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second one is based on a Euler rotation representation. The quaternion 
vector approach leads to a linear feedback control law for which the 
global asymptotic convergence of the orientation error is readily estab- 
lished. The Euler rotation approach also results in asymptotic error 
convergence in the large except for a singularity where the hand 
orientation differs from its desired orientation by a rotation of 180”. 

I. INTRODUCTION 
Manipulators with six or  more degrees of freedom are generally 

required to follow preplanned paths of hand position and orientation 
defined as a function of time in Cartesian (or task space) coordinates. 
For closed-loop control of resolved motion, the instantaneous motion 
of the hand, or  end-effector, must be monitored continuously either 
by using direct endpoint sensing techniques (e.g. ,  [ I ] )  o r  via a 
kinematic model of the manipulator which computes the hand 
position and orientation from the joint variables. This information is, 
in turn, used to produce corrective control action from the joint 
actuators in the manipulator (Fig. I ) .  

The hand position and orientation of a manipulator are typically 
represented by the position vector and rotation matrix, respectively, 
between reference coordinate frames fixed to the base and the last 
link of the manipulator [2]. The rotation matrix has the general form 

&fj= In s a] (1) 

where n,  s, and a are the normal, slide, and approach (unit) vectors 
of the hand frame expressed in base frame coordinates. 

It is clear that the position vector p and its derivatives ( j  and p 
for velocity and acceleration, respectively) completely describe the 
translational motion of the hand. The position tracking error may be 
defined as 

e, = p  -Pd (2) 

where P d  denote the desired hand position vector. The velocity and 
acceleration errors can be defined accordingly as e, = ( j  - j d )  and 
e,= ( p  - j d ) ,  respectively. 

If o and G denote the angular velocity and acceleration of the hand, 
then the corresponding error terms may be defined as eo = (w  - o[j) 

and e o =  (G - Gd),  where wd and denote the desired angular 
velocity and angular acceleration, respectively, of the hand. The 
question that arises now is: What is an appropriate counterpart for p 
which represents i o dt in the following definition of orientation 
tracking error? 

This question takes on particular significance in the context of closed- 
loop manipulator control since the position and orientation errors of 
the hand are used explicitly in the feedback loop. 

When the manipulator is controlled in its joint coordinates 13, ch. 
71, there is no need to generate the hand orientation error as in (3) 
since the desired traiectorv. reDresented by the hand position and -..... .~~~ ~ ~~ . , d .  
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rotation matrix, may be converted directiy into a corresponding 
trajectory in the joint coordinates. The inverse kinematic models used 
for such a conversion, however, are typically very complex and exist 
as closed-form solutions only for manipulators with special configu- 
rations, such as parallel adjacent joints or  spherical wrists [3, ch. 31. 

Abstract-Euler parameters, a form of normalized quaternions, are 
used here to model the hand orientation errors in resolved rate and 
resolved acceleration control of manipulators. The quaternion formula- 
tion greatly simplifies the stability analysis of the orientation error 
dynamics. Two types of quaternion feedback have been considered. The 
first type uses only the vector portion of the quaternion error, while the 

For orientation error feedback, the rotation matrix representation 
of ( 1 )  is clearly impractical simply because there are too many 
elements in the matrix. More importantly, not all of its elements 
(which are direction cosines) are independent due to the requirement 
of orthogonality among the unit vectors n, s, and a. 

Despite their nonuniqueness, Euler angles are frequently used to 
represent orientation [4, ch. 2 .1 .  I ]  mainly because of their physical 
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equations relating the rates of change of these angles to w are highly 
nonlinear ( 4 ,  p. 301, it is extremely difficult to analyze the stability of 
the closed-loop system without using some form of small-angle linear 
approximation. 

Alternatively, the difference in orientation between two coordinate 
systems may be expressed as a single rotation through some angle 
about a fixed axis as stated in Euler’s Theorem [ 4 ,  p. 131. Such a 
rotation (known as Euler rotation) represents the minimal angular 
distance between the two systems. This formulation has a natural 
appeal from the control standpoint since the rotation vector coincides 
with the axis about which the control torque must be applied to the 
hand. 

