
Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

Learning Similar Tasks From Observation and
Practice

Darrin C. Bentivegna*1, Christopher G. Atkeson*1, and Gordon Cheng*t
*ATR Computational Neuroscience Laboratories,

Department of Humanoid Robotics and Computational Neuroscience, Kyoto, Japan
tComputational Brain Project, ICORP, Japan Science and Technology Agency, Kyoto, Japan

tCarnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA
(darringatrjp, cgagcmu.edu, gordongatrjp)

Abstract- This paper presents a case study of learning to select
behavioral primitives and generate subgoals from observation
and practice. Our approach uses local features to generalize
across tasks and global features to learn from practice. We
demonstrate this approach applied to the marble maze task. Our
robot uses local features to initially learn primitive selection and
subgoal generation policies from observing a teacher maneuver
a marble through a maze. The robot then uses this information
as it tries to traverse another maze, and refines the information
during learning from practice.

I. INTRODUCTION

Learning can be very expensive for a robot. It is therefore
necessary that they make as much use of learned information
as possible. One way to do this is by having the ability to use
learned information and skills in a variety of similar tasks.

Behavioral primitives have been proposed as a way of
speeding up learning and improving generalization and are
defined as solutions to small parts of a task that are combined
to complete a task [1], [2]. There is an extensive amount
of research in programing and teaching robots and simulated
agents primitives in manipulation [3], navigation [1], athletics
[4], and dance [5] that can generalize to similar tasks. Robots
that have learned a primitive execution sequence for manipu-
lation tasks have the ability to generalize to a slightly different
initial configuration of the work space [6]. Other systems have
been created that support generalization by providing gestural
and verbal feedback to the robot to guide the sequence of
primitives [7]. We have found that in dynamic tasks, where
primitive execution sometimes fails and other agents may
interfere, we need more complete policies to tell the agent
what action to perform in any state.

In this paper we investigate a method to learn policies
for selecting primitives and generating subgoals that will
generalize to similar tasks. We will show how local features
support generalization, but global features are much better in
supporting learning from practicing the same task than local
features. We will use the marble maze task as an example. In
this task, a player tilts a platform to roll a marble to a goal,
avoiding hazards such as holes. The objective is not to find a
path to the goal, as the path to the goal is printed on the board,
but to perform actions that will quickly move the marble along
the path to the goal location. The robot observes a human as

Fig. 1. Software and hardware Marble Maze environments.

they control the board to move the marble through a maze
layout. The robot then controls the board to move the marble
from the start to goal location on a different layout.

Software and hardware versions of the marble maze task
have been created as testbeds (Fig. 1). We created a per-
formance evaluation criterion that measures elapsed time so
that the performance of various players can be compared.
If the marble falls into a hole or does not make progress
for 10 seconds, the marble is moved forward in the maze
and the player is given an additional 10 second penalty. We
used a manually defined library of primitives so we can focus
on learning to select primitives and generate subgoals from
observing a task and practicing a similar task. The manually
defined library of primitives for the marble maze task is
(Fig. 2):

* Roll To Corner: The marble rolls along a wall and stops
when it arrives at a corner.

* Roll Off Wall: The marble rolls along a wall and then
rolls off the end of the wall.

* Roll From Wall: The marble rolls along a wall and is
then maneuvered off the wall.

* Guide: The marble is rolled from one location to another
without touching a wall.

* Corner: The ball is moved into a corner and the board
is then almost leveled, so that the next primitive can move
the ball out of the corner.

A. Extending Previous Research
A major focus of our research is to investigate methods that

will allow learned information to be reused as much as pos-
sible. We created a framework for learning from observation

1-4244-0259-X/06/$20.00 C)2006 IEEE
2677

eLearmng from Corner Roll Off Wall
*.Obsevatio

Se,

Subgoal Roll To Corner

Guide Roll From Wall
Generation) ,

Fig. 2. Left: Our framework. Right: The primitives being explored in the
tilt maze environment.

