot model. I believe the secret to human competence is
task specific models, models that only attempt to capture a small and local region
of behavior space.

10

11

MPC

12

What models are necessary?
Heavily geared motors isolates joints PID fine.
Actuator dynamics?

13

