Abstract

This thesis proposal presents an online approach that is based on hierarchical
optimization for controlling humanoid robots. While our primary focus is on devel-
oping a fast and robust walking system that is able to follow ¢ desired footsteps,
full body manipulation capability is also achieved. The proposed hierarchical sys-
tem consists of three levelsfé(high level trajectory optimizer that generates nominal
center of mass and swing foot trajectories, together with useful information such as
local value function approximation anfgjinear policy along the nominal trajeclories’
A middle lcvcr eceding-horizon controller that tracks the nominal plan and handles
large disturbances obeying center of pressure constraimi, A low?evel controller that
computes joint level commands by solving full body inverse dynamics and kinemat-
ics using quadratic progr}tmming. The current implementation is capable of walking
on rough terrai ;féelﬁeves close to human walking speed and stride length in sim-
ulation. It has also been successfully applied to the Atlas robot, built by Boston
Dynamicsy for the DARPA Robotics C]&llenge. in which static walking over rough
terrain and full body manipulation ha}r been demonstrated. Future work focuses on

implementing a fast robust walking algorithm on the real Atlas robot using the full

hierarchy.
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Chapter 1

Introduction

1.1 Motivation \,
uv[jv \'\' L

Humanoid robots have been promoted for ib{.(tjé (!_q_flravue uneven terrain, &:ui[ab}! for en-

wronme[ﬁ designed for humg and f’lCllltat£ %an robot interactions. Despite mcreasmg#

% interests and attention in academia and popular culture over the past decade, especially

with the ongoing DARPAR Robotics Challenge (DRC) focusing on disaster rcsponse,gstate-
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of-the-art humanoid robots are still not ready for deploymenl.-l&g@ﬁ?ﬂi&@ome of the

key challenges that block humanoid robots from being a truly useful mobile platform in a human

centric environmentfy (L0 ‘:
* robustness and speed
e deliberative walking
e compliant motions
¢ full body manipulation

Locomotion is the foundation for any mobile system. Despite years of research, robust and
fast walking is still challenging. When operating in complex and dynamic scenarios, such as any

typical human occupied environment, the robot has to be capable of autonomously generating

1



plans based on sensor feedback. In terms of walking, the robot needs to plan a reasonable path
from start to goal avoiding obstacles on the way, which obviously requires the controller being
able to follow the plan. With compliant behaviors, the robot can deal with unexpected external

L‘F\&(/'.\— g X

perturbations much better, and it is much safer with humap {Eé@ Because of the large

number of degrees of@cedom. humanoid robots typically have bigger wurkspacé;vilh smaller
footprints compa@(&) conventional platforms. On the other hand, it is much har/der to maintain
balance for humanoids. Motion planning is also harder for humanoids due to this complexity. On
top of all these challenges. the robot nccﬁo be robust and fast. Speed is important for usefulness
as well as fast dynamic recovery motions. The thesis aims at creating a control system for
humanoid robots that address these challenges.

Originally targeted at rough terrain bipedal walking, we developed a walking controller that
can achieve a sequence of footstep targets, as well as walk fast on level ground with no obsta-
cles. Our approach is rooted in model-based optimal control, as it takes a desired sequence of
foot steps, uses optimization to generate a trajectory for the center of mass (CoM), and then
tracks this trajectory using inverse dynamics (ID) and inverse kinematics (IK). Figure 1.1 shows
a diagram of our approach. Given a desired footstep sequence, the high level controller performs
online trajectory optimization using Differential Dynamic Programming [28] with a simplified
model that only reasons about the CoM of the robot. A quintic spline in Cartesian space is
used to smoothly connect two consecutive footsteps for the swing foot. The low level controller
was originally designed to use ID alone, and we added an 1K component to cope with model-
ing errors when controlling a physical robot. The hierarchical optimization based architecture
separates the behavior level design process and full body control problem cleanly, and offers
us a versatile and powerful platform for rapidly developing multiple applications for the DRC.
We propose to add a third level, which we call the middle level controller, that uses the high
level controller’s nominal plan as a guide to solve a short trajectory optimization problem in a
receding-horizon fashion. This new layer can handle large disturbances better while maintain-

ing critical constraints. Emergency recoverhad behaviors, such as taking an extra step to regain
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Figure 1.1: Comparison of the implemented and proposed hierarchies. Subscript .. indicates the
nominal values optimized by the trajectory optimizer, and 4 denotes values generated by the full
body controller. P and L stand for linear and angular momentum, and ¢ stands for modeling
error. In the current implementation shown in Figure 1.1(a), the full body controller (enclosed
with the dashed box) has separate ID and IK controllers.

balance, can also be implemented on this level.

