
1

Planning using dynamic
optimization

© Chris Atkeson 2007

Problem characteristics

• Want optimal plan, not just feasible plan
• We will minimize a cost function

C(execution). Some examples:
• C() = cT(xT) + Σc(xk,uk): deterministic with

explicit terminal cost function
• C() = E(cT(xT) + Σc(xk,uk)): stochastic

Examples

• A number of us are currently working on
humanoid locomotion. We would like the
humanoid to be able to walk, run, vary
speed, turn, sit, get up from a chair,
handle steps, kick a ball, avoid obstacles,
handle rough terrain, …

Dynamic Optimization

• General methodology is dynamic
programming (DP).

• We will talk about ways to apply DP.
• Requirement to represent all states, and

consider all actions from each state, lead
to “curse of dimensionality”: Rx

dx • Ru
du

• We will talk about special purpose solution
methods.

Dynamic Optimization Issues
• Discrete vs. continuous states and actions?
• Discrete vs. continuous time?
• Globally optimal?
• Stochastic vs. deterministic?
• Clocked vs. autonomous?
• What should be optimized, anyway?

Policies vs. Trajectories

• u(t) open loop trajectory control
• u = uff(t) + K(x – xd(t)) closed loop

trajectory control
• u(x) policy

2

Types of tasks

• Regulator tasks: want to stay at xd

• Trajectory tasks: go from A to B in time T,
or attain goal set G

• Periodic tasks: cyclic behavior such as
walking

Typical reward functions

• Minimize error
• Minimum time
• Minimize tradeoff of error and effort

Example: Pendulum Swingup

• State:
• Action:
• Cost:

),(θθ &=x
)(τ=u

θ
τ

RuuQxx TT +

Possible Trajectories

Global Planning Using Dynamic Programming

The Policy

3

Trajectories Discrete-Time Deterministic
Dynamic Programming (DP)

• Fudging on whether states are discrete or
continuous.

How to do Dynamic Programming
(specified end time T)

• Dynamics: xk+1 = f(xk,uk)
• Cost: C() = cT(xT) + Σc(xk,uk)
• Value function Vk(x) is represented by table.
• VT(x) = cT(x)
• For each x, Vk(x) = minu(c(x,u) + Vk+1(f(x,u)))
• This is Bellman’s Equation
• This version of DP is value iteration
• Can also tabulate policy: u = πk(x)

How to do Dynamic Programming
(no specified end time)

• Cost: C() = Σc(xk,uk)
• VN(x) = a guess, or all zeros.
• Apply Bellman’s equation.
• V(x) is given by Vk(x) when V stops changing.
• Goal needs to have zero cost, or need to

discount so V() does not grow to infinity:
• Vk(x) = minu(c(x,u) + γVk+1(f(x,u))), γ < 1

Policy Iteration
• u = π(x): general policy (a table in discrete state

case).
• *) Compute Vπ(x):
Vπ

k(x) = c(x,π(x)) + Vπ
k+1(f(x,π(x)))

• Update policy π(x) = argminu(c(x,u) + Vπ(f(x,u)))
• Goto *)

Stochastic Dynamic Programming

• Cost: C() = ΣE(c(xk,uk))
• Bellman’s equation now involves

expectations:
• Vk(x) = minuE(c(x,u) + Vk+1(f(x,u)))

= minu(c(x,u) + Σp(xk+1)Vk+1(xk+1))
• Modified Bellman’s equation applies to

value and policy iteration.
• May need to add discount factor.

4

Continuous State DP

• Time is still discrete.
• How do we discretize the states?

How to handle continuous states.
• Discretize states on a grid.
• At each point (x0), generate trajectory segment

of length N by minimizing C(u) = Σc(xk,uk) +
V(xN)

• V(xN): interpolate using surrounding V()
• Typically multilinear interpolation used.
• N typically determined by when V(xN)

independent of V(x0)
• Use favorite continuous function optimizer to

search for best u when minimizing C(u)
• Update V() at that cell.

State Increment Dynamic
Programming (Larson)

V(x0)
V(xN)

c2c1

c0

State Increment Dynamic Programming

Munos and Moore, Variable
Resolution Discretization in Optimal

Control
Machine Learning, 49 (2/3),

291-323, 2002

Kuhn Triangulation, kd-trie

5

Kuhn Triangulation in 3D
Trajectory Segments

Mountain Car Value Function

Value Function
Discretizations

6

Policy Iteration: Continuous State
• Discretize states
• Represent policy at discretized states u(x)
• Each cell in table has constant u, or
• u as knot points for linear or higher order spline
• *) Same kind of trajectory segments used to

compute Vπ
k(x) = Σc(x,π(x)) + Vπ

k+1(xN)
• Optimize policy π(x) = argminu(c(x,u) +

Vπ(f(x,u))) using favorite continuous function
optimizer.

