
Learning Spatial Preconditions of Manipulation Skills
using Random Forests

Oliver Kroemer and Gaurav S. Sukhatme

Abstract— Robots working in everyday and unstructured
environments will need to perform manipulation skills using
different sets of objects. To determine if a manipulation skill
can be executed in a given situation, a robot will need to learn
the preconditions of the skill. The robot will need to check both
that the required objects are present in the scene and that they
are arranged in a suitable manner for the skill to be executed.

We propose a random forest approach to learn the set of spa-
tial configurations of objects that fulfill a skill’s preconditions.
We also explore how parts of objects and interactions between
parts can be incorporated into the scene models to improve
the generalization performance. The proposed approach was
evaluated on the preconditions of six manipulation skills. The
experiments show that using the ensemble approach, and
including the parts and interactions, results in an increase in
accuracy of 16.4%.

I. INTRODUCTION

The conditions required to execute a skill and achieve its
predicted effects, are known as the skill’s preconditions. A
robot can learn the preconditions of a skill to determine in
which situations the skill is applicable. It can also use the
preconditions to sequence skills, with the goal state of one
skill being within the preconditions of the next skill [1].

The preconditions of manipulation skills depend both on
the types of objects present in the scene as well as the
spatial configuration in which these objects are arranged. For
example, a cutting skill cannot be applied to an apple and
an orange because an orange, unlike a knife, does not afford
cutting [2]. The cutting skill also cannot be executed with
an apple and a knife if the edge of the knife is not placed in
contact with the fruit. Our work focuses on learning the latter
spatial preconditions, i.e., the set of of object configurations
in which the skill can be executed.

Since robots will need to manipulate a variety of objects,
the learned preconditions should generalize between different
sets of objects, e.g., the robot should adapt the position of
the knife relative to the fruit when using a larger knife.
The learned preconditions also need to generalize to scenes
with missing or additional objects, e.g., some scenes will not
include a knife. We assume that the correspondences between
the objects in the different scenes are known and of the same
valid type, e.g., a knife may be replaced with a smaller knife
in another scene, but not with an orange. Our focus is on how
the variations in the objects’ shapes and sizes affect the set
of spatial preconditions.

This work was funded in part by the NSF under grant CNS-1213128 and
the ONR under grant N00014-14-1-0536.

Oliver Kroemer and Gaurav Sukhatme are both members of the Robotic
Embedded Systems Lab at the University of Southern California, CA, USA
{okroemer,gaurav}@usc.edu

Random Trees

10

100

Spatial Test Regions

Objects

Parts

Interactions

Fig. 1. The figure presents an overview of the proposed approach. (Left)
The illustrations show the three types of scene elements used to model the
robot’s surroundings. (Right) Configurations of scene elements are classified
as valid or invalid for executing a given skill by using random forests.
Each random tree generates a hierarchical set of test regions to detect the
presence of specific scene elements in certain absolute or relative regions
of the elements’ feature space.

We propose a method for learning the spatial preconditions
of manipulation skills using random forests. We frame the
precondition learning as a classification problem, wherein
the robot has to classify a configuration of objects as either
affording or not affording the skill. To better generalize
between objects with different shapes and sizes, the robot
models the task-relevant parts of objects and the interactions
between these parts, as illustrated in Fig. 1. We refer to the
objects, parts, and interactions jointly as the scene elements.
The robot learns the spatial preconditions over the scene
elements using random forests [3], [4]. Each non-leaf node
of a random tree evaluates if a selected scene element is
in a specific region in the workspace, e.g., whether the
cup object is located within a 3D volume above the saucer
object. By combining multiple of these tests, each tree
provides an estimate of the skill’s spatial preconditions.
There may be multiple sets of conditions that can explain the
differences between the valid and invalid scenes when given
a limited amount of training data. By using an ensemble of
multiple trees, the robot captures multiple sets of possible
preconditions and thus reduce the chances of overfitting.

The proposed method was evaluated on the preconditions
of six manipulation skills, including placing, cutting, and
wiping. The results of the experiments show that using the
ensemble approach and including the parts and interactions
results in a 16.4% increase in accuracy. The experiments are
described in Section III.

2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids)
Cancun, Mexico, Nov 15-17, 2016

978-1-5090-4717-8/16/$31.00 ©2016 IEEE 676

A. Related Work

Learning the preconditions of actions is closely related to
symbol and predicate learning, as the agent learns discrete
abstract states [5], [6], [7], [8], [9]. The robot may learn
symbols for spatial relationships such as on or next to. The
symbols are usually learned either by clustering states or in
a supervised manner. The learned symbols can subsequently
be used by a symbolic planner to generate a sequence
of skills for performing tasks. The robot can also directly
learn the preconditions and effects of individual skills to
sequence them [10], [1]. The precondition learning is treated
as a binary classification problem. Most of the work in
predicate learning has focused on learning the conditions for
a fixed set of objects. As the part-object transformations are
therefore constant, the relative poses between parts can be
implicitly modeled by the relative poses between objects.
We explore the potential benefits of incorporating object
parts and interactions into the preconditions model when
generalizing between different objects.

