Handling uncertainty over time: predicting, estimating, recognizing, learning

What is a "state"

- Everything you need to know to make the best prediction about what happens next.
- Depends how you define the "system" you care about.
- States are called x or s. Dependence on time can be indicated by x(t).
- States can be discrete or continuous.
- Al researchers tend to say "state" when they mean "some features derived from the state". This should be discouraged.
- A "belief state" is your knowledge about the state, which is typically a probability density/distribution p(x).
- Processes with state are called Markov processes.

Dealing with time

- The concept of state gives us a handy way of thinking about how things evolve over time.
- We will use discrete time, for example 0.001, 0.002, 0.003, ...
- State at time t_k , $x(t_k)$, will be written x_k or x[k].
- Deterministic state transition function x_{k+1} = f(x_k)
- Stochastic state transition function $p(x_{k+1}|x_k)$
- Mildly stochastic state transition function
- $x_{k+1} = f(x_k) + \varepsilon$, with ε being Gaussian.

Hidden state

- Sometimes the state is directly measurable/observable.
- Sometimes it isn't. Then you have "hidden state" and a "hidden Markov model" or HMM.
- Examples: Do you have a disease? What am I thinking about? What is wrong with the Mars rover? Where is the Mars rover?

\longrightarrow	$x_{k-1} \longrightarrow x_k \longrightarrow x_{k+1}$		
	Ļ	ţ	Ŧ
measurements	У _{к-1}	y _k	У _{k+1}

Measurements

- Measurements (y) are also called evidence (e) and observables (o).
- Measurements can be discrete or continuous.
- Deterministic measurement function $y_k = g(x_k)$
- Stochastic measurement function p(y_k|x_k)
- Mildly stochastic measurement function
- $y_k = g(x_k) + v$, with v being Gaussian.

Standard problems

- Predict the future.
- Estimate the current state (filtering).
- Estimate what happened in the past (smoothing).
- Find the most likely state trajectory (sequence/trajectory (speech) recognition).
- Learn about the process (learn state transition and measurement models).

Prediction, Case 0

- Deterministic state transition function $x_{k+1} = f(x_k)$ and known state x_k : Just apply f() n times to get x_{k+n} .
- When we worry about learning the state transition function and the fact that it will always have errors, the question will arise: To predict x_{k+n} , is it better to learn $x_{k+1} = f_1(x_k)$ and iterate, or learn $x_{k+n} = f_n(x_k)$ directly?

Prediction, Case 1• Stochastic state transition function $p(x_{k+1}|x_k)$,
discrete states, belief state $p(x_k)$ • Use tables to represent $p(x_k)$ • Propagate belief state: $p(x_{k+1}) = \sum p(x_{k+1}|x_k)p(x_k)$ Matrix notation:
Vector p_k , Transition matrix M, $M_{ij} = p(x_i|x_j)$; i, j,
components, not time.
Propagate belief state: $p_{k+1} = Mp_k$ Propagate belief state: $p_{k+1} = Mp_k$ Stationary distribution $M^{\infty} = lim(n-> \infty) M^n$ Mixing time: n for which $M^n \approx M^{\infty}$

Prediction, Case 2

- Stochastic state transition function $p(x_{k+1}|x_k)$, continuous states, belief state $p(x_k)$
- Propagate belief state analytically if possible
- $p(\mathbf{x}_{k+1}) = \int p(\mathbf{x}_{k+1} | \mathbf{x}_k) p(\mathbf{x}_k) d\mathbf{x}_k$
- Particle filtering (actually many ways to implement).
- Sample p(x_k).
- For each sample, sample $p(x_{k+1}|x_k)$.
- Normalize/resample resulting samples to get $p(x_{k+1})$.
- Iterate to get p(x_{k+n})

Prediction, Case 3

- Mildly stochastic state transition function with p(x_k) being N(μ , Σ_x), x_{k+1} = f(x_k) + ε , with ε being N(0, Σ_{ε}), ε independent of process.
- $E(\mathbf{x}_{k+1}) \approx f(\mu)$
- A = ∂f/∂x
- $Var(x_{k+1}) \approx A\Sigma_x A^T + \Sigma_{\varepsilon}$
- p(x_{k+1}) is N(E(x_{k+1}),Var(x_{k+1})).
- Exact if f() linear.
- Iterate to get p(x_{k+n}).
- Much simpler than particle filtering.

