Planning using dynamic optimization

© Chris Atkeson 2007

Problem characteristics

- Want optimal plan, not just feasible plan
- We will minimize a cost function C(execution). Some examples:
- C() = c_T(x_T) + Σc(x_k,u_k): deterministic with explicit terminal cost function
- C() = E(c_T(x_T) + $\Sigma c(x_k, u_k)$): stochastic

Examples

• A number of us are currently working on humanoid locomotion. We would like the humanoid to be able to walk, run, vary speed, turn, sit, get up from a chair, handle steps, kick a ball, avoid obstacles, handle rough terrain, ...

Dynamic Optimization

- General methodology is dynamic programming (DP).
- We will talk about ways to apply DP.
- Requirement to represent all states, and consider all actions from each state, lead to "curse of dimensionality": R_x^{dx} • R_u^{du}
- We will talk about special purpose solution methods.

Dynamic Optimization Issues

- Discrete vs. continuous states and actions?
- Discrete vs. continuous time?
- Globally optimal?
- Stochastic vs. deterministic?
- Clocked vs. autonomous?
- What should be optimized, anyway?

Policies vs. Trajectories

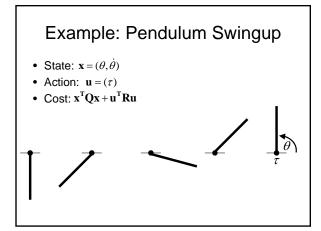
- u(t) open loop trajectory control
- $u = u_{ff}(t) + K(x x_d(t))$ closed loop trajectory control
- u(x) policy

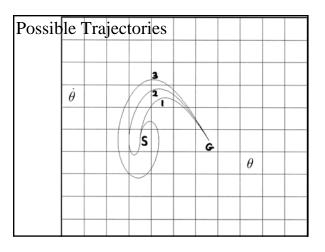
Types of tasks

- Regulator tasks: want to stay at x_d
- Trajectory tasks: go from A to B in time T, or attain goal set G
- Periodic tasks: cyclic behavior such as walking

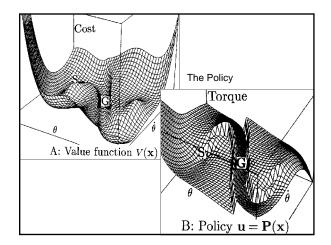
Typical reward functions

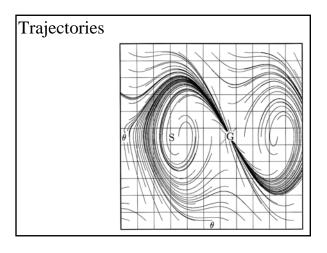
- Minimize error
- Minimum time
- Minimize tradeoff of error and effort











How to do Dynamic Programming (specified end time T)

- Dynamics: x_{k+1} = f(x_k,u_k)
- Cost: C() = $c_T(x_T) + \Sigma c(x_k, u_k)$
- Value function $V_k(x)$ is represented by table.
- $V_T(x) = c_T(x)$
- For each x, $V_k(x) = \min_u(c(x,u) + V_{k+1}(f(x,u)))$
- This is Bellman's Equation
- This version of DP is value iteration
- Can also tabulate policy: $u = \pi_k(x)$

How to do Dynamic Programming (no specified end time)

- Cost: C() = $\Sigma c(x_k, u_k)$
- $V_N(x) = a$ guess, or all zeros.
- Apply Bellman's equation.
- V(x) is given by $V_k(x)$ when V stops changing.
- Goal needs to have zero cost, or need to discount so V() does not grow to infinity:
- $V_k(x) = \min_u(c(x,u) + \gamma V_{k+1}(f(x,u))), \gamma < 1$

Policy Iteration

- u = π(x): general policy (a table in discrete state case).
- *) Compute V^π(x):
- $V_{k}^{\pi}(x) = c(x,\pi(x)) + V_{k+1}^{\pi}(f(x,\pi(x)))$
- Update policy $\pi(x) = \operatorname{argmin}_{u}(c(x,u) + V^{\pi}(f(x,u)))$
- Goto *)