The Euler rotation representation has been used in both resolved 
rate [ S I  and resolved acceleration control 161. Furthermore, it has 
been applied successfully to the control of the space shuttle 
manipulator [71. In the latter case, the instantaneous error between 
the actual and the desired hand orientation is described as a rotation of 
~ ( t )  about a unit vector r ( t ) .  The angular velocity command for the 
hand is then aligned with r.  The feedback gain, however, must vary 
continuously with the orientation error and is highly nonlinear which 
renders the stability analysis of the closed-loop system an intractable 
task. 

It was stated in [6] that when the orientation error is small, it may 
be expressed in terms of the Euler rotation parameters ((0, r )  as 

e o ( t )  = sin c p ( f ) r ( t ) .  ( 4 )  
Unfortunately. the convergence analysis offered in [6] is based on 
linear approximation over small time intervals and does not apply to 
stability in the large (i.e., when there is a large initial orientation 
error). It will be shown in this communication that the Euler 
rotation representation ( 4 )  in fact leads to convergence even for 
largc orientation errors. 

Yet another representation for orientation is Euler parameters 
which are a form of normalized quaternions [ 4 ,  p. 231. (For economy 
in notation, the generic term “quaternion” will be used in this 
communication to denote Euler parameters.) Though less amenable 
to physical interpretation than either Euler angles or rotation 
matrices, quaternions are free of singularities and are computa- 
tionally more efficient. Many applications of quaternions can be 
found in the literature on large-angle maneuvering and attitude 
control of space vehicles [ 8 ] - [ 1 3 ] .  More recently, the quaternion 
formulation has been applied to the dynamic analysis of a general 
class of mechanisms [ 1 4 ] ,  [ 151 which could conceivably include 
manipulators. 

This communication extends the quaternion concept to the resolved 
motion control of manipulators. It will be shown that the quaternion 
formulation can greatly simplify the stability analysis of the orienta- 
tion error dynamics. 

11. BASK PROPERTIES OF QUATERNIONS 
Quaternions have many interesting properties, not all of which, 

however. are relevant to the development of this communication. (A 
list of general identities involving quaternions can be found in [ 1 4 ] . )  
Only some of thcir fundamental features are discussed below. 

J O I N T  
M O T I O N  

- 

A .  Definition 
Let two coordinate systems (FO and 5 , )  be separated by a rotation 

of cp about a unit vector r as defined in Euler’s Theorem. Then the 
quaternion description of the orientation difference between the two 
systems is given by a scalar 7 and a vector q defined as follows: 

7 =cos  (cp/2) q =sin (cp/2)r .  ( 5 )  

Note that if (7, q }  is the quaternion representation of TI relative to 
To, then (7, - q }  represents the orientation of To relative to 51. 

B. Normality 
It is clear from ( 5 )  that 

7 2 + q T q =  1 ( 6 )  

where a superscript “T” denotes vector or  matrix transpose. 

C. Uniqueness 
Both { 7, q }  and { - 7, - q }  describe the same orientation. But if 

the rotation angle cp is confined to the range - 180” 5 cp 5 180”, 
then the scalar 9 is nonnegative and the quaternion representation is 
unique. 

D. Relation to  Rotation Matrix 

brings 5 0  onto 5 ,  is given by [16, p. 4211 
The direction cosine matrix describing the rotation sequence that 

R l o = e o s  (o 1+(1 -cos cp)rr7- sin cp r x  (7) 

where 1 denotes a unit matrix and 

F O R W A R D  
K I N E M A T I C S  

M O D E L  

. = [ : : I  r x = [  - r2 ill . (8) 

* 

It can be seen, from ( 5 ) ,  that the rotation matrix may also be written 
in terms of the quaternion parameters as 

where the matrix q” is defined in terms of the components of q in a 
similar manner to r x  in (8). An efficient singularity-free algorithm 
for computing the quaternion from a rotation matrix is described in 
1171. 