Filtering, in general

- Start with p(x_{k-1}⁺)
- Predict $p(x_k^{-})$
- Apply measurement using Bayes' Rule to get p(x_k⁺) = p(x_k|y_k)
- $p(x_k|y_k) = p(y_k|x_k)p(x_k)/p(y_k)$
- Sometimes we ignore p(y_k) and just renormalize as necessary, so all we have to do is p(x_k|y_k) = αp(y_k|x_k)p(x_k)

Filtering, Case 1

- Stochastic state transition function $p(x_{k+1}|x_k)$, discrete states, belief state $p(x_k)$, $p(y_k|x_k)$
- Use tables to represent $p(x_k)$
- Propagate belief state:

$$p(x_{k+1}) = \sum p(x_{k+1}|x_k)p(x_k)$$

• Weight each entry by p(y_k|x_k):

 $p(x_{k+1}^{+}) \propto p(y_k|x_k)p(x_{k+1}^{-})$

- Normalize so sum of p() = 1
- This is called a Discrete Bayes Filter

Filtering, Case 2

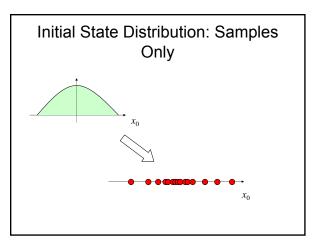
- Stochastic state transition function $p(x_{k+1}|x_k)$, continuous states, belief state $p(x_k)$
- Particle filtering (actually many ways to implement).
- Sample p(x_k).
- For each sample, sample $p(x_{k+1}|x_k)$.
- Weight each sample by p(y_k|x_k).
- Normalize/resample resulting samples to get p(x_{k+1}).
- Iterate to get p(x_{k+n})

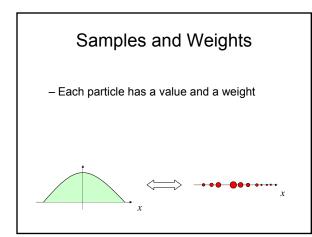
EEE 581 Lecture 16

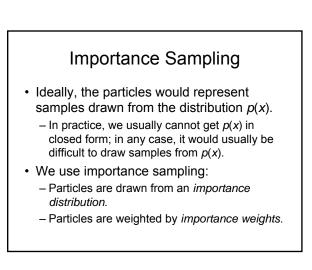
Particle Filters: a Gentle Introduction http://www.fulton.asu.edu/~morrell/581/

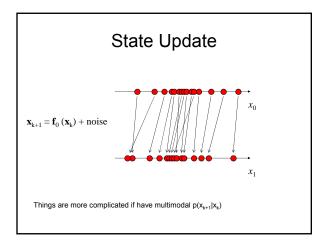
Particle Filter Algorithm

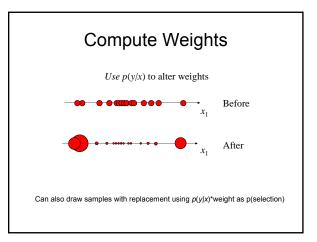
- Create particles as samples from the initial state distribution $p(\mathbf{x}_0)$.
- For k going from 1 to K
 - Update each particle using the state update equation.
 - Compute weights for each particle using the observation value.
 - (Optionally) resample particles.