Stochastic Dynamic Programming

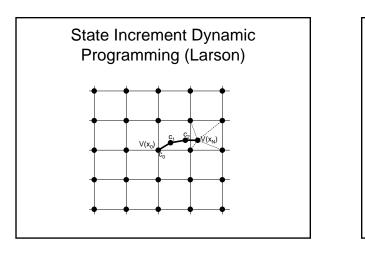
- Cost: C() = $\Sigma E(c(x_k,u_k))$
- Bellman's equation now involves
 expectations:
- $V_k(x) = \min_u E(c(x,u) + V_{k+1}(f(x,u)))$ = $\min_u (c(x,u) + \Sigma p(x_{k+1})V_{k+1}(x_{k+1}))$
- Modified Bellman's equation applies to value and policy iteration.
- May need to add discount factor.

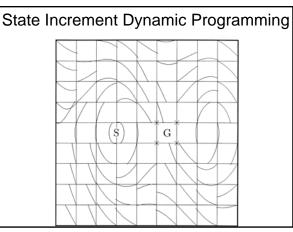
Continuous State DP

- Time is still discrete.
- How do we discretize the states?

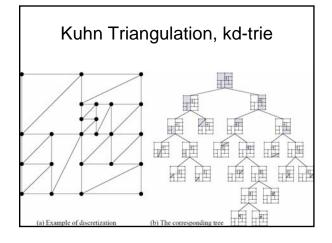
How to handle continuous states.

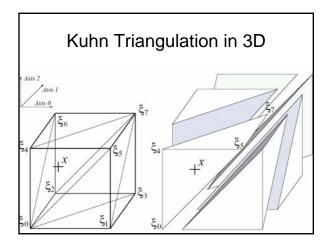
- Discretize states on a grid.
- At each point (x₀), generate trajectory segment of length N by minimizing $C(u) = \Sigma c(x_k, u_k) + V(x_N)$
- V(x_N): interpolate using surrounding V()
- Typically multilinear interpolation used.
- N typically determined by when V(x_N) independent of V(x₀)
- Use favorite continuous function optimizer to search for best u when minimizing C(u)
- Update V() at that cell.

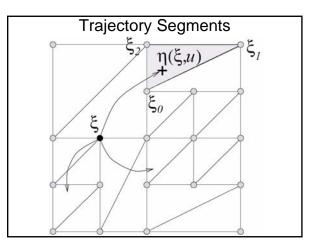


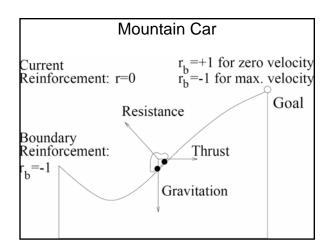


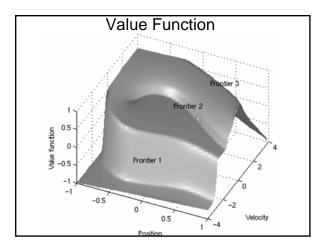
Munos and Moore, Variable Resolution Discretization in Optimal Control Machine Learning, 49 (2/3), 291-323, 2002

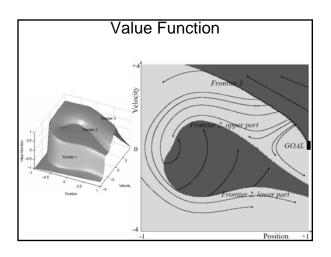


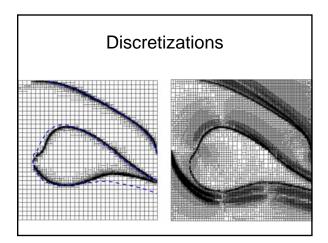












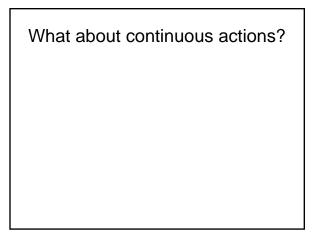
Policy Iteration: Continuous State

- Discretize states
- Represent policy at discretized states u(x)
- Each cell in table has constant u, or
- u as knot points for linear or higher order spline
- *) Same kind of trajectory segments used to compute V^π_k(x) = Σc(x,π(x)) + V^π_{k+1}(x_N)
- Optimize policy π(x) = argmin_u(c(x,u) + V^π(f(x,u))) using favorite continuous function optimizer.