The quaternion vector q has the same coordinates in either 50 or  
5 , .  Indeed, it is the eigenvector of RI” with unit eigenvalue; that is, 

E. Quaternion Propagation 
Suppose the coordinate system 5 ,  rotates at an instantaneous 

angular velocity of w about To. Then the quaternion { 7, q }  evolves in 
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time according to the following differential equation [4, p. 321: 

where w is expressed in the coordinates of and the matrix w x  is 
derived from w in the same way r x  is defined for r in (8). Further 
discussions on quaternion propagation can be found in [ 181. 

F. Relative Orientation 
Consider two coordinate systems, '3, and S2, and let RIO and Rzo 

denote the rotation matrices describing the orientation of each system 
referenced to a common base frame To. Suppose the corresponding 
quaternion representations are given by { q l ,  q l }  and (72, 4 2 } ,  
respectively. Then the relative orientation between SI and F2, 
denoted by the rotation matrix 

RZl = RzoR ro (12) 

is given by (69, 64) where [9] 

6~ = V I  vz + :42 64 = V I  42 - 9241 - 4 p 42. (13) 

Note that 6q is expressed here in the coordinates of either T I  or  T2 
(since they are the same), but not of To. 

G. Orientation Error Representation 
If 5 ,  and 5 2  denote the desired and the actual hand orientation 

relative to the base of the manipulator, then (13) yields the quaternion 
for the orientation error. When the two frames coincides, q1  = q2 and 
q1 = q2, wc get, through (6), 

6 q = 1  6 q = O .  (14) 

Conversely, at 6q = 0, 

V I  42 - 7241 = 4 p 42. (15) 

But the vectors (7142 - q2q1) and q i(q2 are orthogonal to each other. 
(The product qyq2  is, in fact, a matrix-vector representation of the 
cross product 41 X 42.) Therefore, (15) holds only if both vectors are 
zero: in other words. 

Furthermore 

42 = (92 1771 141. (16) 

through the normality condition (6) ,  6q = 0 implies 

f31)=q1q2+q:q2= +. 1. (17) 

16) into (17) and making use of the normality of { q l ,  

both of which describe the same orientation (cf. property in 
Subsection 11-C, above). 

Hence, we have established the following result which states that 
6q is indeed a logical representation for the orientation error between 
two coordinate systems: 

Proposition I :  Two coordinate systems coincide if, and only if, 6q 
= 0, where 6q is the vector component of the quaternion defined in 
(13). 

Note that. unlike the case cited in [6] with the Euler rotation 
representation (4), the above result holds regardless of the size of the 
orientation error. 

111. CLOSED-LOOP RESOLVED RATE CONTROI 
Lct p and w be the linear and angular velocity, respectively, of the 

hand of a manipulator with n links, and denote the joint rates by 

e = [ &  . ' .  8,]7 

Then the hand velocities are related to e by the expression [5] 

[f] = J e  

where J is a 6 x n Jacobian matrix whose elements are functions of 
the joint variables 

e = [ e ,  . . .  0 ~ 1 7 .  

In open-loop resolved rate control [19], the joint rate command is 
simply given by 

- -  
Bc=Jt  It] 

where p d  and wd are the desired linear and angular hand velocities, 
and J t  denotes either the direct inverse (n = 6) or  the generalized 
inverse ( n  > 6) of J .  

In closed-loop control [20], however, the control law (19) is 
replaced with 

where K, and KO are feedback gain matrices; e, and eo are the 
position and orientation errors of the hand defined in ( 2 )  and (3), 
respectively. 

In most industrial robots, the command 6 ,  is applied directly to the 
rate servos at the joints. This is known as kinematic control since the 
dynamics of the manipulator is completely ignored. For dynamic 
control, the rate command e,, together with the measured 0 and 
estimated acceleration e,, are used in a dynamic model of the 
manipulator (e.g., the Newton-Euler model of [21]), to compute the 
joint torques. This approach is commonly known as the computed 
torque method. 

The computed torque algorithm of [ 2  1 ] accounts for the nonlinear 
joint inertia, Coriolis and centrifugal forces, as well as gravity. As a 
result, except for the effects of friction, actuator dynamics, and 
parametric errors, the linear and angular velocities of the hand can be 
represented, to the first order, by the following equations: 

which have been obtained by applying (18) to (20). The convergence 
of the position and orientation errors is thus determined by the 
stability of the differential equations (21) and (22). 