and practice using primitives (Fig. 2). This framework enabled
robots to learn how to perform the marble maze task [8], [9]
and play air hockey [10]. Action Generation was designed
to be used at multiple locations within the environment and
could also be used in similar environments. The Primitive
Selection and Subgoal Generation modules use a memory-
based approach to learning when to use which primitive
and with what arguments. The Learning from Observation
module supports learning from watching others perform a task.
When using only observed information the robot has a fixed
policy based on the observed information. The Learningfrom
Practice module evaluates the robot's performance during task
execution and uses a variety of algorithms to improve the skill
of the robot.
When selecting a primitive to perform, the robot observes

the environment and asks the question, "What primitive did the
teacher perform when the marble was at this board location,
with the observed velocity and the board at the observed
angles?" The answer is the primitive that the teacher performed
when they were in the state closest to the observed state. We
use the term "global representation" for a state that incorpo-
rates board location since the state includes information in
global board coordinates. This type of global representation
implicitly encodes the board layout and general situation.
Because of this implicit encoding of context, the learned
primitive selection and subgoal generation policies can not
be used on boards with different layouts.
A robot whose goal is to use information in a more general

way may ask the question, "What did the teacher do when the
marble was in a situation where there is a wall to the left, with
a corner ahead, a hole to the right, the marble has a velocity
in the direction of desired movement, and the board is rotated
to increase the marble's velocity in the desired direction?" If
the robot previously observed and recorded the teacher in this
situation and stored the information in an appropriate way
it would be able to answer this question. We will refer to
this type as a "local representation" as these representations
typically emphasize features spatially local to some object or
event, in this case the marble.

The research presented in this paper focuses on the use of
local features in direct policy learning. In our previous work
we found that global representations supported fast learning
from observation and practice on a fixed task. However,
generalization to similar tasks was poor. This paper explores

Fig. 3. The location of some of the features in the tilt maze environment.

how to more effectively generalize by using both global and
local representations. Local representations help transfer skill
to a new board, and global representations help improve skill
with practice on the same board.

II. LOCAL REPRESENTATION

Among many possible options, we designed a local repre-
sentation for the marble maze that records the features that
would be seen if one was at the location of the marble and
looked around. The approximate path the marble should take is
printed on the board, and we use it to initialize a 2D table of all
possible locations the marble can be in with the distance to the
goal recorded in each cell. The desired movement direction is
computed from any point on the maze by observing the values
in the adjacent cells.

Ball movement directions have been discretized into four
directions that are parallel and perpendicular to the maze
walls: forward (the desired movement direction), reverse, left,
and right. For this initial implementation we used features in
the four directions along with the ball's velocity and board
angles in relationship to the desired movement direction. Fig. 3
shows various locations of the features (holes, walls, corners,
wall ends, and wall edges) within the maze, and Fig. 4 and
Table I shows the encoding at various locations in the maze.
The side directions, left and right, are treated differently than
the forward and reverse directions. The Wall End feature is
only computed for the side directions. If a wall is seen on the
sides within 2*BALL RADIUS, the feature (Corner, Hole, or
Wall End) that is along that wall in the direction of desired
movement is also recorded.

This local representation is used to store experiences and
encode the actions that were taken while observing a player
perform the task. For each observed primitive performance,
the local state information along with the type of primitive
that was performed, the movement of the marble, and the
marble's velocity and board angles at the end of the primitive
are recorded.

2678

Fig. 4. The marble at various locations within the maze. The arrows show the
desired movement direction. Table I lists the board features for each of these
positions. The marble's velocity and the angles of the board in relationship
to the desired movement direction are also recorded local features.

Pos.

2
3
4
5

Forward
Corner
Corner
Corner
Hole
Corner

Left
Wall/End
Wall Edge
Wall/Corner
Wall/End
Hole

Reverse
Corner
Corner
Corner
Wall
Corner

Right
Wall/Corner
Wall/Corner
Hole
Wall/Hole
Wall/End

TABLE I
FEATURES RECORDED FOR THE MARBLE IN THE POSITIONS SHOWN IN

FIG. 4.

that match. The number of matching features is then divided
by the total number of possible matches; for this representation
there are 4. Therefore the difference in feature space can be
0.0, 0.25, 0.5, 0.75, or 1.0 where 0.0 signifies that there are
no matches and 1.0 signifies that the features in all directions
match. To compute a query vector, q, the robot computes the
current desired movement direction, locates the features in
all directions, and transforms the marble's velocity and board
angles to the local reference frame. The number of data points
that are considered is reduced by checking if the the primitive
type specified by the data point is applicable to the situation
the marble is currently in. For example, if a data point specifies
a Roll to Corner primitive and there is no corner available in
the current situation, this data point will not be considered.