If an object can be used to perform an action, then
the object is said to afford the action [2]. In this manner,
objects can be seen as resources for enabling agents’ actions.
Research into affordance learning has explored a wide range
of manipulations and interactions including grasping [11],
[12], pushing [13], [14], stacking [15], [16], rolling [17], and
containing [18]. Interactions between objects in the scenes
will result in additional environmental constraints that may
change the set of afforded actions [19]. Most of the work
in this research area has focused on learning affordances for
single objects or pairs of objects.

Tasks can usually be segmented into a series of skills,
which the robot can then resequence using a high-level policy
[20], [21], [22]. Unlike the learned preconditions, the high-
level policy determines when a skill should be executed
and not when it can be executed to achieve a particular
manipulation. As a result, the policy is specific to a certain
task while the preconditions can be reused between tasks.

Our approach to learning preconditions is based on random
forest classifiers. Random forests have been widely used in
computer vision applications, including image classification
[23], human pose recognition [24], and image segmentation
[25]. In the field of robotics, random forests have been used
for tasks such as robot pose estimation [26], contact classifi-
cation [27], and grasp classification [28]. Our approach uses
random forests to classify configurations of assorted scene
elements to learn the preconditions of manipulation skills.

II. LEARNING PRECONDITIONS OF MANIPULATIONS

In Section II-A, we explain how to segment objects into
parts and extract interactions between parts. The resulting
scene elements are then represented by a set of labels and
features, as described in Section II-B. Learning to classify
configurations of scene elements using random forests is
explained in Section II-C, and an illustrative example of the
training process is described in Section II-D.

A. Extracting Object Parts and Interactions

The first step of the proposed approach is to decompose
scenes into their task-relevant elements. Manipulations are
usually associated with specific affordance-bearing parts of
objects [29], [30], [31]. Hence, when generalizing between
objects with different shapes, the positions of the parts are
often more informative than the locations of the objects. Our
framework explicitly models the affordance-bearing parts of
objects, as well as the interactions between them.

We assume that the robot is provided with coarse 3D point
cloud models of the objects as well as example scenes that
demonstrate the objects interacting with other objects. These
scenes are obtained from demonstrations of the task. We
define a part as a subset of the points in the object model
and, similarly, an interaction as a subset of a part’s points.

We begin by extracting the interactions from the example
scenes. Most interactions involve close proximity or direct
physical contact between objects [32]. We therefore consider
a point to be interacting if it is within a given threshold of
another object’s point cloud in the scene. We used a position
threshold of 2 cm and required the inner product between the
normals to be less than −0.75. In addition to comparing each
pair of objects in the scene, we also tested for interactions
between the objects and the table.

A part of an object is considered to be relevant if it is used
to interact with other objects. We therefore use the extracted
interaction points to initialize the part detection process. We
use the GrabCut algorithm to segment the part from the rest
of the object [33]. GrabCut iterates between modeling the
local geometric features of the part and non-part regions of
the object, and segmenting the point cloud based on these
features. We compute the position, normal, curvature, and
spectral features to represent the local geometry of each
point in the object model [34], [35]. We generate a Markov
random field for the segmentation by creating a 10-nearest
neighbour graph. The unary potentials of the Markov random
field are modeled using Gaussian mixture models with three
Gaussians. The pairwise potentials are modeled using a Potts
model [36]. Using the GrabCut approach, the robot detects
parts of objects that have similar local geometries and afford
the observed interactions.

Once the robot has extracted the affordance-bearing parts
of an object, it can use them to represent novel scenes
that contain the object. Parts are included in the set of
scene elements even if the part is not currently interacting
with another object. Thus, the parts can capture the object’s
potential for future interactions. For each part in a novel
scene, we detect the set of points that are interacting with
other parts in the scene. These points are then combined into
one interaction scene element.

B. Representing Scene Elements

A scene model Si consists of a set of ni scene elements
Si = {εi1, ..., εini} which includes all of the objects, parts,
and interactions in the scene. We define a set of features
φ(εij) = φij ∈ Rd to represent the individual elements. In
our experiments, all of the scene elements were represented

677

by the mean positions of their respective point clouds,
resulting in a d = 3 dimensional feature space. The features
thus model the spatial configuration of the elements in the
scene. The set of features could be extended to include other
properties of the scene elements, e.g., size and orientation.