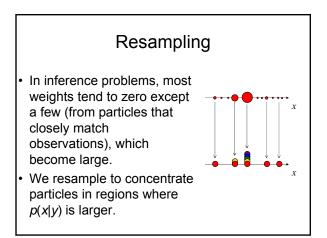












Advantages of Particle Filters

- Under general conditions, the particle filter estimate becomes asymptotically optimal as the number of particles goes to infinity.
- Non-linear, non-Gaussian state update and observation equations can be used.
- Multi-modal distributions are not a problem.
- Particle filter solutions to inference problems are often easy to formulate.

Disadvantages of Particle Filters

- Naïve formulations of problems usually result in significant computation times.
- It is hard to tell if you have enough particles.
- The best importance distribution and/or resampling methods may be very problem specific.

Conclusions

Particle filters (and other Monte Carlo methods) are a powerful tool to solve difficult inference problems.

- Formulating a filter is now a tractable exercise for many previously difficult or impossible problems.
- Implementing a filter effectively may require significant creativity and expertise to keep the computational requirements tractable.

Particle Filtering Comments

- Reinvented many times in many fields: sequential Monte Carlo, condensation, bootstrap filtering, interacting particle approximations, survival of the fittest, ...
- Do you need R^d samples to cover space? R is crude measure of linear resolution, d is dimensionality.
- You maintain a belief state p(x). How do you answer the question "Where is the robot now?" mean, best sample, robust mean, max likelihood, ... What happens if p(x) really is multimodal?

Return to our regularly scheduled programming ...

• Filtering ...

Filtering, Case 3

- Mildly stochastic state transition function with $p(x_k)$ being $N(\mu, \Sigma_x)$, $x_{k+1} = f(x_k) + \varepsilon$, with ε being $N(0, \Sigma_{\varepsilon})$ and independent of process.
- Mildly stochastic measurement function
- $y_k = g(x_k) + v$, with v being N(0, Σ_v) and independent of everything else.
- This will lead to Kalman Filtering
- Nonlinear f() or g() means you are doing Extended Kalman Filtering (EKF).

Combining Measurements: 1D

- True value x
- Measurements m_1 , m2: $E(m_1-x) = 0$, $Var(m_1) = \sigma_1^2$, $E(m_2-x) = 0$, $Var(m_2) = \sigma_2^2$, independent
- Linear estimate $x = k_1m_1 + k_2m_2$
- Unbiased estimate means $k_2 = 1 k_1$ so E(x) = x
- Minimize Var(x) = $k_1^2 \sigma_1^2 + (1 k_1)^2 \sigma_2^2$
- So $\partial Var(x)/\partial k_1 = 0 \Rightarrow 2k_1(\sigma_1^2 + \sigma_2^2) 2\sigma_2^2 = 0$
- So $k_1 = \sigma_2^2 / (\sigma_1^2 + \sigma_2^2)$, $k_2 = \sigma_1^2 / (\sigma_1^2 + \sigma_2^2)$
- So Var(x) = $\sigma_1^2 \sigma_2^2 / (\sigma_1^2 + \sigma_2^2)$
- What happens when $\sigma_2^2 = 0$? $\sigma_2^2 = infinity$?
 - BLUE: Best Linear Unbiased Estimator

Filtering, Case 3

- Mildly stochastic state transition function with $p(x_k)$ being $N(\mu, \Sigma_x)$, $x_{k+1} = f(x_k) + \varepsilon$, with ε being $N(0, \Sigma_{\varepsilon})$ and independent of process.
- Mildly stochastic measurement function
- $y_k = g(x_k) + v$, with v being N(0, Σ_v) and independent of everything else.
- This will lead to Kalman Filtering
- Nonlinear f() or g() means you are doing Extended Kalman Filtering (EKF).

