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Planning using dynamic 
optimization

© Chris Atkeson 2007

Problem characteristics

• Want optimal plan, not just feasible plan
• We will minimize a cost function 

C(execution). Some examples:
• C() = cT(xT) + Σc(xk,uk): deterministic with 

explicit terminal cost function
• C() = E(cT(xT) + Σc(xk,uk)): stochastic

Examples

• A number of us are currently working on 
humanoid locomotion. We would like the 
humanoid to be able to walk, run, vary 
speed, turn, sit, get up from a chair, 
handle steps, kick a ball, avoid obstacles, 
handle rough terrain, …

Dynamic Optimization

• General methodology is dynamic 
programming (DP).

• We will talk about ways to apply DP.
• Requirement to represent all states, and 

consider all actions from each state, lead 
to “curse of dimensionality”: Rx

dx • Ru
du

• We will talk about special purpose solution 
methods.

Dynamic Optimization Issues
• Discrete vs. continuous states and actions?
• Discrete vs. continuous time?
• Globally optimal?
• Stochastic vs. deterministic?
• Clocked vs. autonomous?
• What should be optimized, anyway?

Policies vs. Trajectories

• u(t) open loop trajectory control
• u = uff(t) + K(x – xd(t)) closed loop 

trajectory control
• u(x) policy
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Types of tasks

• Regulator tasks: want to stay at xd

• Trajectory tasks: go from A to B in time T, 
or attain goal set G

• Periodic tasks: cyclic behavior such as 
walking

Typical reward functions

• Minimize error
• Minimum time
• Minimize tradeoff of error and effort

Example: Pendulum Swingup

• State:
• Action:
• Cost:  

),( θθ &=x
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θ
τ

RuuQxx TT +

Possible Trajectories

Global Planning Using Dynamic Programming

The Policy
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Trajectories Discrete-Time Deterministic 
Dynamic Programming (DP)

• Fudging on whether states are discrete or 
continuous.

How to do Dynamic Programming 
(specified end time T)

• Dynamics: xk+1 = f(xk,uk)
• Cost: C() = cT(xT) + Σc(xk,uk)
• Value function Vk(x) is represented by table.
• VT(x) = cT(x)
• For each x, Vk(x) = minu(c(x,u) + Vk+1(f(x,u)))
• This is Bellman’s Equation
• This version of DP is value iteration
• Can also tabulate policy: u = πk(x)

How to do Dynamic Programming 
(no specified end time)

• Cost: C() = Σc(xk,uk)
• VN(x) = a guess, or all zeros.
• Apply Bellman’s equation.
• V(x) is given by Vk(x) when V stops changing.
• Goal needs to have zero cost, or need to 

discount so V() does not grow to infinity: 
• Vk(x) = minu(c(x,u) + γVk+1(f(x,u))), γ < 1

Policy Iteration
• u = π(x): general policy (a table in discrete state 

case). 
• *) Compute Vπ(x): 
Vπ

k(x) = c(x,π(x)) + Vπ
k+1(f(x,π(x)))

• Update policy π(x) = argminu(c(x,u) + Vπ(f(x,u)))
• Goto *)

Stochastic Dynamic Programming

• Cost: C() = ΣE(c(xk,uk))
• Bellman’s equation now involves 

expectations:
• Vk(x) = minuE(c(x,u) + Vk+1(f(x,u))) 

= minu(c(x,u) + Σp(xk+1)Vk+1(xk+1))
• Modified Bellman’s equation applies to 

value and policy iteration.
• May need to add discount factor.
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Continuous State DP

• Time is still discrete.
• How do we discretize the states?

How to handle continuous states. 
• Discretize states on a grid.
• At each point (x0), generate trajectory segment 

of length N by minimizing C(u) = Σc(xk,uk) + 
V(xN) 

• V(xN): interpolate using surrounding V()
• Typically multilinear interpolation used.
• N typically determined by when V(xN) 

independent of V(x0)
• Use favorite continuous function optimizer to 

search for best u when minimizing C(u)
• Update V() at that cell.

State Increment Dynamic 
Programming (Larson)

V(x0)
V(xN)

c2c1

c0

State Increment Dynamic Programming

Munos and Moore, Variable 
Resolution Discretization in Optimal 

Control 
Machine Learning, 49 (2/3), 

291-323, 2002

Kuhn Triangulation, kd-trie
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Kuhn Triangulation in 3D
Trajectory Segments

Mountain Car Value Function

Value Function
Discretizations



6

Policy Iteration: Continuous State
• Discretize states
• Represent policy at discretized states u(x)
• Each cell in table has constant u, or
• u as knot points for linear or higher order spline
• *) Same kind of trajectory segments used to 

compute Vπ
k(x) = Σc(x,π(x)) + Vπ

k+1(xN)
• Optimize policy π(x) = argminu(c(x,u) + 

Vπ(f(x,u))) using favorite continuous function 
optimizer.

