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Abstract—In this paper we present a hierarchical control
framework that enables motion planning for three-dimensional
bipedal dynamic walkers in the same way that planning is already
possible for quasi-static walkers. This framework is based on
the construction of asymptotically stable gait primitives for a
class of hybrid dynamical systems with impacts. Each primitive
corresponds to an asymptotically stable hybrid limit cycle that
admits rules for sequential composition with other primitives,
reducing a high-dimensional feedback motion planning problem
into a low-dimensional discrete tree search. As an example, we
construct asymptotically stable gait primitives for a 3D compass-
gait biped using geometric reduction-based control, where in
this case each primitive corresponds to walking along an arc
of constant curvature for a fixed number of steps. We apply a
discrete search algorithm to plan a sequence of these primitives
taking the biped stably from start to goal in three-dimensional
workspaces with obstacles.

I. INTRODUCTION

The energetic efficiency of human bipedal locomotion is due
primarily to its reliance on dynamic walking. During each step
cycle, the body’s center of mass engages in a controlled fall
along a pendular arc until foot-ground impact redirects this
motion into the next step cycle. Evidence suggests that, using
this type of locomotion, human bipeds are more energetically
efficient than quadrupeds at low speeds [30].

Most humanoid robots to date, such as HRP-2 [25] and
Honda ASIMO [24], do not take advantage of dynamic walk-
ing. Instead, their motion is constrained by a “quasi-static”
equilibrium condition. These bipeds prevent foot-ground ro-
tation (i.e., falling) by ensuring there is zero net moment
at the center of pressure (COP), the point on the support
polygon/footprint where the resultant ground reaction force
acts [43]. When strictly within the support polygon, the COP
is equal to the zero moment point (ZMP) satisfying

M +R× F = 0, (1)

where R is the vector from the COP to the ankle, at which
the body contributes linear force vector F and moment vector
M [43]. When the ZMP exits the support polygon, the biped
rotates about a new passive degree-of-freedom (DOF) at the
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COP on the boundary of the support polygon. This falling sce-
nario is avoided by ZMP trajectory planners, whereas dynamic
gaits substantially involve such pendular falling states.

Both forms of walking are mathematically represented by
joint trajectories that evolve according to continuous and
discrete dynamics in a hybrid system. This produces periodic
orbits in system state called hybrid limit cycles. A quasi-static

walking gait is then a hybrid limit cycle satisfying (1), and a
dynamic walking gait is a hybrid limit cycle in which condition
(1) is violated for some portion of the cycle.

Quasi-static gaits typically require large actuators to track
constrained joint trajectories while actively supporting the
body weight with flexed knees during the entire step cycle
[28]. This results in shuffling motion that is up to an order
of magnitude less efficient than dynamic walking in terms of
energetic cost of transport [10]. The ZMP condition nonethe-
less provides a simple guarantee that the supporting foot does
not rotate and the robot does not fall [43], even though the
hybrid limit cycle may not be stable [44, Section 10.8]. For
this reason, quasi-static motion planning and control strategies
have so far dominated humanoid robotic walking.

Our goal in this paper is to enable motion planning for
dynamic walkers in the same way that planning is already
possible for quasi-static walkers. We will do so by constructing
a set of dynamic “motion primitives” with safety guarantees
that are amenable to established planning methods based on
quasi-static motion primitives.

A. Quasi-Static Locomotion Planning

Motion primitives prescribe a library of common actions
such as walking and climbing, reducing the high-dimensional
kinodynamic planning problem to a discrete sequence of these
pre-computed motions. For example, a set of quasi-static
motion primitives was used in [22] to bias the sampling of
configurations between planned sequences of discrete foot
placements. Full-body posture and locomotion planning was
enabled in [26], [27] by initially computing a large set of
statically-stable configurations. Paths between goal configura-
tions were then found by randomly growing a tree of nodes
that connect only if a collision-free path exists satisfying (1).

The hierarchical planner in [46] modeled a 3D robot as
a planar bounding box on the walking surface, restricting
the search for walking paths to configuration space SE(2)

– x, y position and orientation. Collision-free configurations
were locally connected by Dubins curves (circular arcs with
tangential line segments) to form quasi-static walking paths.

We will embrace a similar reduction in the path planning
problem for dynamic walking through 3D space. Instead of us-
ing motion primitives that track quasi-static joint trajectories,
we will build control systems yielding stable walking gaits.
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B. Dynamic Locomotion Planning

Dynamic walkers embrace ballistic momentum and gravi-
tational potential energy for speed and efficiency, but these
robots currently lack the same functionality as quasi-static
humanoids, e.g., some require downhill slopes for gravity-
powered walking, are constrained to the sagittal plane-of-
motion, lack directional control authority, and/or lack redun-
dant joints for manipulation. Hybrid nonlinear dynamics make
it difficult to analytically assure stability of a dynamic gait –
the robot state cannot be checked against closed-form balance
conditions like (1). Walking trajectories from perturbed initial
conditions are computed in simulation to verify stability [13].