• Goto *)

Stochastic DP: Continous State

- Cost: C() = $\Sigma E(c(x_k,u_k))$
- Do Monte Carlo sampling of process noise for each trajectory segment (many trajectory segments), or
- Propagate analytic distribution (see Kalman filter)
- Bellman's equation involves expectations:
- $V_k(x) = \min_u E(c(x,u) + V_{k+1}(f(x,u)))$



Regulator tasks

- Examples: balance a pole, move at a constant velocity
- A reasonable starting point is a Linear Quadratic Regulator (LQR controller)
- Might have nonlinear dynamics x_{k+1} = f(x_k,u_k), but since stay around x_d, can locally linearize x_{k+1} = Ax_k + Bu_k
- Might have complex scoring function c(x,u), but can locally approximate with a quadratic model c ≈ x^TQx + u^TRu
- dlqr() in matlab

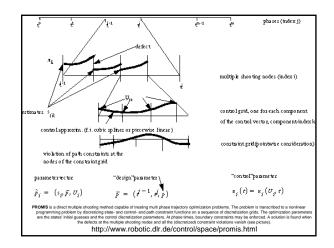
LQR Derivation

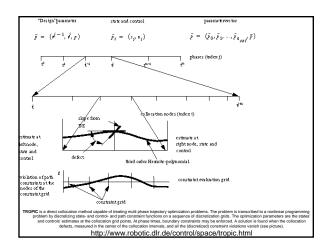
- Assume V() quadratic: $V_{k+1}(x) = x^T V_{xx:k+1} x$
- $C(x,u) = x^TQx + u^TRu + (Ax+Bu)^TV_{xx:k+1} (Ax+Bu)$
- Want $\partial C / \partial u = 0$
- $B^{T}V_{xx:k+1}Ax = (B^{T}V_{xx:k+1}B + R)u$
- u = Kx (linear controller)
- $K = -(B^T V_{xx:k+1}B + R)^{-1}B^T V_{xx:k+1}A$
- $V_{xx:k} = A^T V_{xx:k+1} A + Q + A^T V_{xx:k+1} BK$

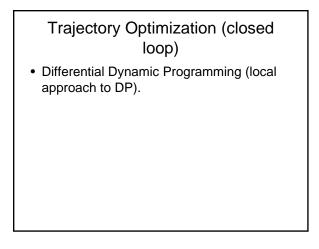
More general LQR equations $\mathbf{x_{k+1}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \approx \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{c}$ $L(\mathbf{x}, \mathbf{u}) \approx \frac{1}{2}\mathbf{x}^T \mathbf{Q}\mathbf{x} + \frac{1}{2}\mathbf{u}^T \mathbf{R}\mathbf{u} + \mathbf{x}^T \mathbf{S}\mathbf{u} + \mathbf{t}^T \mathbf{u}$ $V(\mathbf{x}) \approx V_0 + V_{\mathbf{z}}\mathbf{x} + \frac{1}{2}\mathbf{x}^T V_{\mathbf{z}\mathbf{z}}\mathbf{x}$ $\mathbf{u}^{opt} = -(\mathbf{R} + \mathbf{B}^T V_{\mathbf{z}\mathbf{z}}\mathbf{B})^{-1}\mathbf{x}$ $(\mathbf{B}^T V_{\mathbf{z}\mathbf{z}\mathbf{z}} \mathbf{A}\mathbf{x} + \mathbf{S}^T \mathbf{x} + \mathbf{B}^T V_{\mathbf{z}\mathbf{z}\mathbf{s}}\mathbf{c} + V_{\mathbf{z}}\mathbf{B} + \mathbf{t})$

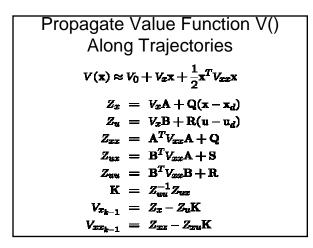
Trajectory Optimization (open loop)

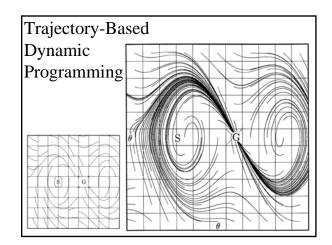
- Calculus of variations
- Multiple shooting
- Function optimization
 - Represent x(t) and u(t) as splines, knot point vector $_{\theta}$
 - Optimize $cost(\theta)$ with dynamics $x_{k+1}=f(x_k,u_k)$ a constraint or with dynamic error part of cost.
 - DIRCOL example of current state of the art.