1.2 Overview of Walking Systems

Generally speaking, the existing walking controllers can be categorized as either offline or online
solutions. The former usually has a few parameters that can be altered during execution, or a se-
lection of discrete behaviors to choose from. Building these policies by hand typically requires a
WAL Faning
great deal of insight into the specific problem and many trialy and errorg for tunning &16 policies.
For simple systems, very robust and dynamic behaviors were achieved with this approach on real
hardware [61). Inspired by limit cycle walking and running research [10, 18, 45], controllers
[5, 21, 90] have been developed based on those principles. Simple policy based controllers have
also been applied to animated figures [84, 93] in the graphics community. Once designed, pol-
icy optimization [70, 84] or online learning [38, 42, 49] can be used for tuning. Optimization

is another powerful tool for generating reference trajectories and controllers offline. Dynamic
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programming [4] generates, globally optimal poligy for a large region of the state space, but it
suffers from the “curse oémcnsioua]ity”. Relaxations [2, 3, 87] can be made to enable appli-
cations to larger problems. Nominal walking patterns can be found with trajectory optimization
[11, 48. 59]. Feedback controllers are then used to stabilize the system around the trajectories.
Trajectories can be combined into a library [44, 89] to cover larger regions of the state space.
Many of these offline solutions are impressively capable and robust at what they are designed
for, but they typically have limited abilities in terms of adaptation. Most of them are fundamen-
tally incompatible with achieving desired footsteps, which severely limits their application for
more general purposes.

A typical setup for a complete online walking solution is presented in [95], where a higher
level footstep planner such as [9, 24] generates a plan using perception, and the walking con-
troller follows it to the best of its ability. For the controller, directly generating walking motions
with the full model in an online setting is unrealistic due to the model’s complexity. A more
sensible two level approach is to abstract away the physical system with a simple model, for
which it plans a trajectory. The complete motions can then be recovered through inverse kine-
matics. Some of the most successful humanoids such as Honda’s Asimo [23], the HRP series
(1,27, 33, 34, 79], and HUBO [57] use this method for walking. This style of walking requires
accurate joint level motion tracking, which is often achieved through stiff position control. Tra-
ditionally, these walking robots are vulnerable to external perturbations. On the other hand, they
have precise foot placement, and combined with fast online footstep replanning [80, 81, it is pos-
sible to acquire robust dynamic walking even under strong perturbations. Rapid advancement in
inverse dynamics algorithms [6, 12, 17, 22, 25, 26, 36, 40, 41, 43, 56, 62, 64, 68] and hardware
development of force controlled humanoids such as PETMAN and Atlas built by Boston Dynam-
ics and many other research platforms [8, 37, 55, 67, 77, 78] attract a large amount of attention
in recent years. These robots either have built-in passive compliance or can be force controlled,
which makes them better at adjusting to perturbation and more suitable for complaint behaviors.

The inverse dynamics algorithms are used to partially replace the inverse Kinematics pass. These
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algorithms are typically formulated as one step constrained convex optimization problems using

the full dynamic model. They track " ¢ planned trajectories and enforce conslruinlsﬂground

reaction forces and actuation at the same time.

1.3 Thesis Contribution and Proposed Work

The core of this thesis is decoupling a complex system into different levels with progressively
shorter optimization horizoftybut more complete dynamics and constraints so that the overall
problem can be solved in an online setting to provide the most flexibility. Our controller can
walk dynamically following desiredi‘t}mlsglcps on rough terrain and achieve human like walking
speed and stride length in simulation. Frcliminury hardware implementation is capable of rough
terrain traversal, full body manipulation and walking with mild disturbances.

The main contribution is to synthesize existing concepts of trajectory optimization, receding-
horizon control and full body inverse kinematics and dynamics into one wis;at' ¢ system and

COANVL Y

its implementation on real hardware solving real life tasks. O!herﬁmclude lessons learned and
attempts to address modeling errors on the real robot. In addition to work presented here, we
plan to include the following in the final thesis.

* Present a;%uniﬁcd [% full body controller that is primarily based on inverse dynamics.

e Compensate for estimated modeling errors, either on the center of mass level or as a gen-

eralized force.

e Produce a robust fast walking controller for rough terrain traversal using the full hierarchy.

