Note to other teachers and users of these slides.
Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free
to use these slides verbatim, or to modify them to fit
Your own needs. PowerPoint originals are available. If
You make use of a significant portion of these slides in
your own lecture, please include this message, or the
following link to the source repository of Andrew's
tutorials: http:/Awww.cs.ciu.edu/~awm/tutorials
Comments and corrections gratefully received.
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H[X]=- T p(x)log p(x)dx =1.4189

X=—20
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General
Gaussian
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)
n=100

Shorthand: We say X ~ N(u,0?) to mean “X is distributed as a Gaussian
with parameters p and c?”.

In the above figure, X ~ N(100,152%)
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The Central Limit Theorem

o If (X3, X,, ... X,) are i.i.d. continuous random
variables

1 n
« Then define Z= f(Xl,sz--Xn):ﬁin
i=1
e As n-->infinity, p(z)--->Gaussian with mean
E[X;] and variance Var[X{]

Somewhat of a justification for assuming
Gaussian noise is common
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Bivariate Gaussians

X X
Writerv.X = [Y ] Then define X ~N(p,X) tomean

0= el (x-w)" = (x-w)
2r |z

Where the Gaussian's parameters are...
2
p:[”x] b o x a;y
Hy o, Oy

Where we insist that T is symmetric non-negative definite

It turns out that E[X] = n and Cov[X] = X. (Note that this is a
resulting property of Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale
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Contour Map . 1
2z |z )"

Contours defined by
sqrt(8"=18) = constant
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expl- 2 (x—p)" i (x—p)

Example

o et

Observe: Mean, Principal axes, X
implication of off-diagonal Common convention: show contour
covariance term, max gradient COl’rGSPor!dlng to 2 standard
20ne of p(x) deviations from mean
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Example

dendity ks b ¥ <
0.00% < density g 234459 E0O181 011551

density

" » . 155413 §11551 7 4
acceleration . J + 155413 911551 761132
Bccakiration
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Example

density valugs 5 nisity 1 Frar con
y <= 005 0.11 < density -0.05T9042 1.02654 00358283
¥ . . -0.0306411 00358283 0934203

In this example, x and y are almost independent
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Example

densty vakies o

densty <= 0.05 0.11 < density 00573042 102654 1.06236

Xy -0.0585454 1.06236 20324

In this example, x and “x+y” are clearly not independent
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_ Exam pI____e

density values.  der ¢
d 1 00579042 100854 205665
¥y 50 -
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307 yedn 5y a
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In this example, x and “20x+y” are clearly not independent
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Multivariate Gaussians

Xy

writerv. X =| °? Then define X ~N(u,X) to mean

X

m

1
() =—————expl-L (x—p)" =} (x—p))
@7)7 | |/?

2
- o4 o, - o
Where the Gaussian’s H B ;2 im
parameters have... p= Hy y_| %2 02 o
2
Hn O O 0 O'm

Where we insist that Z is symmetric non-negative definite

Again, E[X] = u and Cov[X] = Z. (Note that this is a resulting property of Gaussians, not a definition)
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General Gaussians

2
Hy 01 Op ' O
2
Hy o, 02 - O
T R T R A
2
Hin Oim Tom Om
X2
T
Xy
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Axis-Aligned Gaussians

¢ 0 0 - 0 0

1y 0 6% 0 - 0 0
Y 0 9 o’ 0 0
Hy 0 0 0 - o%1 O

0 0 o0 0 o’

X, L X, fori=#j
N

Xy
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Spherical Gaussians

2 0 0 - 0 O
4y 0 ¢> 0 - 0 O
2
P el I I A
Ho 0 0 0 - ¢ 0
0 o0 0 o

X; L X, fori=j

e

Xy
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Degenerate Gaussians

n= IZl=0

What's so wrong
with clipping
one's toenails in
public?

1
Xy
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Where are we now?

* We've seen the formulae for Gaussians
* We have an intuition of how they behave

« We have some experience of “reading” a
Gaussian’s covariance matrix

e Coming next:
Some useful tricks with Gaussians
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Subsets of variables

Xl
X, U=
X U
Write X =| .2 |asX :[ ]Where X
: v Xm(u)+l
X, v=|
Xm

This will be our standard notation for breaking an m-
dimensional distribution into subsets of variables
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Gaussian Marginals [U] ﬂU
are Gaussian v)
Xl
X U Xl Xm(u)+l
Write X =| "% |asX :( jwhere u=| : :
: A\
Xm
e -G =)
v n)\E, Z,
THEN U is also distributed as a Gaussian

U~N(p,.Z,)
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Gaussian Marginals (U] v
are Gaussian v) e

X,

X U xl Xm(u)+1
Write X =| .7 |asX f(vjwhere U= V=

X Xm(u) Xm

= (G )
ke o v This fact is not
immediately obvious

THEN U is also distributed as a Gaussian
Obvious, once we know
it's a Gaussian (why?)