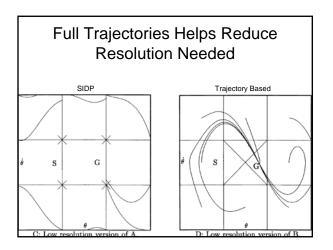


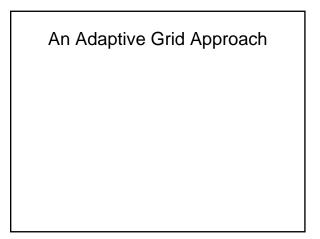


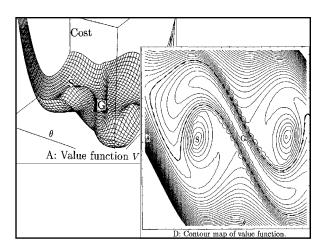


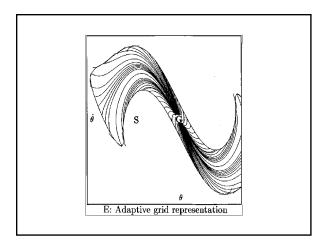






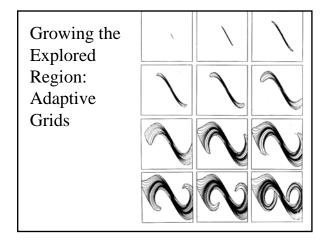


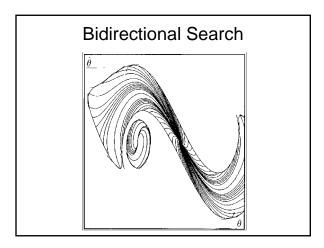


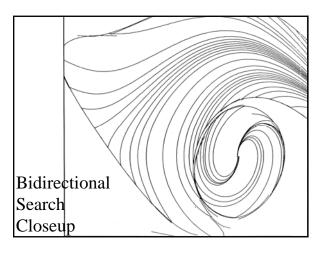


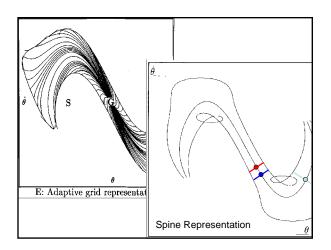
Global Planning Propagate Value Function Across Trajectories in Adaptive Grid

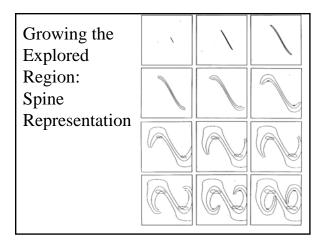
$$V_{0_1} \approx V_{0_2} + V_{x_2}(\mathbf{x}_1 - \mathbf{x}_2) + \frac{1}{2}(\mathbf{x}_1 - \mathbf{x}_2)^T V_{xx_2}(\mathbf{x}_1 - \mathbf{x}_2)$$

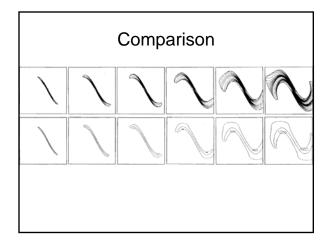






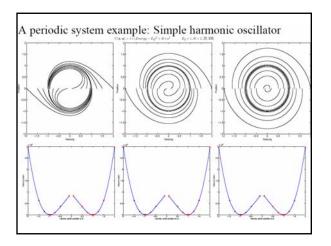


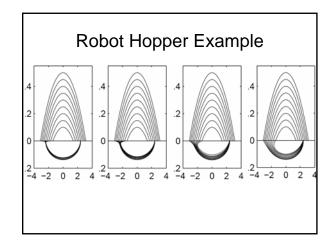




What Changes When Task Periodic?

• Discount factor means V() might increase along trajectory. V() cannot always decrease in periodic tasks.