1.4 Hardware Overview

We use the Atlas humanoid robot (Figure 1.2) built by Boston Dynamics for hardware exper-
iments. The robot has 28 hydraulic actuated joints: six for each leg and arm, three for the

spine, and one for the neck. For all the leg and back roll and pitch joints, position and torque
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are measured pre-transmission. Actuator length is measured with Linear Variable Differential
Transformers (LVDT), and piston pressure is measured with pressure sensors. Transmission in-
formation is used to compute joint position and torque. Joint velocity is generated by low-pass
filtering the finite difference of joint position. The arm joint posjtion can be measured Wit‘}‘l;,en—

g _ M SwuNa. (AL as (7)( ) '}_'—‘ G_n 24
coders. Velocity and torque signals are generated same-as=the legs. For edch foot, there is a J

three-axis force torque sensor measuring the vertical force and roll and pitch torque. Two six-

S £ C

axis force torque sensors are mounted at the wrists. A sensor head that includes a pair of-stereo i *' L
- ) . NGl ({J(. cW
cameras and a spinning Hokuyo laser range finder is attached to the upper body through a neck

A
joint, whigh can©nlyCpitch.
For each joint, its joint level servo computes valve commands 7 based on
i = Kp(qa — q) + Ka(da — ¢) + Ky(74 — 7) +c, (1.1)

where ¢, G4, T4 are desired joint and torque values, ¢, ¢, 7 are the measured values, and ¢ contains
the constant valve bias term plus some other auxiliary feedback and feedforward terms. This

servo runs at 1k z, and we can update the desired values and the constant term at the same rate.

1.5 Outline

We focus on top level trajectory optimization in Chapter 2, which generates a nominal trajectory
and useful information that guides the lower level controllers. The current implementation of the
bottom level full body controller is presented in Chapter 3 with proposed modifications detailed
in Chapter 6. This full body controller is responsible for generating joint level control signals that
best track the higher level controllers’ results while managing all kinematic and dynamic con-
straints of the physical robot. Preliminary results of walking and manipulation on the simulated
and real Atlas robot are presented in Chapter 4. Chapter 5 describes ongoing workcé)‘f%lke’vcloping

a flexible middle layer that improves the nominal plan in aj&ceding-horizon fashion. Finally, a

"
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Chapter 2

Center of Mass Reference Trajectory

Generation for Walking

2.1 Simple Models for Online Planning

It is computationally prohibitive to use full dynamics models for planning walking motions on-
line. The common approach is to plan with simplified models that approximate the overall dy-
namics, and reconstruct full body motion afterwards. The Linear Inverted Pendulum Model
(LIPM) [29, 31] was introduced as a simple model for this purpose. LIPM combined with Zero
Moment Point (ZMP) [82] have been widely used in center of mass (CoM) motion generation.
Preview Control [32] is one of the most successful applications. For dynumiﬁ espcczi;lc; balanc-
ing bé]é'@é/ angular momentum plays an important role. LIPM was then extended to include
angular momentum [39, 60], which is generated by applying a torque around the CoM. These
simple linear models are useful for analytical solutions and fast computation, particularly when
used i/g,R'écedingmorizon controllers [13, 16, 19, 81, 88]. [54] connected both linear and angular
momcm‘l:u. generalized velocity of the system and net external wrench by introducing the cen-

troidal momentum matrix, which inspired many of the later high level controllers for balancing

and walking.
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It can I_ﬁnd globally optimal trajectories for problems with linear dynamics and quadratic costs,

and raPidly converge to locally optimal trajectories for problems with nonlinear dynamics or

ll . . I. %

coststhmeztr Quadratic Rf;\gulator (LQR) can be treated as a special case of this algorithm. DDP

can also be extended to ha\g&l}q_st_ngz_istic systems [75, 76]. It is also possible to use DDP in
. : . s

a receding-horizon fashmn(i:\lji.lﬂt‘)_real Elm_e __[}4' 72]. Combining coordinated locally optimized

trajectories as an approximation of the globally optimal solution is shown in [2]. Instead of

optimality, LQR-Tree [73, 74] uses DDP-like trajectories to cover the state space and achieve

asymptotic stability.

This approach modifies (and complements) existing approximate Dynamic Programming ap-

proaches in these ways:

* We approximate the value function and policy using many local models (quadratic for the
value function, linear for the policy) along the trajectory.

® We use trajectory optimization to directly optimize the sequence of commands g _; and
states Xo v.

e Refined local models of the value function and policy are created as a byproduct of our
trajectory optimization process.

We represent value functions and policies using Taylor series approximations at each time

step along a trajectory. For a state X!, the local quadratic model for the value function is

(X = XHTVEx(X = X'), (2.2)

[

VH(X) = Vi + V(X - X +

- d . q }‘ - ] '/']- lth.lUlL

order spatial gradient evaluated at X*. The local linear policy 1s

W(X) = uh — KH(X - XY),
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Figure 2.1 shows trajectories of the CoM generated with LQR policy and after DDP optimization.
Another example is shown in Figure 2.2. In both cases, we set the desired CoP to be condensed at
the support stance foot, and can instantaneously switch to the next supporting foot. A smoother

desired CoP trajectory can be specified to represent double support.

