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Handling uncertainty over time: 
predicting, estimating, 
recognizing, learning

What is a “state”
• Everything you need to know to make the best 

prediction about what happens next.
• Depends how you define the “system” you care about.
• States are called x or s. Dependence on time can be 

indicated by x(t).
• States can be discrete or continuous.
• AI researchers tend to say “state” when they mean 

“some features derived from the state”. This should be 
discouraged.

• A “belief state” is your knowledge about the state, 
which is typically a probability density/distribution p(x).

• Processes with state are called Markov processes.

Dealing with time
• The concept of state gives us a handy way of 

thinking about how things evolve over time.
• We will use discrete time, for example 0.001, 

0.002, 0.003, …
• State at time tk, x(tk), will be written xk or x[k].
• Deterministic state transition function xk+1 = f(xk)
• Stochastic state transition function p(xk+1|xk)
• Mildly stochastic state transition function
xk+1 = f(xk) + ε, with ε being Gaussian.

Hidden state
• Sometimes the state is directly 

measurable/observable.
• Sometimes it isn’t. Then you have “hidden 

state” and a “hidden Markov model” or 
HMM.

• Examples: Do you have a disease? What 
am I thinking about? What is wrong with 
the Mars rover? Where is the Mars rover?

xk-1 xk xk+1

yk-1 yk yk+1measurements

Measurements

• Measurements (y) are also called evidence (e) 
and observables (o).

• Measurements can be discrete or continuous.
• Deterministic measurement function yk = g(xk)
• Stochastic measurement function p(yk|xk)
• Mildly stochastic measurement function
yk = g(xk) + υ, with υ being Gaussian.

Standard problems

• Predict the future.
• Estimate the current state (filtering).
• Estimate what happened in the past 

(smoothing).
• Find the most likely state trajectory 

(sequence/trajectory (speech) recognition).
• Learn about the process (learn state transition 

and measurement models).
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Prediction, Case 0

• Deterministic state transition function xk+1 = f(xk) 
and known state xk: Just apply f() n times to get 
xk+n.

• When we worry about learning the state 
transition function and the fact that it will always 
have errors, the question will arise: To predict 
xk+n, is it better to learn xk+1 = f1(xk) and iterate, 
or learn xk+n = fn(xk) directly?

Prediction, Case 1
• Stochastic state transition function p(xk+1|xk), 

discrete states, belief state p(xk)
• Use tables to represent p(xk)
• Propagate belief state: p(xk+1) = Σp(xk+1|xk)p(xk)
Matrix notation:
Vector pk, Transition matrix M, Mij = p(xi|xj); i, j, 

components, not time.
Propagate belief state: pk+1 = Mpk

Stationary distribution M∞ = lim(n-> ∞) Mn

Mixing time: n for which Mn ≈ M∞

Prediction, Case 2
• Stochastic state transition function p(xk+1|xk), 

continuous states, belief state p(xk)
• Propagate belief state analytically if possible 
p(xk+1) = ∫p(xk+1|xk)p(xk)dxk

• Particle filtering (actually many ways to 
implement).

• Sample p(xk).
• For each sample, sample p(xk+1|xk).
• Normalize/resample resulting samples to get 

p(xk+1).
• Iterate to get p(xk+n) 

Prediction, Case 3
• Mildly stochastic state transition function 

with p(xk) being N(µ,Σx), xk+1 = f(xk) + ε, 
with ε being N(0,Σε), ε independent of 
process.

• E(xk+1) ≈ f(µ)
• A = ∂f/∂x
• Var(xk+1) ≈ AΣxAT + Σε

• p(xk+1) is N(E(xk+1),Var(xk+1)).
• Exact if f() linear.
• Iterate to get p(xk+n).
• Much simpler than particle filtering.

Filtering, in general
• Start with p(xk-1

+ )
• Predict p(xk

- )
• Apply measurement using Bayes’ Rule to 

get p(xk
+ ) = p(xk|yk)

• p(xk|yk) = p(yk|xk)p(xk)/p(yk)
• Sometimes we ignore p(yk) and just 

renormalize as necessary, so all we have 
to do is p(xk|yk) = αp(yk|xk)p(xk)

Filtering, Case 1
• Stochastic state transition function p(xk+1|xk), 

discrete states, belief state p(xk), p(yk|xk)
• Use tables to represent p(xk)
• Propagate belief state: 

p(xk+1
-) = Σ p(xk+1|xk)p(xk

+)
• Weight each entry by p(yk|xk):
p(xk+1

+) ∝ p(yk|xk)p(xk+1
-)