To evaluate the preconditions, the robot tests if selected
scene elements are present in automatically generated regions
of the feature space, e.g., a test may evaluate if the apple is
present in a certain volume above the plate. To generalize
these tests between scenes with different objects, the robot
needs to know the correspondences between the objects, e.g.,
the tests applied to the apple in the first scene should be
applied to the corresponding pear in the second scene.

We predefine the object correspondences by labelling the
elements in the scenes. The labels capture correspondences
between individual objects and groups of objects, as well
as indicate when a corresponding object is missing. We
identify corresponding scene elements by defining m label
sets Lik ⊂ Si∀k ∈ {1, ...m}. A label set that contains
at most one element from any scene defines a correspon-
dence between individual objects, e.g., L12 may contain the
large knife from the first scene S1 and L22 contains the
corresponding small knife from the second scene S2. We
assume that corresponding scene elements have the same
types of affordances and can be used to perform similar
manipulations. If there is no corresponding object in a scene,
e.g., there is no knife, then the label set is empty.

By including multiple elements in a label set |Lik| > 1,
we can define correspondences between groups of objects.
For example, we define one label set that includes all of the
object scene elements. Using this label set, the robot can
create precondition tests based on the number of objects in a
region. This label set allows the robot to test for obstacles in a
region without having to create a separate test for each object.
In the future, we plan on using object recognition methods to
automatically determine the corresponding elements between
different scenes.

Each scene model Si and corresponding label sets Lik

is assigned a binary precondition label Li ∈ {0, 1} that
indicates if the preconditions of the skill are fulfilled Li = 1
or not Li = 0. These precondition labels are known for the
training data, and must be predicted for the test data.

C. Random Forest for Learning Spatial Preconditions

Learning the spatial preconditions can be framed as a
classification problem, wherein the robot learns a mapping
from the scene elements Si and label sets Lij to the binary
precondition estimates Li. This mapping is not trivial to
learn, due to the limited amount of training data and the
variations in objects between scenes. We propose to use ran-
dom forests to classify the configurations of scene elements.
The random forests evaluate if the required scene elements
are present in the scenario and if the scene elements are
positioned in a configuration that affords the manipulation.

A random forest is an ensemble approach that consists of
T random trees [3], [4]. Each tree starts as a single node
that contains all of the training data. A node is considered

a leaf node if it contains less than amin samples, or if the
precondition labels Li of all of its samples are the same. A
node is split by generating a set of κ random tests to evaluate
the samples in the node. Each test divides the node’s samples
into two subsets: the samples for which the test returns true
Si∀i ∈ ST , and the samples that return false Si∀i ∈ SF .
The tests are evaluated using a score function, and the test
with the highest score is used to split the node. We used the
variance reduction score [3], [28] to evaluate the tests

− |ST |
|ST |+ |SF |

Var(Li∀i ∈ ST)−
|SF |

|ST |+ |SF |
Var(Li∀i ∈ SF).

When a node is split, two child nodes are created. The
samples for which the test was false SF are passed to the
first node, and the samples for which the test was true
ST are passed to the second node. This process continues
until all of the samples are in leaf nodes. Each leaf is then
assigned a prediction label corresponding to the mode of the
precondition labels of its training samples.

The tree training process uses bagging to help avoid
overfitting [4]. Bagging creates a separate training set for
each random tree. Each tree’s training set is sampled with re-
placement from the full training data set. In our experiments,
the tree training sets include the same number of samples as
the full training set. However, by sampling with replacement,
the trees’ training sets will usually include duplicate samples.

When classifying a new scene, the sample starts at the root
node. It then moves along the edges of the tree depending
on the outcomes of the tests associated with each node.
When it reaches a leaf node, it is assigned the binary value
corresponding to the leaf’s prediction label. The sample is
evaluated by each tree in the forest. The final prediction
corresponds to the mode of the predictions of the trees.

We adapt the random trees to classify configurations of
scene elements by modifying the tests used to split the
nodes. The trees are designed to test for the presence of
specific scene elements in automatically generated regions
of the elements’ feature space Rd. A test consists of a label
set index l ∈ {1, ...,m}, a test region R ⊂ Rd, and a
threshold τ ∈ Z+. The test is evaluated by computing the
number of elements εij in the selected label set Lil for which
φ(εij) ∈ R. The test is passed if the number of elements in
the region is greater or equal to the threshold τ . The threshold
τ is always one for label sets Lil that define correspondences
between individual objects. The threshold may be greater for
groups of corresponding objects, e.g., the robot may test if
at least τ = 2 objects are present in the region R.