~

2.3 Summary

/O //6’\ b.
Center/of mass mutio’n is arguably the most important aspcu}u{walkmg Using our formula-
tinn.}globa]ly opnmdl CoM trajectory can be generated with linear models and quadratic cost
fum:‘tiuns. and locally optimal solution can be achieved for more complex models and costs.
In addition lofu nominal trajectory, our approach also generates quadratic approximation of the
value function and linear policy along it. The value function approximation encapsulates infor-
mation about the future, and can provide useful guidance for the lower level comrollers that have
much shorter planning horizons in Chapter 3 and Chapter 5. ;{L&\‘ut-r

The policies produced by DDP_ are_not-suitable for h hdndhn}, large djturbdm,cs When the
state is far from the pldnm.}, DDP s policy can generate controls that destabilize the system since
it is a local method. The other more important reason is that although it is possible for DDP to

handle unilateral constraints |28] we have not implemented ground reaction force constraints

such as ZMP constraints. lﬁ(/stead. we treat it as a high weight term in the cost function during

i Cnnrt
the optimization procedure. For large disturbances wher/t{anklc % alone ¢ In.\ilf;;l ient for

regaining balance, the local policy performs poorly after saturating ankle lorque./@r purpose of

i [ i ' ¢ seful information for the
the high level controller is to generate a nominal CoM trajectory and yg gpgfon

lower level controllers, which replan at a much hi\.‘g\lie{t :‘d[e. and are mere<capabte at disturbance
th thi ﬂéﬁr
rejection. The high level controller replans per step or by requested Lﬁgﬁ&%‘y With this

p . . h.. ”y f(‘.l Ln“.‘h

1er ation. 115 also 1mpor La nt ”lelltlo“ that witho an 5 ca erv ll VES t e mo el 9“( 1C}
o h l I_ l 1
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Chapter 3

Full Body Controller

3.1 Introduction

This chapter focuses on our full body controller, which uses quadratic programming to solve
inverse dynamics and inverse kinematics. Using full body inverse dynamics for force control has
become a popular topic in recent humanoid research. This direction of research originates from
[36]. Within this broad category, control designers can directly specify reference motions in task
space, then rely on using convex optimization to handle constraints and solve for controls that
best track the reference motions. Although detailed formulations differ, most active research has
converged to formulating the floating base inverse dynamics as a quadratic programming (QP)
problem. [12, 15, 22, 25, 26, 65, 85] explore using a hierarchical approach to resolve redundant
degrees of freedom in humanoid robots. These approaches typically ensure low priority objec-
tives are within the null space of higher priority ones. A solution to resolv-l%_i/&archical quadratic
programs is presented in [15] that is more general and significantly faster than previous methods
[35]. Although the method is currently applied to solve inverse kinematics, the authors claim it
is also applicable to inverse dynamics. A hierarchical framework designed for humanoid robots
to handle constraints and objectives is presented in (68, 69]. Contrary to these hierarchical ap-

proaches that have hard constraints, we prefer using soft constraints by adding corresponding
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terms in the cost function with high penalties. We gain numerical stability by sacrificing a small
fraction of precision. There is also much interest in formulating a smaller optimization problem
to reduce computation time. Contact forces can be removed from the equations of motion using
orthogonal decomposition [47, 63, 64]. [56] demonstrates a balancing controller on a torque
controlled humanoid, in which simple PD servos were used to generate a desired net ground
reaction wrench, which is then distributed among predefined contacts using optimization. [62]
describes a recent effort using floating base inverse dynamics and ZMP-based pattern generation
for dynamic walking. Their inverse dynamics formulation solves a smaller QP with decoupled
dynamics. [43] has a two stage optimization setup. The first optimizes individual ground reac-
tion forces and center of pressure (CoP) for each contact and the resulting admissible change in
centroidal momenta. Then another least square problem is solved for the state acceleration. Joint
torques are generated explicitly. [40] generates desired centroidal momenta change based on
instantaneous capture points, and use QP to optimize for acceleration and contact forces. Joint
torques are then generated with explicit inverse dynamics. [41] is similar in terms of optimization
variables and torque generation, but a novel QP solver is implemented to exploit the observation
that inequality constraints rarely change in this context. [94] applies QP based inverse dynam-
ics to a quadruped robot or%iippcry surface. Without using constrained optimization, a novel
approach to generate full body torques with a combination of gravity compensation and task
dependent attractors is proposed in [50]. We continue to use the formulation previously devel-
oped in our group [71, 86, 87] that is similar to [6, 7, 12]. We directly optimize a quadratic cost
in terms of state accelerations, torques and contact forces on the full robot model. This design
choice gives us the most flexibility in terms of trading off directly among physical quantities of
interest. We urc%lblc to directly reason about inequality constraints such as center of pres-
sure within the support polygon, friction, and torque limits. It also allows use to easily add extra
terms into the dynamics equations for compensating modeling errors. Although this formulation
results in a bigger QP problem, we are still able to solve it in real time.

One traditionally popular approach to controlling humanoid robots is through inverse kine-
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