• Normalize so sum of p() = 1
• This is called a Discrete Bayes Filter
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Filtering, Case 2
• Stochastic state transition function p(xk+1|xk), 

continuous states, belief state p(xk)
• Particle filtering (actually many ways to 

implement).
• Sample p(xk).
• For each sample, sample p(xk+1|xk).
• Weight each sample by p(yk|xk).
• Normalize/resample resulting samples to get 

p(xk+1).
• Iterate to get p(xk+n) 

EEE 581 Lecture 16

Particle Filters: 
a Gentle Introduction

http://www.fulton.asu.edu/~morrell/581/

Particle Filter Algorithm

• Create particles as samples from the initial 
state distribution p(x0).

• For k going from 1 to K
– Update each particle using the state update 

equation.
– Compute weights for each particle using the 

observation value.
– (Optionally) resample particles.

Initial State Distribution: Samples 
Only

x0

x0

Samples and Weights

– Each particle has a value and a weight

x
x

Importance Sampling

• Ideally, the particles would represent 
samples drawn from the distribution p(x).
– In practice, we usually cannot get p(x) in 

closed form; in any case, it would usually be 
difficult to draw samples from p(x).

• We use importance sampling:
– Particles are drawn from an importance 

distribution.
– Particles are weighted by importance weights.
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State Update

x0

xk+1 = f0 (xk) + noise

x1

Things are more complicated if have multimodal p(xk+1|xk)

Compute Weights

x1

Use p(y|x) to alter weights

x1
Before

After

Can also draw samples with replacement using p(y|x)*weight as p(selection)

Resampling

• In inference problems, most 
weights tend to zero except 
a few (from particles that 
closely match 
observations), which 
become large.

• We resample to concentrate 
particles in regions where 
p(x|y) is larger.

x

x

Advantages of Particle Filters

• Under general conditions, the particle filter 
estimate becomes asymptotically optimal 
as the number of particles goes to infinity.

• Non-linear, non-Gaussian state update 
and observation equations can be used.

• Multi-modal distributions are not a 
problem.

• Particle filter solutions to inference 
problems are often easy to formulate.

Disadvantages of Particle Filters

• Naïve formulations of problems usually 
result in significant computation times.

• It is hard to tell if you have enough 
particles.

• The best importance distribution and/or 
resampling methods may be very problem 
specific.

Conclusions

Particle filters (and other Monte Carlo 
methods) are a powerful tool to solve difficult 
inference problems.

– Formulating a filter is now a tractable exercise 
for many previously difficult or impossible 
problems.

– Implementing a filter effectively may require 
significant creativity and expertise to keep the 
computational requirements tractable. 
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Particle Filtering Comments
• Reinvented many times in many fields: 

sequential Monte Carlo, condensation, 
bootstrap filtering, interacting particle 
approximations, survival of the fittest, …

• Do you need Rd samples to cover space? R is 
crude measure of linear resolution, d is 
dimensionality.

• You maintain a belief state p(x). How do you 
answer the question “Where is the robot now?”
mean, best sample, robust mean, max 
likelihood, … What happens if p(x) really is 
multimodal?

Return to our regularly scheduled 
programming …

• Filtering …

Filtering, Case 3
• Mildly stochastic state transition function 

with p(xk) being N(µ,Σx), xk+1 = f(xk) + ε, 
with ε being N(0,Σε) and independent of 
process.

• Mildly stochastic measurement function 
yk = g(xk) + υ, with υ being N(0,Σ υ) and 

independent of everything else.
• This will lead to Kalman Filtering
• Nonlinear f() or g() means you are doing 

Extended Kalman Filtering (EKF).

Combining Measurements: 1D
• True value x
• Measurements m1, m2: E(m1-x) = 0, Var(m1) = σ1

2, 
E(m2-x) = 0, Var(m2) = σ2

2, independent
• Linear estimate x = k1m1 + k2m2

• Unbiased estimate means k2 = 1 - k1 so E(x ) = x
• Minimize Var(x ) = k1

2 σ1
2 + (1 – k1)2 σ2

2 

• So ∂Var(x )/∂k1 = 0  ->  2k1(σ1
2 + σ2

2) - 2σ2
2 = 0

• So k1 = σ2
2/(σ1

2 + σ2
2), k2 = σ1

2/(σ1
2 + σ22)

• So Var(x ) = σ1
2 σ2

2/(σ1
2 + σ22)

• What happens when σ2
2 = 0? σ2

2 = infinity?
• BLUE: Best Linear Unbiased Estimator

Filtering, Case 3
• Mildly stochastic state transition function 

with p(xk) being N(µ,Σx), xk+1 = f(xk) + ε, 
with ε being N(0,Σε) and independent of 
process.