The tests, as described above, only capture the absolute
locations of elements in the feature space. However, the
relative positions of two elements are often more important.
The robot can model relative locations by including reference
elements ρ in the tests. For example, to evaluate the position
of the knife relative to the fruit, the fruit would be the
reference object. The reference element is given by a label
set for an individual scene element, i.e., ρi = Lij where
|Lij | ≤ 1∀i. If the reference element is present in the scene,
then the robot evaluates the test by computing the number

678

Training Set Test Set

S1 S2 S3 S4 S5L1 = 1 L5 =?L4 = 0L3 = 1L2 = 0

Fig. 2. The figure shows example subscenes for the placing task. The
grasped object for placing, as well as other objects in the scenes, are not
shown. The supporting object Li1 is indicated by the green circle. The
object’s supporting surface Li2 is marked by the small blue square. The
supporting surface’s interaction with other objects Li3 is shown by the
purple diamond. The label set Li3 is empty for scenes S1, S3, and S4.
Other elements in the scene are not marked for clarity. The regions R
marked by the blue and purple squares correspond to two tests for the Li2

and Li3 label sets respectively, each with a threshold value of τ = 1. Both
of the regions are defined relative to the supporting object ρi = Li1.

of elements εij ∈ Lil for which φ(εij) − φ(ρ) ∈ R and
compares this value to the threshold τ . If the reference
element is not in the scene ρ = ∅, then the test returns false.

The random trees combine the tests of the individual
nodes to evaluate the configuration of multiple elements in
the scene. Deeper trees can encode more complicated pre-
conditions with additional scene elements and test regions.
However, by greedily selecting the test with the best score,
the random trees are more likely to create simpler sets of
tests to explain the data. Random forests reduce the chance of
overfitting by merging the predictions from multiple random
trees. Given a limited amount of training data, there may be
multiple sets of preconditions that could explain the data. In
the case of a random forest, each random tree can capture
a separate set of preconditions and the forest will only label
the scene as valid Li = 1 if the majority of the trees predict
that the preconditions have been fulfilled.

D. Example of Training Process

In this section, we present an illustrative example of
the tree training process. A set of training examples for
a placing skill is shown in Fig. 2. The pictures focus on
the support object and do not show the grasped object
that should be placed nor other objects in the scene. The
support objects Li1 are indicated by green circles, and the
supporting surface parts Li2 are marked by blue squares.
An interaction between the supporting surface and another
object is marked by a purple diamond Li3. The surface part
is only interacting in scene S2, i.e., Li3 = ∅∀i ∈ {1, 3, 4}.
The other scene elements, such as the orange obstacle in S2

and its corresponding parts and interactions, are not marked.
The robot can perform the placing skill in scenes S1 and S3,
but not in the other two training scenes as the supporting
surface is blocked in S2 and on the side in S4.

The robot has randomly generated two tests as part of the
tree training process. The first test evaluates if there are τ = 1
or more elements from Li2 in the region R indicated by the
large blue square, i.e., is the supporting surface (blue icon) in

the blue region? Similarly, the second test evaluates if there
are τ = 1 or more elements from Li3 in the purple region R,
i.e., is there an interaction with the supporting surface (purple
diamond) in the purple region? Both of these tests’ regions
are defined relative to the supporting object ρi = Li1 (green
circle). Hence, both tests would return false if the supporting
object were not present in the scene. The location and sizes of
the test regions R were sampled from uniform distributions.
The threshold values τ did not need to be sampled as the
test regions included at most one test element.

The first test returns true for scenes S1 and S2, and false
for scenes S3 and S4. The variance reduction score for this
test is therefore −0.5var({1, 0}) − 0.5var({1, 0}) = −1.
The second test returns true for S2 and false for the other
three scenes. Hence, the variance reduction for test two is
−0.25var({0})− 0.75var({1, 1, 0}) = −0.25.

Since the score is greater for the second test −0.25 >
−1.0, the robot selects the second test and divides the data
such that ST = {2} and ST = {1, 3, 4} for this node. The
child node with samples Si∀i ∈ ST would become a leaf
node as all of its samples have the same class Li = 0∀i ∈
ST . The other child node, which contains the three samples
Si∀i ∈ SF , would become a leaf node with output L = 1 if
amin ≥ 3. Otherwise, the impure node would be split again
by generating a new set of tests. These tests could separate
samples S1 and S3 from S4 and create two final leaf nodes.

When presented with a test scene, the robot would evaluate
only the selected test. For the example scene S5, the robot
would evaluate the test as false and the tree would correctly
assign the precondition label L5 = 0. The robot trains
multiple trees in this manner and selects the precondition
label that the majority of the trees predicted.

III. EXPERIMENTS

We performed four experiments to evaluate the proposed
method. The first experiment evaluated the performance
when using different types of scene elements as well as
individual random trees versus random forests. The second
experiment compared the performance of the random forest
approach to a Gaussian naive Bayes classifier. The third and
fourth experiments demonstrated how the learned precondi-
tions can be used to select skill-relevant objects and goal
states for the previous skill in a sequence.

