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Abstract

In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives based on
non-linear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like
locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we
have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through
movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by
a novel frequency adaptation algorithm based on phase resetting and entrainment of coupled oscillators. Numerical simulations
and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotion controller.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There has been a growing interest in biped loco-
motion with the recent development of advanced hu-
manoid robots. Many of existing successful walking
algorithms use the zero moment point (ZMP) crite-
rion [1] for off-line motion planning[2,3] and on-line
balance compensation[4–6]. These ZMP-based meth-
ods have been shown to be effective to achieve biped
locomotion in legged robots with flat feet. However,
they require precise modeling of the robot dynamics
and high-gain trajectory tracking control, and the gen-
erated patterns result in a typical ‘bent-knee’ posture
to avoid singularities of inverse kinematics. From the
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viewpoint of energy efficiency, such walking patterns
are not desirable since torque must be continuously
applied to the knee joint to maintain a bent-knee
posture. These previous ZMP approaches have pri-
marily focused on the ability of executing planned
movements at any instance by ensuring surface con-
tact between the sole and the ground[7] rather than
natural human-like motion which exploits passive
dynamics of the body[8].

In contrast to off-line trajectory planning, biologi-
cally inspired control approaches based on central pat-
tern generators (CPGs) with neural oscillators have
been drawing much attention for rhythmic motion gen-
eration. As a CPG, a neural oscillator proposed by
Matsuoka[9] is widely used, which models the fir-
ing rate of two mutually inhibiting neurons described
in a set of differential equations. This model is used
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in robotic applications to achieve designated tasks in-
volving rhythmic motion which requires interactions
between the system and the environment. Examples
include biped locomotion[10–13], quadruped locomo-
tion [14], juggling [15], drumming[16], and playing
with a slinky toy [17]. Neural oscillators have desir-
able properties such as adaptation to the environment
through entrainment. However, it is difficult to design
interconnection and feedback pathways of neural os-
cillators, and to manually tune all open parameters in
order to achieve the desired behavior.

Other approaches include[18] in an effort to de-
sign a simple controller based on physical intuition.
The control strategy proposed in Ref.[18] is quite
simple and easy to implement. However, it requires
manual tuning of the control parameters and accurate
torque-controlled actuators.

In this paper, we suggest an approach to learning
biped locomotion from demonstration and its adapta-
tion through coupling between the pattern generator
and the mechanical system. Motivated by human’s
capability of learning and imitating demonstrated
movements of a teacher, imitation learning has been
explored as an efficient method for motor learning in
robots to accomplish desired movements[19–21]. In
our previous work, we proposed dynamical movement
primitives to encode complex discrete and rhythmic
multi-joint movements through imitation learning
[22]. Dynamical movement primitives are formulated
as a set of autonomous non-linear differential equa-
tions with well-defined attractor dynamics. Demon-
strated trajectories are learned using locally weighted
regression, and the output of dynamical movement
primitives serves as kinematic movement plans, e.g.,
desired trajectories, for a robot.

This paper presents the idea of using the rhythmic
movement primitives based on phase oscillators[22]
as a CPG to learn biped locomotion from demon-
stration. Compared with neural oscillators, one of the
appealing properties of phase oscillators is that the
desired phase relationship among oscillators can be
specified in a straightforward manner. In Ref.[23], a
comprehensive formulation of phase coordination of
coupled phase oscillators is proposed. Applications
of coupled phase oscillators have been explored in
the gait control of multi-legged robots[24,25] and
the control of a biped robot[26]. In addition to using
phase oscillators, our movement primitive has various

desirable properties which are beneficial for biped
locomotion. For example, it can learn a demonstrated
trajectory rapidly, and it is easy to re-scale the learned
rhythmic movement in terms of amplitude, frequency
and offset of the patterns[22]. In the application of
rhythmic movement primitives to biped locomotion,
we introduce coupling terms to the movement primi-
tives to achieve the desired phase relationship among
limbs following the formulation proposed in Ref.
[23]. We also propose an adaptation algorithm for the
frequency of walking based on phase resetting[27]
and entrainment between the phase oscillator and
mechanical system using feedback from the environ-
ment. Frequency adaptation of a CPG is beneficial
when the desired frequency of the coupled system is
not exactly known in advance.