• Mildly stochastic measurement function 
yk = g(xk) + υ, with υ being N(0,Σ υ) and 

independent of everything else.
• This will lead to Kalman Filtering
• Nonlinear f() or g() means you are doing 

Extended Kalman Filtering (EKF).

Filtering, Case 3
Prediction Step

• E(xk+1
-) ≈ f(µ)

• A = ∂f/∂x
• Var(xk+1

-) ≈ AΣxAT + Σε

• p(xk+1
-) is N(E(xk+1

-),Var(xk+1
-))
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Filtering, Case 3
Measurement Update Step

• E(xk
+) ≈ E(xk

-) + Kk(yk – g(E(xk
-)))

• C = ∂g/∂x
� Σk

- = Var(xk
-) 

• Var(xk
+) ≈ Σk

- - KkC Σk
-

• Sk = CΣk
-CT + Σ υ

• Kk = Σk
-CTSk

-1

• p(xk
+) is N(E(xk

+),Var(xk
+))

Unscented Filter

• Numerically find best fit Gaussian instead 
of analytical computation. 

• Good if f() or g() strongly nonlinear.

Smoothing, in general
• Have y1:N, want p(xk|y1:N)
• Know how to compute p(xk|y1:k) from filtering 

slides
• p(xk|y1:N) = p(xk|y1:k,yk+1:N)
• p(xk|y1:N) ∝ p(xk|y1:k)p(yk+1:N|y1:k,xk)
• p(xk|y1:N) ∝ p(xk|y1:k)p(yk+1:N|xk)
• p(yk+1:N|xk) = Σ/∫ p(yk+1:N|xk,xk+1)p(xk+1|,xk) dxk+1

• = Σ/∫ p(yk+1:N|xk+1)p(xk+1|,xk) dxk+1

• = Σ/∫ p(yk+1|xk+1)p(yk+2:N|xk+1)p(xk+1|,xk) dxk+1

• Note recursion implied by p(yk+i+1:N|xk+i)

Smoothing, general comments

• Need to maintain distributional information 
at all time steps from forward filter.

• Case 1: discrete states: forward/backward 
algorithm.

• Case 2: continuous states, nasty dynamics 
or noise: particle smoothing (expensive).

• Case 3: continuous states, Gaussian 
noise: Kalman smoother.

Finding most likely state trajectory

• Goal in speech recognition
• p(x1,x2,…,xN|y1:N) ≠

p(x1|y1:N)p(x2|y1:N)…p(xN|y1:N)
• Are we screwed? Computing joint 

probability is hard!

Viterbi Algorithm
• max p(x1:k|y1:k)
• = max p(y1:k|x1:k)p(x1:k)
• = max p(y1:k-1 ,yk|x1:k)p(x1:k)
• = max p(y1:k-1|x1:k-1)p(yk|xk)p(x1:k)
• = max p(y1:k-1|x1:k-1)p(yk|xk)p(xk|x1:k-1)p(x1:k-1)
• = max [p(y1:k-1|x1:k-1) p(x1:k-1)]p(yk|xk)p(xk|x1:k-1)
• = max p(x1:k-1|y1:k-1)p(yk|xk)p(xk|xk-1)
• Note recursion
• Do we evaluate this over all possible 

sequences?
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Viterbi Algorithm (2)

• Use dynamic programming

p(x1:k-1|y1:k-1)

p(x1:k-1|y1:k-1)

p(x1:k-1|y1:k-1)

States at time k-1

p(x1:k-2|y1:k-2)

p(x1:k-2|y1:k-2)

p(x1:k-2|y1:k-2)

States at time k-2 States at time k

p(yk|xk)p(xk|xk-1)

max p(x1:k-1|y1:k-1)p(yk|xk)p(xk|xk-1)
over predecessors

Viterbi Algorithm (3)

• Well, this still only really works for discrete 
states.

• Continuous states have too many possible 
states at each step.

• D dimensions, R resolution in each dimension 
implies RD states at each time step.

• Ask me about local sequence maximization.

Learning

• Given data, want to learn 
dynamic/transition and sensor models.

• Smooth, choose most likely state at each 
time, learn models, iterate.

• This is known as the EM algorithm.
• Discrete case: Baum-Welch Algorithm