U~N(g,.Z,)
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Gaussian Marginals (U] v |
are Gaussian v) e

Xl

X U m(u)+1
Write X =| .7 |asX :(ijhere U= :

X How would you prove

this?
F [UJ - N([uu] [Ew Ej]
v nJ)\Z, Z,
p(u)
THEN U is also distributed as a Gaussian = I p(u,v)dv
= v(snore...)

U~N(p,.Z,)

Copyright © 2001, Andrew W. Moore

Matrix A

Linear Transforms R —AX

remain Gaussian

Assume X is an m-dimensional Gaussian r.v.
X~N(g,X)
Define Y to be a p-dimensional r. v. thusly (note p <m):

Y = AX

..where Ais a p x m matrix. Then...

Y~ N(Ap,AZ A7)

Note: the “subset” result is
a special case of this result
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Adding samples of 2
independent Gaussians y _.
. . X+Y

is Gaussian Yy —

if X~N(u,,Z,)andY~N(p, T, )andX LY
then X+ Y ~N(u, +p,,E, +Z,)

Why doesn’t this hold if X and Y are dependent?
Which of the below statements is true?
If X and Y are dependent, then X+Y is Gaussian but possibly
with some other covariance
If X and Y are dependent, then X+Y might be non-Gaussian

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 24




Conditional of (Uj_»
Gaussian is Gaussian \V

- (0 )

THEN U|V~N(n,,, X, )where

By =By +ELES(V -p,)

2‘u\v = Euu - EIVE;\}EUV : e
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U £, = 2977 :
IF o[ [P S Zw T Y |89 9T
v pJ\EL 2, y 76 J(-97 368
THEN U|V~N(g,,. £, )where THEN wly~ N(,yy Z,, ) where

976(y - 76)
By =R+ ):'“rvzwl(v -n,) Ry = 2977 - 3682
2
Z,=Z, - EZLELE, X, =849° - 9672 =808’
3.68

Po——— SO < vy < 400

Gaussians: Slide 26

Copyright © 2001, Andrew W. Moore

= (GG ) G )

THEN U|V~N(g,,. £, )where THEN wly=Nn,,,I,, )where

B 976(y - 76)
Ry =1y +):'Ivzwl(v’l'-v) Wy, =2977 - 3.687
2
= E, -ELEE, x,, -849°- BT _gog2
4 3.68°
| P(W|m=82)
o | P(W|m=76)
T | P(W)
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. (UJ~ N[(puj [zw ):)J e (W ((2977) (849> -9 7]]
v rJ\ZL Zy Note: when given value of :
T v is p,, the conditional
THEN U|V ~N(u,, E,, )where mean of u is
Wy = 2977~

Py =B HZLES(V ) Y
_ _yT -1
K a linear function of v
= | > T,
- w|m=82)

== -

= Note: conditional

L = 7| variance can only be
s - equal to or smaller than | P(W|m=76)

=4  marginal variance

Note: conditional
variance is independent
of the given value of v

P(w)
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Gaussians and the yv - q(u]
chain rule voo ey

Let A be a constant matrix

IF U|V~N(AV,z, )and V ~N(g,.Z,,)

THEN (gj ~N(p,x), with

Ap, AL AT +X, AL,
n= Y= T
n, (AZ,,) Z,
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Available Gaussian tools
gj —»U IF [S]‘N[(:](zr EWD THEN U~ N(g,,Z,,)
Matrix A
X —»AX IFX~N(sX) AND Y=AX THEN Y~N(Ap,AZA")

if X~ N, E,)and Y ~ Nfu,, =, Jand X LY
X — X 4+ Y | then X+ Y ~N{u, +p, =+,

Y — . [U]_ N[("“],(E““ EJ] THEN |y - Ny, Z,)

z, T
U _»Cond °"’—>U|V v e oo
T 1
\% where = p, +ZLE(V -p,) %, =%, EEix

w = w Sy

UV — [U IF U|V~N(AV,X, )and V ~N(n,.X,,)
v — |Rule V) Hen (3]*N(p,2),withZ:(AZWA'+E“‘V AZW]

(ax,)’ Iy
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Assume...