In Ref. [26], a similar idea of using coupled phase
oscillators as a pattern generator for biped locomotion
was proposed. In their method, desired joint trajecto-
ries of the legs are generated from a nominal trajec-
tory at the tip of each leg defined by a combination of
simple prescribed functions of phase through inverse
kinematics[26]. In comparison to Ref.[26], we be-
lieve that our method has the advantage of flexibility
in encoding complex movements by imitation learn-
ing and the potential capability of improving learned
movements through reinforcement learning[28]. We
demonstrate the effectiveness of the proposed control
strategy by numerical simulations and experimental
implementation.

2. Biped robot

We use a planar 5-link biped robot developed in Ref.
[29]. The height of the robot is 0.4 m and the weight is
about 2 kg. The length of each link of the leg is 0.2 m.
The mass of the body is 1.0 kg, the thigh is 0.43 kg and
the shank is 0.05 kg. The motion of the robot is con-
strained within the sagittal plane by a tether boom. The
hip joints are directly actuated by direct drive motors,
and the knee joints are driven by direct drive motors
through a wire transmission mechanism with the re-
duction ratio of 2.0. These transmission mechanisms
with low reduction ratio provide high back drivabil-
ity at the joints. Foot contact with the ground is de-
tected by foot switches. The robot is an underactuated
system having rounded soles with no ankles. Thus, it
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is challenging to design a controller to achieve biped
locomotion with this robot since no actuation can be
applied between the stance leg and the ground com-
pared to many of the existing biped robots which have
flat feet with ankle joint actuation.

3. Dynamical movement primitives

In this section, we outline the rhythmic dynamical
movement primitives originally proposed in Ref.[22],
which we will use as a CPG for biped locomotion in
this paper.

3.1. Rhythmic dynamical movement primitives

Rhythmic dynamical movement primitives encode
periodic behavioral patterns as an output of a set of
non-linear dynamical systems composed of acanon-
ical dynamical system with a phase oscillator and a
transformation dynamical system with a non-linear
function approximator.

Consider the following limit cycle oscillator char-
acterized in terms of an amplituder and a phaseφ as
a canonical dynamical system which generates basic
rhythmic patterns:

τφ̇ = 1, (1)

τṙ = −µ(r − r0), (2)

where τ is a temporal scaling factor,r0 determines
the desired (relative) amplitude, andµ is a positive
constant. Note that the phase dynamics(1) can be
written as

φ̇ = ω, (3)

whereω = 1/τ is the natural frequency. When there
are multiple oscillators, we will introduce coupling
terms among the oscillators (seeSection 4.1). This
rhythmic canonical system is designed to provide an
amplitude signal̃v = [r cosφ, r sin φ]T and phase
variable mod(φ, 2π) to the following second-order
transformation dynamical system (z, y), where the out-
put y is used as the desired trajectory for the robot:

τż = αz(βz(ym − y) − z), (4)

τẏ = z + f(ṽ, φ), (5)

where α and β are time constants,ym is an offset
of the output trajectory.f is a non-linear function
approximator using local linear models[30] of the
form

f(ṽ, φ) =
∑N

k=1 ΨkwT
k ṽ∑N

k=1 Ψk

, (6)

wherewk is the parameter vector of thekth local model
which will be determined by locally weighted learn-
ing [30] from a demonstrated trajectoryydemo (see
Section 3.2). Each local model is weighted by a Gaus-
sian kernel function

Ψk = exp(−hk( mod(φ, 2π) − ck)2), (7)

whereck is the center of thekth linear model, andhk

characterizes its width. A final prediction is calculated
by the weighted average of the predictions of the indi-
vidual models. As demonstrated in Ref.[22], the am-
plitude, frequency and offset of the learned rhythmic
patterns can be easily modified by scaling the param-
etersr0, ω(= 1/τ) andym individually.