• Goto *) 

Stochastic DP: Continous State
• Cost: C() = ΣE(c(xk,uk))
• Do Monte Carlo sampling of process noise for 

each trajectory segment (many trajectory 
segments), or

• Propagate analytic distribution (see Kalman
filter)

• Bellman’s equation involves expectations:
• Vk(x) = minuE(c(x,u) + Vk+1(f(x,u)))

What about continuous actions?
Regulator tasks

• Examples: balance a pole, move at a constant 
velocity

• A reasonable starting point is a Linear 
Quadratic Regulator (LQR controller)

• Might have nonlinear dynamics xk+1 = f(xk,uk), 
but since stay around xd, can locally linearize
xk+1 = Axk + Buk

• Might have complex scoring function c(x,u), but 
can locally approximate with a quadratic model 
c ≈ xTQx + uTRu

• dlqr() in matlab

LQR Derivation
• Assume V() quadratic: Vk+1(x) = xTVxx:k+1x
• C(x,u) = xTQx + uTRu + (Ax+Bu)TVxx:k+1 (Ax+Bu)
• Want ∂C/∂u = 0
• BTVxx:k+1Ax = (BTVxx:k+1B + R)u
• u = Kx (linear controller)
• K = - (BTVxx:k+1B + R)-1BTVxx:k+1A
• Vxx:k= ATVxx:k+1A + Q + ATVxx:k+1BK

More general LQR equations
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Trajectory Optimization (open loop)

• Calculus of variations
• Multiple shooting
• Function optimization

– Represent x(t) and u(t) as splines, knot point vector 
θ

– Optimize cost(θ) with dynamics xk+1=f(xk,uk) a 
constraint or with dynamic error part of cost.

– DIRCOL example of current state of the art.
PROMIS is a direct multiple shooting method capable of treating multi phase trajectory optimization problems. The problem is transcribed to a nonlinear 

programming problem by discretizing state- and control- and path constraint functions on a sequence of discretization grids. The optimization parameters 
are the states' initial guesses and the control discretization parameters. At phase times, boundary constraints may be enforced. A solution is found when 

the defects at the multiple shooting nodes and all the (discretized) constraint violations vanish (see picture). 

http://www.robotic.dlr.de/control/space/promis.html

TROPIC is a direct collocation method capable of treating multi phase trajectory optimization problems. The problem is transcribed to a nonlinear programming 
problem by discretizing state- and control- and path constraint functions on a sequence of discretization grids. The optimization parameters are the states' 

and controls' estimates at the collocation grid points. At phase times, boundary constraints may be enforced. A solution is found when the collocation 
defects, measured in the center of the collocation intervals, and all the (discretized) constraint violations vanish (see picture). 

http://www.robotic.dlr.de/control/space/tropic.html

Trajectory Optimization (closed 
loop)

• Differential Dynamic Programming (local 
approach to DP).

Propagate Value Function V() 
Along Trajectories

Trajectory-Based
Dynamic
Programming
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Full Trajectories Helps Reduce 
Resolution Needed

SIDP Trajectory Based

An Adaptive Grid Approach

Global Planning
Propagate Value Function Across 

Trajectories
in Adaptive Grid

Growing the
Explored
Region:
Adaptive 
Grids
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Bidirectional Search

Bidirectional
Search
Closeup

Spine Representation

Growing the
Explored
Region:
Spine
Representation

Comparison What Changes When Task 
Periodic?

• Discount factor means V() might increase 
along trajectory. V() cannot always 
decrease in periodic tasks.



10

Robot Hopper Example

Policy Search
• Parameterized policy u = π(x,θ), θ is vector of 

adjustable parameters.
• Simplest approach: Run it for a while, and 

measure total cost.
• Use favorite function optimization approach to 

search for best θ.
• There are tricks to improve policy comparison, 

such as using the same perturbations in 
different trials, and terminating trial early if really 
bad (racing algorithms).

Policy Search For Structured Policies:
Gradient Descent

Computing the derivatives of V() Policy Search: Stochastic Case
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Partially Observable Markov 
Decision Processes (POMDPs)

• Plan using belief state (too expensive?)
• Certainty equivalent approaches: use 

maximum likelihood estimate of state.
• Policy search
• Dual control problem: want to control, but 

also want to perturb to reduce uncertainty.

Planning For Dynamic Tasks

• The computational cost of planning is the 
big challenge for model-based RL.

• Local planning is fast, but only locally 
optimal.

• Global planning is expensive, but globally 
optimal.

• Can we combine local and global planning 
to get fast planning with good plans?

How to do marble maze task:
Solving one maze

• Path plan, then LQR servo: A*, RRT, PRM
• Potential field in configuration space.
• Potential field in state space.
• A*/DP in discretized state space.
• Continuous state/action DP
• Policy search

But what can you learn that 
generalizes across mazes?

Planning and Learning

• Learn better model, and replan.
• Plan faster

– Initialize value function or policy
– Find best meta-parameters
– Find best planning method

• Make better plans
– Find better optima
– More robust plans (plan for modeling error)