The primitive specified by the closest data point determines
which primitive type to use for the current situation. The
robot then computes the subgoal information such as where
the ball will move to and what its velocity should be at the
completion of the primitive. The location of local features
currently available, such as wall ends and corners, are used
to identify the end location for the Roll off Wall and Roll
to Corner primitives. The closest data points of the same
primitive type are used to compute other subgoal parameters
including the desired marble's velocity and board rotation
angles. The outcomes of multiple data points are combined
in the following kernel regression:

NIyi K(d(xi, q)) (1)

K(d) is a kernel function and is typically e / and N is the
number of data points used in the regression. The estimate

A. Computing Behavior for y depends on the location of the query point, q.

The robot uses memory-based approaches to computing be-
havior, looking up past experiences and using that information
to guide decisions [11]. The primitive type is selected using
nearest neighbor, and the primitive parameters are generated
using kernel regression. The robot's behavior is determined
by how data points are selected and weighted. In the global
representation a Euclidian distance of each data point from the
query point is computed as d (x, q) = L wj (xj qj)2,
where x and q are the locations of the data point and the
query point in state space, and w allows each dimension to
be weighted. A query to the database in the global represen-
tation is the current state of the environment: marble position
(x, y), velocity (Vx, Vy) and board tilt angles (Ox, Oy). Typical
weights used in the global representation in previous research
are 100.0, 1.0, and 1.0 on the position, velocity and tilt angles
respectfully.
A distance is similarly computed for the local representation

scheme so the same memory-based algorithms can be used.
A distance value is computed using the marble's velocity,
board angles, and features in the four directions. A value
that represents the difference in features between the two
situations is computed by comparing the number of features

III. IMPROVING PERFORMANCE THROUGH PRACTICE

To learn while practicing this task we added a mechanism
to change the distance function used in the nearest neighbor
lookup done in both selecting primitives and generating sub-
goals.
We use an estimate of the value function, or actually a

Q function, to represent the consequences of choosing a
particular primitive in the current task state [12]. A Q function
takes as arguments the current task state, s, and an action. In
our case the action is choosing to use information from stored
point xi, Choosing data point xi at the global state s has
a direct relationship to the action that is taken at this state
and therefore Q(s, xi) encodes a Q value. In the case we are
maximizing the reward, we use this Q value to compute a
scale factor on the distance:

I

d(xi, q, s) = d(xi, q) * exp((C -Q(s, xi))//3) (2)

where C is the initial Q value and B controls the influence of Q
on the multiplier. q is the query state in the local representation
and s is the state in the global representation. The data points,
x, are encoded using the local representation. By replacing
d(xi, q) in equation 1 with d(xi, q, s), the scale factor has

2679

II
I

the effect of moving a stored experience in relationship to
the query point. Scale factors greater than 1.0 have the effect
of moving the data point farther away from the query point
and scale factors less then 1.0 have the effect of moving the
data point closer to the query point. This equation gives the
the robot the ability to use both local and global information
when choosing an action.
Q learning lends itself to updating values by taking into

account the result of actions taken in the future. The Q
values are initialized with a constant and then updated using
a modified version of Q-learning [13]. For each of the data
points, xm, chosen at state, s, the Q-values are updated at the
completion of each primitive performance as follows:

Q(s, Xm) < Q(s, xm) + ce [r + -y max Q(s, x) -Q(s, xm)1
(3)

. oa is the learning rate. Since multiple points are used, the
weighting given by K(d(x(. ,s)) is used as the learning

ZNv K(d(xi,s))
rate. This weighting fas the effect of having points that
contributed the most toward selecting the primitive having
the highest learning rate.

. r is the reward observed after the primitive has been
performed.

. y is the discount rate.
mmax Q(s,) is the future reward that can be expected
from the new state s and selecting the data points x at
the next time step. This value is given by:

EJ=1 K(d(xj s1))]
IV. PERFORMING THE MARBLE MAZE TASK

In this section we describe the performance of the above
algorithms on the hardware marble maze task. The robot
observes the teacher maneuver the marble through the maze

configuration shown in Fig. 1 and then performs the task on

the maze configuration shown in Fig. 6. We report results on

learning from observation followed by learning from practice.
The training data for learning from observation is created

for this task from observing a human maneuver the marble
through the hardware maze shown in Fig. 1 during three
games. During the three games the robot observed 34 Roll to
Corner, 36 Roll off Wall, 12 Roll From Wall, 105 Guide,
and 20 Corner primitives. The primitives are located by
observing a sequence of critical events such as the ball just hit
a single wall or the ball is against two walls. For more details
on our method of segmenting observed data into primitives
see [14]. The policies used in the Action Generation module
have previously been learned from observing and practicing
similar mazes and were also used in the research of [8], [9].