3.2. Imitation learning with dynamical movement
primitives

An important issue is how to learn the parameters
wk in the non-linear function(6) to characterize the
output of a dynamical movement primitive for a given
demonstrated trajectoryydemo. Given a sampled data
point (ftarget, ṽ) at t where

ftarget= τẏdemo− zdemo (8)

and

τżdemo= αz(βz(ym − ydemo) − zdemo),

the learning problem is formulated to find the param-
eterswk in Eq. (6)using incremental locally weighted
regression technique[30] in which wi is updated by

wt+1
k = wt

k + ΨkPt+1
k ṽek, (9)

where

Pt+1
k = 1

λ

(
Pt

k − Pt
kṽṽT Pt

k

(λ/Ψk) + ṽT Pt
kṽ

)
,

ek = ftarget− wT
k ṽ
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and λ ∈ [0, 1] is a forgetting factor. We chose this
locally weighted regression framework as it can au-
tomatically find the correct number of necessary ba-
sis function, and can tune thehk parameters of each
Gaussian kernel function(7) to achieve higher func-
tion approximation accuracy. Moreover, it learns the
parameterswk of every local modelk totally indepen-
dent of all other local models, which minimizes inter-
ference between local models and provides a means
to robustly classify a rhythmic pattern with the help
of the parameterswk [22].

4. Rhythmic dynamical movement primitives as a
CPG

We use the rhythmic dynamical movement primi-
tives introduced inSection 3.1as a CPG for biped
locomotion.Fig. 1 illustrates the proposed control ar-
chitecture in this paper. Each joint is equipped with
a movement primitive which generates the desired
joint trajectoryθdes. We define the index and the cor-
responding name of the joint as Left hip (i = 1,
L HIP), and Left knee (i = 2, L KNEE), Right hip
(i = 3, R HIP), and Right knee (i = 4, R KNEE).
An additional oscillator (φref) is allocated to provide
a reference phase signal to the limb oscillators, which
is adjusted by the ground contact information at the
instance of heel strike.Section 4.1introduces cou-
pling to the oscillators of the movement primitives
to achieve the desired phase relationship between the

Fig. 1. Proposed control architecture for biped locomotion with
dynamical movement primitives.

limbs.Section 4.2proposes a frequency adaptation al-
gorithm of the learned periodic movements through
the interaction among the coupled oscillators, robot
and environment.

4.1. Inter- and intra-limb phase coordination

We introduce coupling among the oscillators to reg-
ulate the desired phase relationship between the limbs
of the robot. This kind of coupling is motivated from
a biological point of view where it has been hypothe-
sized that coupling among neural oscillators plays an
important role in coordinating the desired phase re-
lationship of limb movements in locomotion and gait
transition[31].

Consider the following coupling terms for the os-
cillator i:

φ̇i = ωi + κ

N∑
i=1

Cij sin(φj − φi), (10)

whereκ is a positive constant gain, andCij is an el-
ement of then × n matrix C which characterizes the
coupling with other oscillators. This form of coupling
appears in various studies of coupled oscillators and
their application, e.g.,[23–26,32,33]. In this paper, we
employ the formulation in Ref.[23] to specify the de-
sired phase relationship. In Ref.[23], C is defined to
be a symmetric matrix where the diagonal elements
areCii = 0 for all i, and off-diagonal elementsCij are
chosen as follows:

• Cij = 1: oscillatorsi and j are designed to be in
phase such thatφi − φj = 0 (mod 2π).

• Cij = −1: oscillatorsi andj are designed to be out
of phase such thatφi − φj = π (mod 2π).

As noted in Ref.[23], an arbitrary phase difference
other than 0 orπ can be specified by introducing a
change of coordinates, or equivalent to having an offset
in the coupling terms.

In this paper, we design the desired phase difference
among the canonical oscillators such that the links of
each leg move in phase (with zero phase difference),
and the left and right legs move out of phase (with
π phase difference) by defining the phase of the os-
cillator as φi = 0 at the instance of heel strike of
the corresponding leg. More specifically, we require
φ1 − φ2 = 0, φ3 − φ4 = 0, φ1 − φ3 = π, and
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φ2−φ4 = π. Thus, the connection matrixC is chosen
to be

C =




0 1 −1 −1

1 0 −1 −1

−1 −1 0 1

−1 −1 1 0


 . (11)

4.2. Frequency adaptation of locomotion

Section 4.1introduced internal coupling of the os-
cillators to coordinate the phase difference among the
limbs of the robot. This section considers interac-
tion between the environment and the CPG to achieve
self-tuning of the natural frequency of the oscillators
and synchronization of the CPG with the periodic be-
havior of the robot.

