(* Inverse dynamics for a two joint mechanism using Lagrangian approach *) (* Moment of inertia about center of mass *) (* To read in a file of input: << file *) (* Quit[] or Quit to quit *) (* the starting position is hanging straight down with z up *) (*Define the vector cross product.*) CP[X_,Y_] := {X[[2]]*Y[[3]] - X[[3]]*Y[[2]], -X[[1]]*Y[[3]] + X[[3]]*Y[[1]], X[[1]]*Y[[2]] - X[[2]]*Y[[1]]} (* the starting position is hanging straight down with z down, x to the side, and y coming out towards the viewer. *) (*Define rotation matrices that allow us to do the forward kinematics.*) (*R01 rotates from the link 1 frame to the link 0 frame.*) r01={{Cos[a1],0,Sin[a1]},{0,1,0},{-Sin[a1],0, Cos[a1]}} r10=Transpose[r01] r12={{Cos[a2],0,Sin[a2]},{0,1,0},{-Sin[a2],0, Cos[a2]}} r21=Transpose[r12] (*Deal with time dependence *) SetAttributes [m1, Constant] SetAttributes [m2, Constant] SetAttributes [l1, Constant] SetAttributes [l2, Constant] SetAttributes [l1x, Constant] SetAttributes [l1y, Constant] SetAttributes [l1z, Constant] SetAttributes [l2x, Constant] SetAttributes [l2y, Constant] SetAttributes [l2z, Constant] SetAttributes [I1xx, Constant] SetAttributes [I1xy, Constant] SetAttributes [I1xz, Constant] SetAttributes [I1yy, Constant] SetAttributes [I1yz, Constant] SetAttributes [I1zz, Constant] SetAttributes [I2xx, Constant] SetAttributes [I2xy, Constant] SetAttributes [I2xz, Constant] SetAttributes [I2yy, Constant] SetAttributes [I2yz, Constant] SetAttributes [I2zz, Constant] a1/: Dt[a1, t] = a1d a2/: Dt[a2, t] = a2d a1d/: Dt[a1d, t] = a1dd a2d/: Dt[a2d, t] = a2dd (*Define link lengths.*) s1 = {0, 0, l1} s2 = {0, 0, l2} (*Define the location of the proximal end of each link (in world coordinates) *) p1 = {0, 0, 0} p2 = r01 . s1 (*Define the location of the center of mass with respect to the proximal end of each link.*) cm1 = r01 . {l1x, l1y, l1z} cm2 = r01 . r12 . {l2x, l2y, l2z} (*Compute the location of the center of mass of each link.*) q1 = p1 + cm1 q2 = p2 + cm2 (*Compute the linear velocity and acceleration of each link cm.*) qd1 = Dt[q1,t] qd2 = Dt[q2,t] qdd1 = Dt[qd1,t] qdd2 = Dt[qd2,t] (*Compute the angular velocity of each link.*) w1 = {0,Dt[a1,t],0} w2 = w1 + {0,Dt[a2,t],0} (*Compute the angular acceleration of each link.*) wd1 = Dt[w1,t] wd2 = Dt[w2,t] (* Moment of inertia tensors. We will express them in link coordinates about the center of mass *) I1 = {{I1xx, I1xy, I1xz}, {I1xy, I1yy, I1yz}, {I1xz, I1yz, I1zz}} I2 = {{I2xx, I2xy, I2xz}, {I2xy, I2yy, I2yz}, {I2xz, I2yz, I2zz}} (*Kinetic energy: m1 and m2 are masses *) KE = 0.5*(w1.I1.w1) + 0.5*m1*qd1.qd1 + 0.5*(w2.I2.w2) + 0.5*m2*qd2.qd2 (* Potential energy *) PE = -m1*G*q1[[3]] + -m2*G*q2[[3]] L = Expand[ KE - PE ] eqa1 = Expand[Dt[D[L,a1d],t] - D[L,a1]] eqa2 = Expand[Dt[D[L,a2d],t] - D[L,a2]] tau1 = Simplify[eqa1] /. 1.->1 tau2 = Simplify[eqa2] /. 1.->1 (* In[1]:= << 2-joint-arm-inverse-dynamics-lagrange.m *) (* To get C code use In[4]:= CForm[tau1] In[5]:= CForm[tau2] *)