Since ep = ( p  - p d )  and (21) is linear, it is easy to select the gain 
K, so that the position error e, converges to zero asymptotically (i.e., 
e,(t) + 0 as t --t 03). We shall next examine the convergence of the 
orientation error in (22). 

Let {qdr qd} and { q ,  q }  denote, respectively, the quaternions for 
the desired and the actual orientation of the hand. Then each 
quaternion evolves in time according to a set of differential equations 
similar to (1 1) as follows: 

[ td] [ :<, r:;] [a:] 
[ , ] = 1 / 2  [e -:I[;] 

The asymptotic stability of the nonlinear system comprising (22)- 
(24) is best studied by using Lyapunov's second mcthod [22]. For this 
we define the following positive-definite Lyapunov function: 

It can be shown through substitution from (22)-(24) that the time 
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Fig. 2.  Resolved rate control using quaternion feedback 

derivative of V along any quaternion trajectory (11, q }  is given by 

V = 6 q 7 ( w - w d ) =  -6q7Koeo (26) 

One recognizes from (13) that the latter is simply the quaternion error 
vector between the desired and the actual hand orientation. 

We are now faced with the task of selecting a re,presentation for the 
orientation error feedback eo which will cause I/ in (26) to become 
negative-definite. An obvious choice is 

eo = 6q (28) 

with KO > 0 so that 

V =  -6qTKo6q, (29) 

Given an arbitrary nonzero Sq, V is negative, which causes V to 
approach zero since it is a positive-definite functjon. This will 
continue until an equilibrium point is reached where V = 0, i .e. ,  Sq 
= 0. By Proposition I ,  this also corresponds to zero orientation 
error. We therefore conclude that the quaternion error feedback given 
by (28) results in global asymptotic convergence of the orientation 
error. 

The implementation of the quaternion error feedback (28) in 
resolved rate dynamic control is illustrated in Fig. 2 .  Given wd(t),  the 
desired quaternion trajectory { v d ( f ) ,  q d ( t ) }  can be either precompu- 
ted or generated on-line with (23). The instantaneous quaternion of 
the hand may be extracted from the rotation matrix ( I )  using the 
singularity-free algorithm described in [ 171. 

Let us now study the stability of (22) with the error feedback eo 
expressed as a Euler rotation. When expressed in the form of (4). the 
relationship between eo and (w - od) is not obvious and it becomes 
very difficult to determine the stability of (22). The convergence 
analysis given in [6] for the resolved acceleration case is valid only 
for short time intervals and small orientation errors. Described below 
is a stability analysis of (22) based on a quaternion formulation. 

It follows from the definition of quaternions in ( 5 )  that the Euler 
rotation error (4) can also be expressed as 

eo=s in  (p r = 2  cos ((p/2) sin ((p/2)r=2676g (30) 

where 6q  is given by (27) and 

617 = v d v  + q l q .  (31) 

Substituting (30) into (26),  we have 

V =  - 26116qTK(,6q. (32) 

Since 611 is nonnegative (cf. property in Subsection 1143, i /  5 0 
provided KO > 0. Thus there are two equilibrium points, 611 = 0 and 
6q = 0, at which V = 0. Of the two, however, only one (6q = 0) 
results in true convergence of the orientation error; 611 = 0 occurs 
when the actual and the desired hand orientation are separated by a 
Euler rotation of 180". 

The above analysis clearly demonstrates the superiority of the 
quaternion error feedback (28) over the Euler rotation error feedback 
of (4) or  (30). 

Iv. CLOSED-LOOP RESOLVED ACCELERATION CONTROL 

The acceleration of the hand can be obtained by differentiating ( I  8) 
r 1  

to yield 

(33) 

where is the time derivative of the Jacobian matrix whose elements 
are functions of I9 and e .  In resolved acceleration control [ 6 ] ,  the joint 
acceleration command is given by 

where K,, K,, K,, and KO are feedback gain matrices. p d  and &d are 
the desired linear and angular accelerations, and .It denotes the 
generalized inverse of J. 