Filtering, Case 3 Prediction Step

- $E(x_{k+1}) \approx f(\mu)$
- A = ∂f/∂x
- $Var(x_{k+1}) \approx A\Sigma_x A^T + \Sigma_{\epsilon}$
- p(x_{k+1}⁻) is N(E(x_{k+1}⁻), Var(x_{k+1}⁻))

Filtering, Case 3 Measurement Update Step

- $E(x_k^{+}) \approx E(x_k^{-}) + K_k(y_k g(E(x_k^{-})))$
- C = $\partial g / \partial x$
- $\Box \Sigma_k^- = Var(x_k^-)$
- $Var(x_k^+) \approx \Sigma_k^- K_k C \Sigma_k^-$
- $S_k = C \Sigma_k C^T + \Sigma_v$
- $K_k = \Sigma_k C^T S_k^{-1}$
- $p(x_k^+)$ is $N(E(x_k^+), Var(x_k^+))$

Unscented Filter

- Numerically find best fit Gaussian instead of analytical computation.
- Good if f() or g() strongly nonlinear.

Smoothing, in general

- Have y_{1:N}, want p(x_k|y_{1:N})
- Know how to compute $p(x_k|y_{1:k})$ from filtering slides
- $p(x_k|y_{1:N}) = p(x_k|y_{1:k}, y_{k+1:N})$
- $p(x_k|y_{1:N}) \propto p(x_k|y_{1:k})p(y_{k+1:N}|y_{1:k},x_k)$
- $p(x_k|y_{1:N}) \propto p(x_k|y_{1:k})p(y_{k+1:N}|x_k)$
- $p(y_{k+1:N}|x_k) = \sum \int p(y_{k+1:N}|x_k, x_{k+1})p(x_{k+1}|, x_k) dx_{k+1}$
- = $\sum \int p(y_{k+1:N}|x_{k+1})p(x_{k+1}|,x_k) dx_{k+1}$
- = $\Sigma / \int p(y_{k+1}|x_{k+1}) p(y_{k+2:N}|x_{k+1}) p(x_{k+1}|,x_k) dx_{k+1}$
- Note recursion implied by $p(y_{k+i+1:N}|x_{k+i})$

Smoothing, general comments

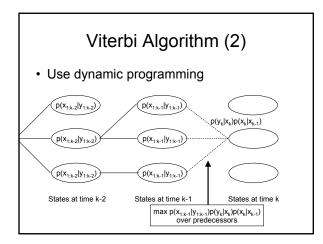
- Need to maintain distributional information at all time steps from forward filter.
- Case 1: discrete states: forward/backward algorithm.
- Case 2: continuous states, nasty dynamics or noise: particle smoothing (expensive).
- Case 3: continuous states, Gaussian noise: Kalman smoother.

Finding most likely state trajectory

- Goal in speech recognition
- $p(x_1, x_2, ..., x_N | y_{1:N}) \neq$ $p(x_1 | y_{1:N}) p(x_2 | y_{1:N}) ... p(x_N | y_{1:N})$
- Are we screwed? Computing joint probability is hard!

Viterbi Algorithm

- max p(x_{1:k}|y_{1:k})
- = max $p(y_{1:k}|x_{1:k})p(x_{1:k})$
- = max $p(y_{1:k-1}, y_k | x_{1:k}) p(x_{1:k})$
- = max $p(y_{1:k-1}|x_{1:k-1})p(y_k|x_k)p(x_{1:k})$
- = max $p(y_{1:k-1}|x_{1:k-1})p(y_k|x_k)p(x_k|x_{1:k-1})p(x_{1:k-1})$
- = max $[p(y_{1:k-1}|x_{1:k-1}) p(x_{1:k-1})]p(y_k|x_k)p(x_k|x_{1:k-1})$
- = max $p(x_{1:k-1}|y_{1:k-1})p(y_k|x_k)p(x_k|x_{k-1})$
- Note recursion
- Do we evaluate this over all possible sequences?



Viterbi Algorithm (3)

- Well, this still only really works for discrete states.
- Continuous states have too many possible states at each step.
- D dimensions, R resolution in each dimension implies R^D states at each time step.
- Ask me about local sequence maximization.

Learning

- Given data, want to learn dynamic/transition and sensor models.
- Smooth, choose most likely state at each time, learn models, iterate.
- This is known as the EM algorithm.
- Discrete case: Baum-Welch Algorithm