* You are an intellectual snob
* You have a child
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Intellectual snobs with children

e ...are obsessed with 1Q

e In the world as a whole, 1Qs are drawn from
a Gaussian N(100,15%)

1Q tests

« If you take an 1Q test you'll get a score that,
on average (over many tests) will be your
1Q

« But because of noise on any one test the
score will often be a few points lower or
higher than your true 1Q.

SCORE | 1Q ~ N(1Q,10?)
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p(x) 0.025]
0.015]]
0.005]
40 60 80 100 120 140 160
X
Assume...

* You drag your kid off to get tested
« She gets a score of 130

* “Yippee” you screech and start deciding how
to casually refer to her membership of the
top 2% of 1Qs |n your Christmas newsletter.

pix) 0.025] N
\
0.015 /.( .\\
ooos| — P(X<130|p=100,0?=15?) =
40 B0 80 100 120 140 160
. x i P(X<2| u=0,02=1) =

o / erf(2) = 0.977
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You are thinking:

Well sure the test isn’t accurate, so
she might have an 1Q of 120 or she
might have an 1Q of 140, but the
most likely 1Q given the evidence
“score=130" is, of course, 130.

ter.

=100,6?=15?) =

07=1) =

Can we trust
this reasoning?
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Maximum Likelihood 1Q

« 10~N(100,152)
- S[1Q ~ N(IQ, 102)
- 5=130

1Q™ = argmax p(s =130]iq)
ia

e The MLE is the value of the hidden parameter that
makes the observed data most likely

e |In this case

IQ™ =130

Copyright © 2001, Andrew W. Moore Gaussians: Slide 36




BUT....

1Q~N(100,152)
S]1Q ~ N(1Q, 10?)
$=130

1Q™ =argmax p(s =130]iq)
iq

e The MLE is the value of the hidden parameter that
makes the observed data most likely

In this case This is not the same as

“The most likely value of the

|lee =130 parameter given the observed
data”
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What we really want:
1Q~N(100,152)
S|1Q ~ N(IQ, 10?)
S=130

Question: What is
1Q | (5=130)?

Called the Posterior
Distribution of 1Q
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Which tool or tools?

1Q~N(100,152) U _,U
v alize

S|1Q ~ N(IQ, 102)

Matrix A
e S=130
X —| Multiply|—AX

= Question: What is X — X+Y
1Q | (5=130)? Y —

(o
\Y4 alize

U|V — |chan| _ (U
v — |Rule \Y%
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Plan

IQ~N(100,152)
S[1Q ~ N(IQ, 102)
- $=130

e Question: What is

1Q | (5=130)?
S|1Q— |[chain|_( S —(1Q) [condition-

1Q — |[Rule 1Q S alize —IQls
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£, =
E (V)on(m) w THEN
v n)\E, Z,

Worklng e By =i, ELEN(Y - 1,)
1Q~N(100,152)
S|IQ ~ N(IQ, 102) IF UIV~N(AV,E, )and V~N(p,E,)

S$=130

U '
THEN [v]~N(u,E),withE:[AEWA +E, A):WJ

.
Question: What is IQ | (S=130)? (AxZ,) z,

u|le = HIQ + ZIQ(ZIQ + ES“Q)-J.(S_ llIQ)
Zigs = Zig T Zig(Zio + Egig) Tig

What happens when £g),q = 0? Xgq = ?
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That was an important result!
It explains how to combine noisy
measurements (sensor fusion)
So I will do it again in 1D
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Combining Measurements: 1D
True value x
Measurements m;, m2: E(m;-x) = 0, Var(m,) = 5,2,
E(m,-x) = 0, Var(m,) = o,2, independent
Linear estimate x =k;m; + k,m,
Unbiased estimate means k, = 1 - k; so E(x) = x
Minimize Var(x) = k20,2 + (1 — ky)? 5,2
So oVar(x)/ok, =0 -> 2k,(c,? + 6,%) - 20,°=0
S0 k; = 0,%/(5)% + 6,9, k; = 6,2/(c,% + 0,?)
So Var(x) = 6,2 6,2/(c,? + 6,%)
What happens when 5,2 = 0? 5,2 = infinity?
BLUE: Best Linear Unbiased Estimator
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Your pride and joy’s posterior 1Q

 If you did the working, you now have
p(IQ|S=130)

e This is a density, not a number!

 If you have to give the most likely 1Q given
the score you should give

1Q™ =argmax p(iq |s =130)
e This is the mean for a Gaussian
* MAP means “Maximum A-posteriori”
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What you should know

e The Gaussian PDF formula off by heart

» Understand the workings of the formula for
a Gaussian

« Be able to understand the Gaussian tools
described so far

« Have a rough idea of how you could prove
them

» Be happy with how you could use them
« Understand the Bayesian approach to
combining information
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