Equation (34) together with measured values of I9 and e may then 
be used in a computed torque algorithm [21) to generate the joint 
torques. As a result, the linear and angular accelerations of the hand 
are given by (see comments just above (21) and (22)) 

Since the linear acceleration error is given by eo = (j - j J ,  i t  is 
easy to choose the gain matrices K ,  and KO in (35) to ensure that 
ep(t) -+ 0 as t + W .  W e  shall now analyze the convergence of the 
orientation error in (36) by using a quaternion formulation. 

Define the following Lyapunov function: 

V =  (7  - q d ) 2  + (9 - qd)  7 ( q  - qr,) + ~ 7(w -U,,). (37) 
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Fig. 3.  Resolved acceleration control using quaternion feedback. 

It can be shown by substitutions from (36) and the quaternion 
propagation equations (23) and (24) that the time derivative of V 
along any quaternion trajectory { q ,  q }  is 

V =  - (  o - ad) 'K,(o - w d )  + (w - ad)  ' (6q  - Koeo) ( 3 8 )  

where the quaternion error vector 6q is given by (27). 
To make i/ negative-semidefinite, it is sufficient to set 

Koeo = 6q (39) 

and K, > 0. In other words, let 

eo=6q Ko=I (40) 

where I is a unit matrix. We then have 

V =  - (U - w d )  'K,(w - wd) (41) 

so that i /(t) 5 0 for all t .  In particular, whenever w differs from wd? 

V will decrease in value until an equilibrium point is reached where V 
= 0; i.e., w = a d .  

At o = a d .  we have from (36) and (39) 
(d /d l ) (o  - w d )  = ~ Koeo = ~ 6q. (42) 

Suppose 6q = 0 at this equilibrium point. Then, by (42), w ( t )  will 
remain at od(f )  for all t .  By Proposition 1, the hand stays aligned with 
the desired orientation. 

On the other hand, if w = ad but 6q is nonzero, then (a - ad) will 
change according to (42) so that w = wd can only tiold instantane- 
ously. By (41),  V becomes negative which causes I/ to decrease 
further toward zero. Consequently, 6q(t) + 0 as t -+ a, which, by 
Proposition I ,  corresponds to zero orientation error. Since this result 
holds for any initial value of 6q,  we have global asymptotic 
convergence of the orientation error. 

The quaternion feedback implementation of resolved acceleration 
control is illustrated in Fig. 3. As in the case of resolved rate control, 
the desired quaternion trajectory { ~ d ,  q d }  can be either precomputed 
and recalled from memory or  generated on-line using the propagation 
equation (23). The joint variables 0 and 8 are assumed to be 
measurable and the hand velocities 0 and w may be calculated from 
(18). Given 8, 6 ,  and ec computed by (34) with (40) providing the 
orientation error feedback, the joint torques can then be calculated 
from a Newton-Euler dynamic model of the manipulator as in 1211. 

Let us now examine the stability of (36) when the orientation error 

feedback is given by a Euler rotation representation. A convergence 
analysis for this was given in 161 with the error expressed as in (4 ) .  
But the results are only valid for short sampling intervals and small 
orientation errors. We shall show below that even large-angle 
stability can be established by using a quaternion formulation. 

Substituting (30) into (39). we get 

Koeo = 267KoSq = 6q. (43) 

Hence, provided the feedback gain matrix is set according to 

where I is a unit matrix, is again given by (41). We, therefore. 
conclude that, despite what was claimed in [S I ,  the orientation error 
converges even for large angles. 

Note that, unlike the case in (40). the feedback gain KO in (44) is 
nonlinear. This is due to the need to eliminate the second term in (38) 
so as to render V negative-semidefinite. The condition is only 
sufficient, not necessary. By keeping KO constant as in (40),  however. 
stability can no longer be guaranteed. 

As a result of (44). the feedback gain has a singularity at 67 = 0 
which occurs when the hand orientation diffcrs from its desired 
orientation by Euler rotation of 180". This once again demonstrates 
the superiority of the direct quaternion feedback approach (40) over 
one using Euler rotations. 

V. EXPERIMENTAL RESULTS 
The resolved rate control law (20) using quaternion feedback was 

implemented on a Cincinnati Milacron T3-776 industrial robot. The 
main objective of the experimcnt was to demonstrate large-angle 
stability of the two quaternion feedback formulations considered in 
this communication. 