Execution of a primitive ends when the subgoal location is
reached, if the marble rolls into a hole or outside a bounding
box that contains the start and end location, three seconds
have elapsed, or when the final goal is reached. In addition
to only considering data points that are usable for the local
configuration as described in Section II-A, the robot can not

-F
0

0)

.F)

0 2 0 40 6N0 801G0P0N um ber of G am es Played

Fig. 5. The time to reach the goal during 160 games played by the
robot. During the first 50 games the robot is only using the observed local
information, learning only from observation. Starting at game 51 the robot
is using both local and global information, learning from observation and
practice.

use the same data points consecutively and, if a Corner
primitive was just performed, it can not use Corner primitive
data points again until the marble has moved at least 2cm
away from the corner. This helps the robot to not make errors

such as repeatedly choosing data points that make no progress
or going to a corner and staying there.

Fig. 5 shows the time to reach the goal as the robot
maneuvers a marble through the maze configuration shown
in Fig. 6. During the first 50 games the robot is using only
local information and completes the maze 9 times without
being penalized for a failure. The performance varies a lot
from game to game due to the noise of the system. The two
main sources of noise are the vision sensing system and the
irregularities of the marble. The position information provided
by the vision system is filtered and a velocity is calculated
from the filtered information. Therefore errors in the marble's
position result in larger errors in its observed velocity. The
marble is painted so it can be easily seen by the vision system
and due to the numerous times it is used, the paint chips away.
When the marble is stopped on a chipped surface, it takes a

larger board angle to get the marble moving again. This results
in a large acceleration that must be handled when the marble
does move. The irregular surface also affects the path of the
ball when it is moving slowly.

Fig. 6 shows the path of the marble during a typical game.
During this game the marble fell into the bottom left hole
and restarts the game from the bottom left corner. The robot
had difficulty maneuvering the marble through portions of the
maze. In the upper right corner it took the robot two tries to
get out of that area. Just before reaching the goal, it took the
robot many tries to get the marble to make the last turn. If a

situation like this exists for more than 10 seconds, the robot
is stopped, given an additional 10 second penalty, and play
begins again at a location a little further ahead in the maze.

From this information we can see that the robot can perform
this task, and sometimes complete the maze without a failure,
from only observing a similar task. But the robot should also

2680

1 0 0

Local
Locaa I Global

9 0 . .

1 20 1 40 160

Fig. 6. The path of the marble in the hardware maze during a single trial
performed by the robot, after learning from observation only.

be able to perform better by decreasing the number of its
failures, performing actions that make the largest progress
in the shortest time, and eliminating actions that cause the
marble to go backwards in the maze. When a human performed
this task the marble had an average velocity of 6.3cm/sec
through the observed maze. During 5 games played by the
robot in the new maze, the marble had an average velocity of
2.8cm/sec; indicating that the robot should be able to improve
its performance with practice.

A. Increasing Performance Through Practice
This same robot is now given the ability to improve its

performance through practice. When the primitive ends the
reward is computed as follows:

. Moving through the maze: 500 x the distance in cen-

timeters from the beginning of the primitive to the end
location. Movement along the path toward the goal is
positive distance and movement away from the goal is
negative distance.

. Taking up time: -1000x the amount of time in seconds
from the time the primitive started to the time it ended.

. Falling into a hole: -50, 000, the Q-value of the hole state
is 0. When the playing agent falls into a hole, learning
is stopped and restarted from the location the marble is
placed at when the game begins again.

. Reaching the goal: 10, 000.
Fig. 5 shows the improved ability of the robot to quickly

reach the goal location as it begins to use the global informa-
tion starting at game 51. The robot improves significantly after
practicing for only 20 games. After practicing about 60 games
it has almost entirely eliminated actions that cause the marble
to fall into holes. The performance continues to improve as the
robot tries to find actions that will allow the marble to traverse
slow areas of the maze more quickly. During the first five trials
of practicing the marble has an average velocity of 3.1cm/sec
and during the last five trials it is 4.5cm/sec; not including

Fig. 7. The path of the marble in the hardware maze during a single trial
perforned by the robot after practicing 80 games.

the added time penalty and distance due to failures. There are

no failures during the last 24 games, and only 5 failures in the
last 50 games, compared with 34 failures during the first 50
games practiced (games 51 to 101 of Fig. 5) and 56 failures
during the first 50 games played when the robot was not using
global information to learn from practice (games 1 to 50 of
Fig. 5). Fig. 7 shows a typical path taken by the marble after
the robot practices for 80 games.