A. Scene Data

To evaluate the proposed approach, the robot was provided
with initial scenes for six different tasks: placing, pushing,
tilting, pouring, cutting, and wiping. The tasks are shown in
Fig. 3. For each task, the robot was given 30 scenes with 15
positive samples Li = 1, and 15 negative samples Li = 0.
The scenes’ preconditions Li and the scene elements Lik

were manually labelled. Each scene contained between 4 and
7 objects. Depending on the task, only 2 to 4 objects were
required for the manipulation.

The robot was also provided with three scenes for each
task demonstrating the affordances of the objects. These
scenes were used to extract the parts of the objects, as

679

Fig. 3. The pictures show example executions of the PR2 performing the six manipulation tasks: placing, pushing, tilting, pouring, cutting, and wiping.

Place Push Tilt Pour Cut Wipe

Plastic Cup Marker Cardboard Box Bottle Knife Eraser

Wooden Block Metal Can Apple Cup Cucumber Book
Fig. 4. The figure shows examples of the object parts (colored points) that were extracted using GrabCut. The grasped parts have been omitted for clarity.

explained in Section II-A. Examples of the extracted object
parts are shown in Fig. 4.

The precondition learning experiments were performed
using 15-fold cross validation, with each test set containing
one positive and one negative sample. The classifiers were
trained on 10 positive and 10 negative training samples,
randomly sampled from the pool of 28 remaining samples.
Each fold of the cross validation was repeated five times with
different training samples. We report the mean accuracies
across these repetitions.

When generating the tests for the random trees, the robot
selected an object as a reference element ρ with 95%
probability. The remaining tests were defined relative to
the world coordinate frame. The six boundaries of the test
regions were uniformly sampled from a 50cm×20cm×55cm
region centered above the table in the robot’s workspace. The
test label set indices l were sampled uniformly p(l = k) =
m−1∀k ∈ {1, ...,m}. The reference elements were limited
to the object elements. The threshold values were sampled
uniformly from the range of values observed in the node’s
training set. A potential test was resampled if it did not split
the data samples, i.e., |ST | = 0 or |SF | = 0. A node was not
split if it contained amin = 3 or fewer samples. Due to the
large space of tests and the limited amount of training data,
most of the leaf nodes had pure sample labels and, hence,
many leaf nodes contained more than three samples.

B. Precondition Learning

The first experiment compared the precondition learning
performance when using different types of scene elements.

We evaluated using objects, parts, or interactions individ-
ually, or all three together (OPI). For the OPI case, a
third of the κ tests were assigned to each type of scene
elements. In addition to the scene element types, we also
compared the performance of a single random tree to a
random forest of T = 100 trees to explore the effects of
using an ensemble approach. The random forests’ trees were
trained by generating κ = 30 potential tests for splitting each
node. The single random tree was trained with κ = 1000
potential tests, which resulted in better performance for the
single tree. The single tree was trained without bagging.

The results of the experiments are shown in Fig. 5. Despite
using relatively few training samples, the random forest
approach performed well and achieved high accuracies. The
highest overall accuracy of 87.2% was achieved by the
OPI random forest approach. In contrast, the object random
forests achieved an accuracy of 79.6%. Hence, including the
parts and interactions into the set of scene elements increased
the expected accuracy by 7.67%. The use of an ensemble
approach also increased the classification performance. The
accuracy improved on average by 7.17% overall, and 7.22%
for the OPI case. When combined, using an ensemble ap-
proach and including the parts and interactions resulted in
an increase in accuracy of 16.4%.

Of the three types of scene elements, the interactions were
the most discriminative and achieved the highest accuracies
in five of the six tasks. For pouring, which does not involve
direct physical contact between objects, the parts were the
most discriminative elements. Interactions give the most

680

Random Tree Random Forest

Place Push Tilt Pour Cut Wipe

A
c
c
u
ra

c
y

50

55

60

65

70

75

80

85

90

95

100

Objects Parts Interactions OPI

Place Push Tilt Pour Cut Wipe

A
c
c
u
ra

c
y

50

55

60

65

70

75

80

85

90

95

100

Objects Parts Interactions OPI

Fig. 5. The figure shows the results of the precondition learning. (Left) The accuracies when using a single random tree trained with κ = 1000 tests
per split. (Right) The accuracies when using a random forest of 100 random trees trained with κ = 30 tests per split. Error bars indicate +/- one standard
error.

detailed information of the three element types and they
represent the locations of active object affordances in the
scene. A random tree requires many small test regions to
implicitly learn if two objects are touching using only the
object and part elements. When the interactions are explicit, a
single large test region can be used, which makes the learning
easier. Unfortunately, interactions are the most difficult scene
elements to detect. It is not trivial to determine if two objects
are in contact based on only vision data. The results therefore
emphasize the need for tactile methods to verify if contact
interactions between objects have occurred [37], [38].