Policy Search

- Parameterized policy u = π(x,θ), θ is vector of adjustable parameters.
- Simplest approach: Run it for a while, and measure total cost.
- Use favorite function optimization approach to search for best θ .
- There are tricks to improve policy comparison, such as using the same perturbations in different trials, and terminating trial early if really bad (racing algorithms).

Policy Search For Structured Policies:
Gradient Descent
$$J(\mathbf{\theta}) = \int_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \mathbf{\theta}) d\mathbf{x}_0 \approx \sum_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \mathbf{\theta})$$
$$\nabla J(\mathbf{\theta}) \approx \sum_{\mathbf{x}_0} p(\mathbf{x}_0) \frac{\partial V^{\pi}(\mathbf{x}_0, \mathbf{\theta})}{\partial \mathbf{\theta}}$$

Computing the derivatives of V()

$$V^{\pi}(\mathbf{x}_{k}, \mathbf{\theta}) = r(\mathbf{x}_{k}, \pi(\mathbf{x}_{k}, \mathbf{\theta})) + \lambda V^{\pi}(\mathbf{x}_{k+1}, \mathbf{\theta})$$

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k}, \pi(\mathbf{x}_{k}, \mathbf{\theta}))$$

$$V = r + \lambda V^{k+1}$$

$$V_{\theta} = r_{\mathbf{u}}\pi_{\theta} + \lambda (V_{\mathbf{x}}^{k+1}\mathbf{f}_{\mathbf{u}}\pi_{\theta} + V_{\theta}^{k+1})$$

$$V_{\mathbf{x}} = r_{\mathbf{x}} + r_{\mathbf{u}}\pi_{\mathbf{x}} + \lambda (V_{\mathbf{x}}^{k+1}\mathbf{f}_{\mathbf{x}} + V_{\mathbf{x}}^{k+1}\mathbf{f}_{\mathbf{u}}\pi_{\mathbf{x}})$$

Г

Policy Search: Stochastic Case

$$J(\boldsymbol{\theta}) \approx \mathbb{E}\left(\sum_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \boldsymbol{\theta})\right) = \sum_{\mathbf{x}_0} p(\mathbf{x}_0) \mathbb{E}\left(V^{\pi}(\mathbf{x}_0, \boldsymbol{\theta})\right)$$

$$\mathbb{E}\left(V^{\pi}(\mathbf{x}_0, \boldsymbol{\theta})\right) \approx \sum_{k=0}^{T} \lambda^k (r(\hat{\mathbf{x}}_k, \hat{\mathbf{u}}_k) + \operatorname{Trace}(\Sigma(k)(r_{\mathbf{xx}} + r_{\mathbf{xu}}\pi_{\mathbf{x}} + \pi_{\mathbf{x}}^T r_{\mathbf{ux}} + \pi_{\mathbf{x}}^T r_{\mathbf{uu}}\pi_{\mathbf{x}})|_{\hat{\mathbf{x}}_k, \hat{\mathbf{u}}_k, \boldsymbol{\theta}})\right)$$

$$\approx J_d + \sum_{k=0}^{T} \lambda^k \operatorname{Trace}(\Sigma(k) \mathbf{R}_{\mathbf{xx}}(k))$$

٦

Partially Observable Markov Decision Processes (POMDPs)

- Plan using belief state (too expensive?)
- Certainty equivalent approaches: use maximum likelihood estimate of state.
- Policy search
- Dual control problem: want to control, but also want to perturb to reduce uncertainty.

Planning For Dynamic Tasks

- The computational cost of planning is the big challenge for model-based RL.
- Local planning is fast, but only locally optimal.
- Global planning is expensive, but globally optimal.
- Can we combine local and global planning to get fast planning with good plans?

How to do marble maze task: Solving one maze

- Path plan, then LQR servo: A*, RRT, PRM
- Potential field in configuration space.
- Potential field in state space.
- A*/DP in discretized state space.
- Continuous state/action DP
- · Policy search

But what can you learn that generalizes across mazes?

Planning and Learning

- Learn better model, and replan.
- Plan faster
 - Initialize value function or policy
 - Find best meta-parameters
 - Find best planning method
- Make better plans
 - Find better optima
 - More robust plans (plan for modeling error)