The values for the various parameters were chosen using
trial and error and experience gained during previous research.
For the results reported in Fig. 5, they had the following
values, weight on the velocity: 10.0, weight on the feature
vector 1.0, weight on the board angles: 1.0, kernel function d:
10.0, number of data points used in the kernel regression of
equation 1 (N): 3, initial Q value (C): 0.0, scaling function /3:

1000.0, and the discount rate (-y): 0.1. The research presented
in [14] shows how the learning from practice algorithm does
a good job of compensating for poorly chosen parameters.

B. Comparing Approaches Using the Simulator
To evaluate our algorithms statistically we implemented

them on the marble maze simulator. This allows us to quickly
conduct many trials. For the software implementation we

created a database of 20 games played by a human using the
mouse to tilt the board shown in Fig. 1. Every game in the
database was completed by the human with no failures. When
the software agent performs a learning trial, it first randomly
selects three games from the database and creates a primitive
selection and subgoal generation database. A trial consist of
500 games played on the simulator where the first 100 games
use learning from observation only and during games 101 to
500 the agent is learning from practice.
We compared agents using local and global representations

when learning from observation and practice. Because global
learning from observation is not able to generalize to another
maze layout we used a single board layout (Fig 1) for these

2681

I

I~~~~~

m 1-- L A
II I

lHrlL~~ ~~~~~~~~~~~~~~~~ ISI

* LFO-Local, LFP-GlobalI (LG)
*LFO-Local, LFP-Local (LL)
LFO-Global, LFP-Global (GG)

8 LFO-Local, LFP-Gbbal

70

m

O 60

30

a)

a) 50-E

a)

g40-

30-

500
20

500 50 100 150 200 250 300 350 400 450
Number of games played (30 trials averaged together)

Fig. 8. Time to reach the goal during 30 trials under various learning
configurations. LFO-Local and LFO-Global use local and global features
respectively to learn from observation. LFP-Local and LFP-Global use local
and global features respectively to learn from practice. During each trial, until
game 100 the agent is only learning from observation. Starting from game
101 the agent is also learning from practice.

comparisons. The "LFO-Local, LFP-Global" line in Fig. 8
shows the result when the agent is learning from observation
(LFO) using a local representation and then learning from
practice (LFP) using a global representation (condition LG).
This is the configuration of the robot in Section IV with
the exception that the robot played a different board than
it observed. For the "LFO-Local, LFP-Local" line the agent
is learning from observation using a local representation and
then learning from practice also using a local representation
(LL). In this case the state, s, in equation 3 is the state
in the local representation. The Q values are stored in a

table of possible local states and indexed using the local
state representation. The "LFO-Global, LFP-Global" is for
the agent that is learning from observation using a global
representation and then learning from practice also using a

global representation (GG). This is the configuration used in
our previous research [8], [9]. The graph presents the average
of 30 trials. The error bars in these figures represent the
standard deviation of the 30 trials.

Looking at the performance during the first 100 games

shows how well each agent can perform using only the
observed information. The GG agent's policy for learning only
from observation is better than that of the LG and LL agents.
However, the LG and LL agents have the advantage that they
can learn from observing play on another board. The LL agent,
using only a local representation, is very poor at increasing its
performance through practice. The LG and GG agents can

increase their performance significantly with the GG agent
performing slightly better.

The GG policy can only be used on the same board
that it observed and therefore it can not be tested in other
maze configurations. Fig. 9 shows the result of the LG agent
using the observed information from the board in Fig. 1 to
perform on a different maze configuration shown in Fig. 6. The

Fig. 9. Time to reach the goal during 30 trials using local features for learning
from observation and using both local and global features for learning from
observation and practice. The agent is performing the maze shown in Fig. 6.

results are similar to that of the robot on the hardware maze,

Fig. 5. These results support the claim that local features
support generalization, but global features are much better in
supporting learning from practicing the same task than local
features.