The results indicate that more specific preconditions (e.g.,
for pouring and cutting) are easier to learn. One reason for
this result is that a random tree is more likely to generate
a test region that covers all of the positive samples if the
test elements are close together across the scenes. Another
reason is that the movements of these skills are also smaller
and less likely to be blocked. The placing, pushing, tilting,
and wiping skills all included multiple scenes where the skill
was blocked by another object. Given the limited amount
of training data, the training set may only include a couple
of examples of an object blocking the skill execution. The
robot would need to use these samples to determine the
region that needs to be empty, and that any object could
be an obstacle and not just the ones in the training set.
For these skills we observe large performance boosts when
using interactions. Interactions are the result of any object
being near the object part. Hence, they can also capture the
presence of any obstacle object in the proximity of the part.
Obstacles that are not in close proximity will not be captured
by the interaction elements.

Overall, the experiments have shown that explicitly in-
corporating interaction and part elements leads to increased
accuracy. Using an ensemble of random trees allows the
classifier to capture multiple possible sets of preconditions.
The ensembles therefore result in higher accuracies and more
robust predictions.

Place Push Tilt Pour Cut Wipe

A
c
c
u

ra
c
y

50

55

60

65

70

75

80

85

90

95

100

Naive Bayes Random Forest

Fig. 6. Results for comparison of random forest to naive Bayes classifier.

C. Comparison to Naive Bayes Classifier

In the second experiment, we compared the performance
of the OPI random forest to a Gaussian naive Bayes classifier
(NBC). The NBC does not require many training samples,
and it can handle missing features. The features correspond
to the 3D positions of all of the OPI scene elements in the
world coordinate frame, as well as relative to each of the
objects in the scene. Including the object-relative features
significantly increases the number of features, but omitting
these features resulted in worse performance. Features with
less than two training samples per class, or that were not
defined for the test sample, were omitted for the purpose of
classifying the sample.

The results of the experiment are shown in Fig. 6. The
NBC achieves a mean accuracy of 74.7% across the different
tasks, which is 12.6% less than the mean accuracy for the
OPI forest. This result suggests that the random forest’s
ability to select subsets of scene elements, capture coarse
correlations between features, and specify different regions
for detecting elements results in better performance.

681

Place Push Tilt Pour Cut Wipe

R
e

le
v
a

n
t

O
b

je
c
t

S
e

le
c
ti
o

n
 A

c
c
u

ra
c
y

50

55

60

65

70

75

80

85

90

95

100

Fig. 7. The figure shows the results of selecting the set of relevant objects
based on the learned preconditions. The relevant objects were selected based
on individual test scenes. Errorbars indicate +/- one standard error.

D. Relevant Object Selection

If an object is required to perform a manipulation skill,
then removing the object from the scene should invalidate
the skill’s preconditions. For example, the preconditions of a
cutting skill will no longer be fulfilled if the knife is removed
from the scene as it is relevant to the task. By contrast, the
predicted precondition labels should not be affected if an
irrelevant object is removed, e.g., a rock. The robot can thus
use the learned preconditions to estimate which objects are
relevant for performing the skill.

In this experiment, the robot estimated the set of relevant
objects, by re-evaluating the preconditions when individual
objects were omitted from the model of the scene. This
approach can only be applied to scenes that the robot
estimated as valid Li = 1. If the re-evaluation results in
an invalid condition L̃i = 0, then the omitted object is
considered to be relevant to the scene.

Using the OPI random forests trained in the previous
experiment, the robot was able to select the relevant objects
with an accuracy of 91.9% based on individual test scenes.
The accuracies for the individual skills are shown in Fig. 7.
The set of test scenes included both true positive and false
positive samples. The accuracy can be improved by taking
the mode of the estimates from multiple scenes. The accuracy
increases to 95.2% when the estimates from all of the test
scenes were combined.

The majority of the errors correspond to relevant objects
being excluded, rather than irrelevant objects being included.
These errors are often the result of a lack of diversity in the
training data. For example, the majority of the scenes for
the cutting task included the right hand grasping the knife,
even in the negative scenes Li = 0. As a result, the right
hand element was not discriminative and, hence, it was often
omitted from the set of relevant objects.

The experiment has shown that the robot can use the
preconditions to accurately determine the set of relevant
objects for the skill. A similar approach could potentially
be used to identify obstacles in negative scenes Li = 0.

Human OPI Forest OPI Tree

To
p

V
ie

w

Right hand Left hand Knife Banana Can Plastic cup

h 6.0 cm 4.5 cm 10.5 cm
c Yes Yes No
E - 2.5 cm 7.7 cm

Fig. 8. The figure shows the results of estimating the goal state for placing
the knife using preconditions learned for the cutting skill. The columns
show the results for different classifiers. The first column shows the goal
state selected by a human. The top row shows a view of the scene with the
highest score. The second row (h) indicates the height of the knife above
the table plane. The third row (c) indicates if the knife and the banana are
in contact in the scenes. The bottom row (E) indicates the average error
relative to the human scene over all of the scenes with the highest score.