• Goto *)

Stochastic DP: Continous State
• Cost: C() = ΣE(c(xk,uk))
• Do Monte Carlo sampling of process noise for

each trajectory segment (many trajectory
segments), or

• Propagate analytic distribution (see Kalman
filter)

• Bellman’s equation involves expectations:
• Vk(x) = minuE(c(x,u) + Vk+1(f(x,u)))

What about continuous actions?
Regulator tasks

• Examples: balance a pole, move at a constant
velocity

• A reasonable starting point is a Linear
Quadratic Regulator (LQR controller)

• Might have nonlinear dynamics xk+1 = f(xk,uk),
but since stay around xd, can locally linearize
xk+1 = Axk + Buk

• Might have complex scoring function c(x,u), but
can locally approximate with a quadratic model
c ≈ xTQx + uTRu

• dlqr() in matlab

LQR Derivation
• Assume V() quadratic: Vk+1(x) = xTVxx:k+1x
• C(x,u) = xTQx + uTRu + (Ax+Bu)TVxx:k+1 (Ax+Bu)
• Want ∂C/∂u = 0
• BTVxx:k+1Ax = (BTVxx:k+1B + R)u
• u = Kx (linear controller)
• K = - (BTVxx:k+1B + R)-1BTVxx:k+1A
• Vxx:k= ATVxx:k+1A + Q + ATVxx:k+1BK

More general LQR equations

7

Trajectory Optimization (open loop)

• Calculus of variations
• Multiple shooting
• Function optimization

– Represent x(t) and u(t) as splines, knot point vector
θ

– Optimize cost(θ) with dynamics xk+1=f(xk,uk) a
constraint or with dynamic error part of cost.

– DIRCOL example of current state of the art.
PROMIS is a direct multiple shooting method capable of treating multi phase trajectory optimization problems. The problem is transcribed to a nonlinear

programming problem by discretizing state- and control- and path constraint functions on a sequence of discretization grids. The optimization parameters
are the states' initial guesses and the control discretization parameters. At phase times, boundary constraints may be enforced. A solution is found when

the defects at the multiple shooting nodes and all the (discretized) constraint violations vanish (see picture).

http://www.robotic.dlr.de/control/space/promis.html

TROPIC is a direct collocation method capable of treating multi phase trajectory optimization problems. The problem is transcribed to a nonlinear programming
problem by discretizing state- and control- and path constraint functions on a sequence of discretization grids. The optimization parameters are the states'

and controls' estimates at the collocation grid points. At phase times, boundary constraints may be enforced. A solution is found when the collocation
defects, measured in the center of the collocation intervals, and all the (discretized) constraint violations vanish (see picture).

http://www.robotic.dlr.de/control/space/tropic.html

Trajectory Optimization (closed
loop)

• Differential Dynamic Programming (local
approach to DP).

Propagate Value Function V()
Along Trajectories

Trajectory-Based
Dynamic
Programming

8

Full Trajectories Helps Reduce
Resolution Needed

SIDP Trajectory Based

An Adaptive Grid Approach

Global Planning
Propagate Value Function Across

Trajectories
in Adaptive Grid

Growing the
Explored
Region:
Adaptive
Grids

9

Bidirectional Search

Bidirectional
Search
Closeup

Spine Representation

Growing the
Explored
Region:
Spine
Representation

Comparison What Changes When Task
Periodic?

• Discount factor means V() might increase
along trajectory. V() cannot always
decrease in periodic tasks.

10

Robot Hopper Example

Policy Search
• Parameterized policy u = π(x,θ), θ is vector of

adjustable parameters.
• Simplest approach: Run it for a while, and

measure total cost.
• Use favorite function optimization approach to

search for best θ.
• There are tricks to improve policy comparison,

such as using the same perturbations in
different trials, and terminating trial early if really
bad (racing algorithms).

Policy Search For Structured Policies:
Gradient Descent

Computing the derivatives of V() Policy Search: Stochastic Case

11

Partially Observable Markov
Decision Processes (POMDPs)

• Plan using belief state (too expensive?)
• Certainty equivalent approaches: use

maximum likelihood estimate of state.
• Policy search
• Dual control problem: want to control, but

also want to perturb to reduce uncertainty.

Planning For Dynamic Tasks

• The computational cost of planning is the
big challenge for model-based RL.

• Local planning is fast, but only locally
optimal.

• Global planning is expensive, but globally
optimal.

• Can we combine local and global planning
to get fast planning with good plans?

How to do marble maze task:
Solving one maze

• Path plan, then LQR servo: A*, RRT, PRM
• Potential field in configuration space.
• Potential field in state space.
• A*/DP in discretized state space.
• Continuous state/action DP
• Policy search

But what can you learn that
generalizes across mazes?

Planning and Learning

• Learn better model, and replan.
• Plan faster

– Initialize value function or policy
– Find best meta-parameters
– Find best planning method

• Make better plans
– Find better optima
– More robust plans (plan for modeling error)