V. DIscusSION AND FUTURE RESEARCH
How well our system can generalize may be determined by

the design of the local representation. There are typically many
possible local representations one could use for a particular
task. Other possible representations include representing the
marble maze state with a bird's eye view image, with various
types of image features describing the current situation. We
could have used a 2D grid around the ball, with each grid
cell indicating whether it was empty, had a wall, or had a

hole. We could have measured the distances to walls and holes
in all directions around the marble, and used a histogram
of the distances as the state. Desirable features for a local
representation are 1) fixed number of elements 2) supports a

distance measure that works for the task. 3) adjustable level of
detail or scope. It might be possible to use feature selection
or weighting algorithms to find better local representations
during practice of a task. There may also be algorithms to
invent new types of local representations based on learned
data. The focus of this paper is not to present an optimal local
representation, but given a possible local representation present
how generalization and learning using global parameters can

be combined.

VI. CONCLUSION
We explored using local and global features in learning

from observation and learning from practice. The use of local
features is a significant extension to our previous research
and gives our robot the ability to perform similar tasks. The
local policy supports task transfer by providing the robot with
an initial guess of which primitive and what subgoals should
be used in the new task. Global information, along with a

2682

70

60

(9

6 50
a)

E
H 40

30

LL

4*tr

20

LG

I k

GG/

50 100 150 200 250 300 350 400 450
Number of games played (30 trials averaged together)

500

80

performance evaluation, allows the robot to improve while
performing the task. In the marble maze task, local features
supported generalization to similar tasks, but did not support
learning from practice. Global features supported learning
from practice, but not generalization. Local and global features
working together supports task transfer and effective learning
from practice.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press,
1998.

[2] R. A. Schmidt, Motor Learning and Control. Champaign, IL: Human
Kinetics Publishers, 1988.

[3] H. Asada and Y. Asari, "The direct teaching of tool manipulation skills
via the impedance identification of human motions," in IEEE Int'l Conf
on Robotics and Automation, 1988, pp. 1269-1274.

[4] W. L. Wooten and J. K. Hodgins, "Simulating leaping, tumbling, landing
and balancing humans," in IEEE International Conference on Robotics
and Automation, vol. 1, 2000, pp. 656-662.

[5] M. J. Mataric, M. Williamson, J. Demiris, and A. Mohan, "Behavior-
based primitives for articulated control," in Fifth International Confer-
ence on Simulation ofAdaptive Behavior (SAB-98). MIT Press, 1998,
pp. 165-170.

[6] Y. Kuniyoshi, M. Inaba, and H. Inoue, "Learning by watching: Ex-
tracting reusable task knowledge from visual observation of human
performance," IEEE Transactions on Robotics and Automation, vol. 10,
no. 6, pp. 799-822, 1994.

[7] J. J. Steil, F. Rothling, R. Haschke, and H. Ritter, "Situated robot
learning for multi-modal instruction and imitation of grasping," Robot-
ics and Autonomous Systems, Special issue on Robot Learning from
Demonstration, vol. 47, pp. 129-141, June 2004.

[8] D. C. Bentivegna, C. G. Atkeson, and G. Cheng, "Learning to select
primitives and generate sub-goals from practice," in Proceedings of
the 2003 IEEEIRSJ International Conference on Intelligent Robots and
Systems., vol. 1, Las Vegas, Nevada, USA, October 2003, pp. 946-953.

[9] D. C. Bentivegna, G. Cheng, and C. G. Atkeson, "Learning from
observation and from practice using behavioral primitives," in Robotics
Research The Eleventh International Symposium Series: Springer Tracts
in Advanced Robotics, Vol. 15, P. Dario and R. Chatila, Eds. Springer-
Verlag GmbH, 2004.

[10] D. C. Bentivegna, C. G. Atkeson, A. Ude, and G. Cheng, "Learning to
act from observation and practice," International Journal ofHumanoid
Robotics, vol. 1, no. 4, pp. 585-611, December 2004.

[11] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally weighted learn-
ing," Artificial Intelligence Review, vol. 1, pp. 11-73, 1997.

[12] C. Watkins and P. Dayan, "Q learning," in Machine Learning, vol. 8,
1992, pp. 279-292.

[13] R. Sutton and A. Barto, Reinforcment Learning: An Introduction. MIT
Press, 1998.

[14] D. C. Bentivegna, "Learning from observation using primitives," Ph.D.
dissertation, Georgia Institute of Technology, Atlanta, GA, USA, July
2004, http://www.cns.atrjp/dbent/bentivegna-thesis.pdf.

2683