E. Preconditions for Estimating Goals

When performing a sequence of skills, the goal state of one
skill must lie within the set of preconditions of the next skill
[10], [1]. Preconditions can thus be used to determine goal
states for the previous skill in the sequence. This experiment
demonstrate how the robot can use the learned preconditions
to select where to place the knife for the cutting task.
We selected the cutting task as it has the most specific
requirements. The locations of the other objects in the scene,
including the grasp of the knife, are fixed.

To select a suitable location for the knife, the robot
performed a grid search over a 30cm × 50cm × 16cm
region at 2 cm increments. For each node in the grid, the
robot extracted the set of scene elements and evaluated the
preconditions using a classifier trained on all 30 scenes.
Rather than using the binary output from the random forest,
the robot assigned a score from 0 to 100 based on the number
of random trees that consider the location to be valid.

We compared an OPI random forest and a single OPI
tree classifier. The number of trees and tests are the same
as the ones used in the first experiment. The results of the
experiment are shown in Fig. 8. We included the location that
a human would place the knife as the ground truth. The OPI
forest found a single location with the best score. Due to its
binary score, the OPI tree found 164 locations with the max
score of 1. These locations span a 12cm×6cm×16cm region
and include the location selected by the random forest. The
figure shows the location that is the closest to the mean of
all of the locations.

The OPI forest was closer to the manually selected goal
with an offset of only 2.5 cm. Both classifiers resulted in
a horizontal shift that would result in a larger portion of
the fruit being cut off. Unlike the ensemble approach, the
majority of the locations selected by the OPI tree did not
create contact between the knife and the fruit. These loca-
tions therefore do not fulfill the preconditions for the cutting
skill. This result shows the benefit of using an ensemble
approach to capture multiple sets of possible preconditions
and ranking the potential goal states accordingly.

682

IV. CONCLUSION

We proposed an approach to learning the preconditions
of skills using random forests. The robot first decomposes
scenes into objects, parts, and interactions between parts.
The parts are segmented using the GrabCut algorithm and
the interactions are detected by the proximity of the objects.
The configurations of the scene elements are classified by a
random forest to determine if the preconditions have been
fulfilled. Each random tree creates a set of spatial tests that
determine if certain scene elements are present in absolute
or relative regions of the elements’ feature space. In this
manner, the trees can detect if a required object is not present
in the scene or if it is in the wrong position.

The proposed approach was evaluated on the preconditions
of six manipulation skills. The results of the experiments
show that using an ensemble of random trees, rather than
one random tree, and including the parts and interactions
in the scene models increases the classification accuracy by
16.4%. The experiments also demonstrated how the robot
can use the learned preconditions to accurately select the set
of task-relevant objects and the goal state for the previous
skill in a sequence of skills.

REFERENCES

[1] G. D. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol ac-
quisition for probabilistic high-level planning,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2015.

[2] J. J. Gibson, The Ecological Approach To Visual Perception.
Lawrence Erlbaum Associates, 1986.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees. Wadsworth International Group, 1984.

[4] L. Breiman, “Random forests,” Machine Learning, 2001.
[5] B. Rosman and S. Ramamoorthy, “Learning spatial relationships

between objects,” International Journal of Robotics Research, 2011.
[6] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Kruger, and

F. Guerin, “Learning spatial relationships from 3d vision using his-
tograms,” in International Conference on Robotics and Automation
(ICRA), 2014.

[7] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Ko-
rmushev, and D. G. Caldwell, “Learning symbolic representations of
actions from human demonstrations,” in International Conference on
Robotics and Automation (ICRA), 2015.

[8] J. Kulick, T. Lang, M. Toussaint, and M. Lopes, “Active Learning
for Teaching a Robot Grounded Relational Symbols,” in International
Joint Conferences on Artificial Intelligence (IJCAI), 2013.

[9] K. Zampogiannis, Y. Yang, C. Fermuller, and Y. Aloimonos, “Learning
the spatial semantics of manipulation actions through preposition
grounding,” in International Conference on Robotics and Automation
(ICRA), 2015.

[10] G. D. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot
learning from demonstration by constructing skill trees,” International
Journal of Robotics Research (IJRR), vol. 31, no. 3, March 2012.

[11] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krueger,
and J. Piater, “Learning grasp affordance densities,” Paladyn. Journal
of Behavioral Robotics, vol. 2, no. 1, pp. 1–17, 2011.

[12] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” International Journal of Robotics Research
(IJRR), 2008.