In the experiment the hand was commanded to follow a circular 
path of radius 200 mm in a vertical plane at a constant speed of 100 
mmis, while its initial orientation was displaced from the desired 
orientation by a rotation of90" about the vertical (yaw) axis. Because 
this robot has very fast servo dynamics. only kinematic control was 
implemented; that is. the command calculated from (20) was applied 
directly to the inputs of the ratc servos at the joints. 

Figs. 4 and 5 describe thc responses of the hand orientation with 
the feedback gain matrices set as follows: 

K , = I  K(,=0.21 
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Fig. 4. Response with orientation error feedback given by eo = 6q. 
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where I is a 3 x 3 unit matrix. The orientation errors are presented in 
the figures both as IlSq11, the Euclidean norm of 6q, and as the 
conventional Euler angles (roll, pitch, and yaw). 

Fig. 4 corresponds to the case with direct quaternion error 
feedback eo = 6q, while in Fig. 5 the error feedback was based on 
Euler rotation eo = 2 67 6q. The convergence rates for the two cases 
are different as expected due to the different obtained in (29) and 
(32). In particular, the results of Fig. 5 demonstrate that the Euler 
rotation representation of (4) is valid even for large orientation 
errors. 

VI. CONCLUSIONS 
Though quaternions are composed of a scalar and a vector, the 

orientation error is adequately represented by only the vector portion 
of the quaternion difference between the actual and the desired hand 
orientation. This vector quaternion error formulation greatly simpli- 
fies the stability analysis of the orientation error equations. 

Of the two types of quaternion feedback considered, the approach 
using only 6q is far more superior to that derived from a Euler 
rotation representation ( 2  67 6q) since the feedback gain is constant 
and stability is globally asymptotic. The Euler rotation feedback has a 
singularity when the actual hand orientation differs from its desired 
orientation by 180”. In resolved rate control, this singularity 
manifests itself as an equilibrium point with nonzero orientation 
error, while in resolved acceleration control, the feedback gain 
(which is nonlinear) becomes infinitely large. 
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Kinematics of a Robot with Continuous Roll Wrist 

KRISHNA C. GUPTA 

Abstract-Some operational details of the zero reference position 
method are presented in the context of deriving kinematical equations for 
a robot with a nonspherical continuous roll wrist. 

I. INTRODUCTION 
In a continuous roll wrist, all of the wrist joints have unrestricted 

rotational degree of freedom. The wrist axes are configured such that 
there is no mechanical interference among the links of the wrist as the 
wrist variables change continuously in the ranges [O, 360”j. There 
are several ways to induce the continuous roll feature in wrists and we 
discuss two important ways. Let the wrist axes be labeled n - 2, n ~ 

1, and n (last). 
= 0) with 

serially orthogonal joint axes (i.e., a , - ~ , ~ - ~  = a,. I,,l = 90”) ,  there 
is mechanical interference when we turn about the (n  - I)th joint. If 
the angles between successive joint axes are changed such that 
a,-2,,-] = 90” + /3 and  CY,-^,,^ = 90”  - /3, then such a 
nonorthogonal spherical wrist has a continuous 3-roll property. 
Kinematic solutions of robots with spherical wrists are straightfor- 
ward because of decoupling [ 1]-[3], [5]-[7]; among these, [ 11 and (71 
also discuss the solutions of a variety of other robot-arm configura- 
tions. 

Another way to modify the orthogonal spherical wrist is to introduce 
a small amount of offset (s,-],, # 0). We then have a nonspherical 
wrist in which the axes (n  - 2) and (n - 1) intersect at one point (i.e., 
a,_2,n-I = 0), but the axes (n -  1) and n intersect at another point 
(i.e., an- , , ,  = O), thus causing a small offset s, I ,n # 0. Angles 
between the successive axes are C Y ,  - ?,, - I = a, - I 

In this communication, we use the zero reference position method 
[2] for analyzing a robot with the second type of continuous roll wrist 
(nonspherical). The zero reference position method is a simple 
method for formulating robot kinematics just from the data on joint 
axes directions and locations in a conveniently chosen reference 
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