4.2.1. Synchronization of coupled oscillators with
frequency adaptation

Before introducing the proposed frequency adapta-
tion law for the biped robot CPG, let us consider the
behavior of the following dynamics of two coupled
oscillators:

φ̇1 = ω1 + K1(φ2 − φ1), (12)

φ̇2 = ω2 + K2(φ1 − φ2), (13)

whereω1, ω2 > 0 are natural frequencies of the os-
cillators, andK1, K2 are positive coupling constants.
Then, the oscillators run with the phase difference
ψ∗ = φ2 − φ1 = (ω2 − ω1)/(K1 + K2) at the coupled
frequencyω∗ = (K2ω1+K1ω2)/(K1+K2) when they
are entrained. Whenω1 
= ω2, the phase difference
ψ = φ2 −φ1 remains non-zero. However, ifω1 = ω2,
then the phase difference of these oscillators will be
zero. Thus, we introduce an update law of the natu-
ral frequencyω1 to achieve synchronization of these
oscillators with zero phase difference:

φ̇1(t) = ω1(t) + K1(φ2(t) − φ1(t)), (14)

ω̇1(t) = K(ω2 − ω1(t)), (15)

φ̇2(t) = ω2 + K2(φ1(t) − φ2(t)), (16)

whereK is a positive constant. It is straightforward
to see thatω1 → ω2 as t → ∞. Thus, the phase
difference will be zero such thatψ = φ2 − φ1 → 0.

4.2.2. Frequency update law and phase resetting of
CPG

In this section, we introduce an adaptation algo-
rithm of the CPG in order to adjust the frequency of
the learned periodic motions by the robot through the
interaction among the CPG, robot and environment.
As depicted inFig. 1, the proposed control system
can be regarded as a coupling of the CPG and the me-
chanical oscillator (robot) which is analogous to the
coupled oscillator system discussed inSection 4.2.1.

For this purpose, we first introduce a reference
oscillator (φref) which will be synchronized with the
locomotion of the robot through the adaptation mech-
anism described below. This reference oscillator can
be considered as a phase estimator of locomotion by
the discrete heel strike information detected by foot
switches. Then, additional coupling is introduced to
the limb oscillators withφref to achieve the desired
relative phaseφ1 = φ2 = φref andφ3 = φ4 = φref+π.

Motivated by the synchronization mechanism of the
coupled oscillators inSection 4.2.1, we propose the
following phase resetting and frequency update law.
They can be interpreted as a discretized version of
phase coupling(14) and frequency update(15) at the
instance of heel strike:

φ̇ref = ω̂n
ref + δ(t − theel strike)(φ

robot
heel strike− φref), (17)

ω̂n+1
ref = ω̂n

ref + K(ωn
measured− ω̂n

ref), (18)

whereδ is the Dirac’s delta function,n is the number
of steps, andφrobot

heel strikeis the phase of the mechanical
oscillator (robot) at heel strike defined asφrobot

heel strike=
0 at the heel strike of the left leg, andφrobot

heel strike =
π at the heel strike of the right leg.ωn

measuredis the
measured frequency of locomotion defined by

ωn
measured=

π

T n
measured

, (19)

whereT n
measuredis the stepping period of locomotion

(half period with respect to the oscillator). At the same
time, natural frequencies of all the limb oscillatorsωi

are updated at the instance of heel contact such that
ωi = ω̂n+1

ref . Note that it is possible to directly intro-
duce phase resetting to the limb oscillators as seen in
Ref. [26]. However, introduction of a reference oscil-
lator allows phase estimation depending on multiple
events and multi-modal information. Moreover, con-
tinuous phase coupling of the limb oscillators with the
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Fig. 2. Joint trajectories for the left leg and heel strike timing for four periods (eight steps) of walking (simulation).

reference oscillator having phase resetting alleviates
the problem of discontinuity to the desired joint tra-
jectories.

The phase resetting algorithm(17) is motivated
from a biological perspective as well as a mathe-
matical point of view. Phenomena of phase resetting
or phase shift are observed in many biological os-
cillators resulting from external perturbations, e.g.,
circadian pacemakers, biochemical oscillators, and
human finger tapping neural networks[27]. Phase
resetting is related to the stability properties of neu-
ral rhythms, which can be analyzed by examining
the phase-dependent responses against perturbations.
A recent study[34] investigated the role of phase
resetting in biped locomotion. Numerical studies in
Ref. [34] suggest possible contribution of phase reset-
ting during walking to gait stability against external
perturbations.