[13] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory–motor coordination to imita-
tion,” Transactions on Robotics (TRo), vol. 24, no. 1, pp. 15–26, 2008.

[14] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning contact
locations for pushing and orienting unknown objects,” in International
Conference on Humanoid Robots (Humanoids), 2013.

[15] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object
affordance learning with learned single-affordance features,” in Inter-
national Conference on Development and Learning and on Epigenetic
Robotics (ICDL EPI-ROB). IEEE, 10 2014, pp. 476–481.

[16] O. Kroemer and J. Peters, “Predicting object interactions from contact
distributions,” in International Conference on Intelligent Robots and
Systems (IROS), 2014.

[17] A. Gonçalves, G. Saponaro, L. Jamone, and A. Bernardino, “Learning
Visual Affordances of Objects and Tools through Autonomous Robot
Exploration,” in International Conference on Autonomous Robot Sys-
tems and Competitions (ICARSC), 2014.

[18] S. Griffith and A. Stoytchev, “Interactive categorization of containers
and non-containers by unifying categorizations derived from multi-
ple exploratory behaviors.” in International Conference on Artificial
Intelligence (AAAI). AAAI Press, 2010.

[19] C. Eppner and O. Brock, “Planning grasp strategies that exploit
environmental constraints,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on, May 2015, pp. 4947–4952.

[20] J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins, “Learning from
demonstration using a multi-valued function regressor for time-series
data,” in International Conference on Humanoid Robots (Humanoids),
Dec 2010, pp. 328–333.

[21] S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto,
“Incremental semantically grounded learning from demonstration,” in
Robotics: Science and Systems (R:SS), 2013.

[22] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks,” in International Conference on Robotics and Automation
(ICRA), 2015.

[23] B. Yao, A. Khosla, and L. Fei-Fei, “Combining randomization and
discrimination for fine-grained image categorization,” in International
Conference on Computer Vision and Pattern Recognition, 2011.

[24] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from a single depth image,” in International Conference on Computer
Vision and Pattern Recognition(CVPR). IEEE, June 2011.

[25] F. Schroff, A. Criminisi, and A. Zisserman, “Object class segmentation
using random forests,” in British Machine Vision Conference, 2008.

[26] J. Bohg, J. Romero, A. Herzog, and S. Schaal, “Robot arm pose
estimation through pixel-wise part classification,” in International
Conference on Robotics and Automation (ICRA), 2014.

[27] S. Cabras, M. E. Castellanos, and E. Staffetti, “A random forest
application to contact-state classification for robot programming by
human demonstration,” Applied Stochastic Models in Business and
Industry, 2015.

[28] S. Leischnig, S. Luettgen, O. Kroemer, and J. Peters, “A comparison
of contact distribution representations for learning to predict object
interactions,” in International Conference on Humanoid Robots, 2015.

[29] J. Sung, S. H. Jin, and A. Saxena, “Robobarista: Object part based
transfer of manipulation trajectories from crowd-sourcing in 3d point-
clouds,” in International Symposium on Robotics Research, 2015.

[30] S. R. Lakani, M. Popa, A. J. Rodríguez-Sánchez, and J. H. Piater,
“CPS: 3d compositional part segmentation through grasping,” in
Conference on Computer and Robot Vision (CRV), 2015.

[31] M. Tenorth and M. Beetz, “Representations for robot knowledge in
the knowrob framework,” Artificial Intelligence, 2015.

[32] F. Worgotter, E. E. Aksoy, N. Kruger, J. Piater, A. Ude, and M. Tamo-
siunaite, “A simple ontology of manipulation actions based on hand-
object relations,” Transactions on Autonomous Mental Development
(TAMD), vol. 5, no. 2, pp. 117–134, 2013.

[33] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut -interactive fore-
ground extraction using iterated graph cuts,” International Conference
and Exhibition on Computer Graphics and Interactive Techniques
(SIGGRAPH), 2004.

[34] A. Boularias, O. Kroemer, and J. Peters, “Learning robot grasping from
3d images with markov random fields,” in International Conference
on Intelligent Robot Systems (IROS), 2011.

[35] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-d point clouds with learned high-order markov random
fields,” in International Conference on Robotics and Automation, 2009.

[36] R. B. Potts, “Some generalized order-disorder transformations,” Math-
ematical Proceedings of the Cambridge Philosophical Society, 1952.

[37] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchen-
becker, “Human-inspired robotic grasp control with tactile sensing,”
IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1067–1079, 2011.

[38] Z. Su, O. Kroemer, G. Loeb, G. Sukhatme, and S. Schaal, “Learning to
switch between sensorimotor primitives using multimodal haptic sig-
nals,” in International Conference on Simulation of Adaptive Behavior
(SAB), 2016.

683