5. Numerical simulations

As a demonstrated trajectory, we use the mo-
tion capture data of human walking in Ref.[35]
(29-year-old male, 173 cm, 83.5 kg, right hip and
knee). We identified the period and frequency of
this pattern by the power spectrum estimation with
FFT and autocorrelation asT = 1.17 s andf =
1/T = 0.855 Hz, respectively. The dynamics of the
robot are derived using SD/FAST1 and integrated
using the Runge–Kutta algorithm at 1 ms step size.

1 http://www.sdfast.com

The ground contact force is calculated using a linear
spring-damper model. A low-gain PD controller is
used at each joint to track the desired trajectory which
is the output of the movement primitive.

A walking pattern from the demonstrated trajectory
is learned with the dynamical primitives. We manu-
ally designed the desired trajectory for the initial step
of locomotion from a standing position at rest, and
the proposed CPG controller is activated at heel con-
tact of the first step. The amplitude parameter of the
dynamical primitives is set tor0 = 0.7, and the off-
setym = 0.375 is introduced to the knee joints. For
the scaling of the natural frequency of the oscillator,
the adaptation law proposed inSection 4.2.2is used
with the initial frequency ofω = 4.83 rad/s (period of
oscillation is 1.3 s). These parameters are determined
empirically from trial and error.

Fig. 2 illustrates the desired and actual joint trajec-
tories for the left leg, and the timing of heel strike
after a stable pattern was learned by the phase reset-
ting algorithm.Fig. 3 shows the torque command for
the left leg, which indicates that the knee joint swings
passively since it requires almost no torque (seet =
15.1–15.3 s).Fig. 4depicts one step of walking.Fig. 5
(left) shows the adaptation of the period of locomotion
andFig. 5 (right) shows the learning curve of the fre-
quency of the CPG with different coupling constants
K = 0.2, 0.5 and 0.8 inEq. (18). The stepping period
approached 0.387 s, and the resultant CPG frequency
wasω = 8.12 rad/s, which roughly corresponds to the
natural frequency of the swing leg modeled as a sim-
plified linear pendulum, using the proposed adaptation
law.

http://www.sdfast.com
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Fig. 3. Torque command to the left hip and knee joints for four periods (eight steps) of walking (simulation).

Fig. 4. Snapshots of walking simulation for one step at 15 frames/s (1 frame≈ 66 ms).

Robustness against external perturbations is evalu-
ated by pushing the robot forward and backward with
external forces. Forces are applied for a duration of
0.1 s at different timing during a single step (at an in-
terval of 0.1 rad from 0 to 2π of the phase of the ref-
erence oscillator). When a forward perturbing force is
applied, the robot could cope with up to 9.1 N (max) at
φ = 1.1 rad and 2.2 N (min) atφ = 2.7 rad of the per-
turbing forces. When a backward perturbing force is
applied, the robot could cope with up to−2.4 N (max)
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Fig. 5. Frequency adaptation of walking via entrainment (simulation). Left: adaptation of period. Right: learning curve of the frequency
of the CPG.

at φ = 4.9 rad and−1.0 N (min) atφ = 0.4 andφ =
0.5 rad of the perturbing forces. In contrast, without
phase resetting, the robot only could cope with much
smaller disturbances, for example, the robot only tol-
erated up to 3.9 N of the forward perturbing force ap-
plied atφ = 1.1.

The simulation results demonstrate self-adaptation
of the frequency of locomotion and robustness of
walking against disturbance by the proposed algo-
rithm.
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Fig. 6. Joint trajectories for the left leg and heel strike timing for four periods (eight steps) of walking (experiment).

6. Experimental implementation

We implemented the proposed control framework
on our biped robot. In the experimental implementa-
tion, our initial attempt to achieve biped locomotion
using the human demonstrated trajectory was not
successful largely due to mechanical limitation of the
experimental system and discrepancy in the ground
contact condition between simulations and experi-
ments. Thus, we used another target trajectory which
was experimentally obtained from an actual trajectory
of successful robot locomotion using a state machine
controller. The state machine controller is designed to
coordinate the leg movements with the physical state
of the legged system based on the idea presented in
Ref. [36].
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Fig. 7. Torque command to the left hip and knee joints for four periods (eight steps) of walking (experiment).

To initiate locomotion in the experiments, we first
suspended the robot with the legs swinging in the
air, and then placed the robot on the ground man-
ually. Thus, the initial condition of each run was
not consistent, and occasionally the robot could not
start walking or fell over after a couple of steps
when the timing was not appropriate.Fig. 6 illus-
trates the desired and actual joint trajectories for the
left leg, and the timing of heel strike.Fig. 7 shows
the torque command for the left leg. Some oscilla-
tion in the torque command for the hip joint can
be seen. This is due to noisy joint velocity signals
obtained from numerically differentiated joint an-
gles measured by optical encoders. We are currently
planning to use gyros to obtain smoother joint ve-
locities to improve the performance of the tracking
controller. Note that a limit on the torque command
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Fig. 8. Frequency adaptation of walking via entrainment (experiment). Left: adaptation of period. Right: learning curve of the frequency
of the CPG.

is imposed at±1.5 Nm. Fig. 8 (left) shows the pe-
riod adaptation andFig. 8 (right) shows the learning
curve of the frequency of the CPG. Stepping pe-
riod for a typical walking experiment was around
0.37 s. In this experiment, the initial frequency of the
oscillator was set toω = 5.71 rad/s (period of oscil-
lation is 1.1 s), and the adaptation gain inEq. (18)
was decreased according to an annealing procedure
K = K0/n, where K0 = 0.05 andn is the num-
ber of steps, as is needed in most gradient descent
procedure. We introduced an offsetα for phase
resetting

φ̇ref = ω̂n + δ(t − theel strike)(φ
robot
heel strike− φref + α)

(20)

to adjust the timing of foot contact, whereα is chosen
to be α = 0.8 rad. These parameters are determined
empirically. Note that phase resetting with an offset
effectively changes the period of oscillation.

Fig. 9. Walking over surfaces with different friction properties and a seesaw-like metal sheet with a slight change in the slope.

Robustness of the proposed algorithm is evaluated
by testing walking over surfaces with different fric-
tion properties such as carpet, cork sheet (3 mm thick)
and a seesaw-like metal plate (2 mm thick). The metal
plate was placed so that the inclination of the slope
slightly changes like a seesaw when the robot walks
over it (the height of the center is 7 mm). The robot
could deal with the change in the environment as
depicted inFig. 9.

Note that even if we use the learned trajectory from
the actual robot walking pattern, the robot could not
walk by just replaying it as a desired trajectory. Phase
resetting using foot contact information was necessary.
This implies that appropriate on-line adjustment of the
phase of the CPG by sensory feedback from the envi-
ronment is essential to achieve successful locomotion.
In addition, empirically we found that the proposed
controller achieved much more robust walking com-
pared to the state machine-based controller which we
originally designed.
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7. Conclusion

In this paper, we proposed a method for learn-
ing biped locomotion from demonstration and its
frequency adaptation using dynamical movement
primitives. In the dynamical movement primitives,
kinematic movement plans are described in a set of
non-linear differential equations with well-defined
attractor dynamics, and demonstrated trajectories are
learned using locally weighted regression. Specifi-
cally, we use rhythmic dynamical movement primi-
tives based on coupled phase oscillators as a CPG, and
introduced a frequency adaptation algorithm through
interactions among the CPG, mechanical system and
the environment motivated by the synchronization of
coupled oscillators. Numerical simulations and ex-
perimental result demonstrate the effectiveness of the
proposed control algorithm to achieve steady-state
walking roughly at the natural frequency of the cou-
pled system. We also evaluated robustness against
disturbance in numerical simulations and experiments.

Future work will address initiation and termination
of walking, and on-line balance compensation. We
will also consider collection of human’s walking data
under various behavioral conditions. In our current
study, we used a simple phase resetting mechanism
in which the phase of the CPG is forced to be reset to
a specific value at the instance of heel strike regard-
less of the current phase of the CPG. In the future,
we are interested in the generalization of the idea of
phase resetting to determine phase-dependent reaction
against external perturbations such as recovery from
stumbling by designing an appropriate phase resetting
curve[27]. Formal mathematical analysis will be re-
quired to understand the principle of periodic stability
of a limit cycle solution to the dynamics of a combined
oscillator and mechanical system. In the long run, we
are hopeful that our approach may provide insight into
a theoretically sound design principle of biped loco-
motion control to achieve human-like natural walking.
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