The planar two-link “compass-gait” biped was shown to
have passively stable hybrid limit cycles without any actuation
whatsoever on shallow slopes [33]. Active control strategies
have been designed to exploit passive dynamics for efficient
planar walking on arbitrary slopes (e.g., [23], [38], [39], [44],
[45]). For example, feedback linearization is used to zero
output functions (i.e., virtual constraints) for some optimized
gait based on hybrid zero dynamics [44], [45]. This was
experimentally demonstrated on the planar bipeds RABBIT
[44] and MABEL [40]. Feedback control has also enabled
motion planning for planar dynamic walking, such as step-
level planning over irregular terrain [32], [34]. A rigorous
framework for controlling the planned flight trajectories in
planar dynamic running was developed in [21].

There has only been scattered success in scaling these
feedback control and planning methods into 3D space. The
frontal plane-of-motion contributes instabilities resembling an
inverted pendulum, and yaw dynamics in the transverse plane-
of-motion must be controlled to variable headings with some
sense of stability. Early attempts on spatially 3D walking
constrained this complexity by fixing yaw motion [2], [7],
[28]. The energy-shaping methods of controlled symmetries
[39], passivity-based control [38], and controlled reduction
[2], [20] exploit the geometric structure inherent in robot
dynamics of arbitrary dimensionality. These strategies were
used to decouple a fully 3D biped’s sagittal plane-of-motion,
which has well-known passive limit cycles, and from this build
pseudo-passive walking gaits for the full-order system [17],
[19], [20]. This simplified the search for full-order hybrid limit
cycles and significantly expanded the class of 3D bipeds that
can achieve pseudo-passive walking.

This framework was used to construct straight-ahead 3D
walking gaits that can be steered toward nearby headings
[17], [20]. Constant-curvature steering (fixed heading change
between steps) was shown in [18], [19] to induce stable
hybrid limit cycles modulo yaw, which serve as strategies for
walking through 3D environments [15]. Straight-ahead gaits
capable of steering along curves of mild curvature were also
produced with hybrid zero dynamics [8], [35]. This approach
elegantly exploits the fact that local asymptotic stability (LAS)
implies local input-to-state stability: there exist bounds on
path curvature and initial conditions that guarantee a bounded
change in state between impacts. However, it is not clear how
to derive the bounds for this form of stability (e.g., what is the
maximum curvature safely allowed from some initial state).

We will instead estimate bounds on curvature and switching
within a set of pre-stabilized LAS gaits. None of the aforemen-
tioned works on 3D dynamic walking combine control theory
with planning applications, which we address in this paper.

C. Contribution of the Paper

In order to enable fast and efficient robot walkers in real-
world environments, we present a planning framework for dy-
namic walking with high path curvature and guaranteed stabil-
ity. The previously discussed planning techniques embrace two
distinct control philosophies: the search for a desirable path
and control inputs is integrated (feedback motion planning) in
[32], [34], [41]; or the control system is designed to track a
separately planned trajectory in [22], [26], [46]. We propose
a third approach for the purpose of 3D dynamic walking: the
planner is designed around the stability properties of a set of
control systems serving as motion primitives. We are unaware
of other planning results for dynamic walking in 3D space.

We define a class of hybrid dynamical systems that math-
ematically describe bipedal walking in Section II. We use
this construction in Section III to formalize the notion of
asymptotically stable gait primitives for a class of mechanical
systems with impulses that admit an asymptotically stable
hybrid limit cycle. We show in Section IV that a walking
mechanism with a set of gait primitives can be formulated as a
discrete-time switched system that sequentially composes gait
primitives from step to step. We derive bounds on primitive
curvature and switching frequency that stabilize this system,
implying that a walking path composed of these primitives
may be stably followed by the robot. This admits the common
planning problem of exploring a discrete search tree with
branching factor equal to the cardinality of the primitive set.

As an example of this framework, we derive a set of gait
primitives for the 3D compass-gait biped using reduction-
based control in Section V. These dynamic motion primitives
are associated with constant-curvature walking arcs that grow
a tree of possible paths in the workspace. We examine the
growth of transient drift and implement a discrete search
algorithm to demonstrate the accuracy of simulated walking
along pre-planned paths (not previously addressed in [15]).
We conclude with remarks and future work in Section VI.

II. BIPEDAL WALKING AS A HYBRID SYSTEM

In order to study locomotion with impulsive impacts, we
must consider both continuous and discrete dynamics in a
hybrid system. Bipedal walking gaits correspond to hybrid
limit cycles that are stable from step to step. For the example
in this paper, we describe the hybrid dynamics of a particular
class of bipedal walkers. We assume the discrete impact events
are instantaneous and perfectly plastic. During the continuous
single-support phase, the stance foot is assumed to remain
in contact with the ground without slipping. However, these
assumptions can be relaxed and still produce asymptotically
stable walking [35], [37], [44] needed to apply the main result
of this paper. We now define this class of hybrid systems to
motivate our general formulation of gait primitives.
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A. Continuous Single-Support Dynamics

We first derive the biped’s continuous single-support dy-
namics using Lagrangian mechanics. Letting q denote a con-
figuration in the robot’s n-dimensional configuration space
Q, the system state is x = (qT , q̇T )T in phase space TQ

(all configurations and tangential velocities). As a notational
reference, we arrange a general 3D biped’s configuration
vector into q = (ψ,ϕT , θT )T , where ψ is the scalar heading
(yaw) variable, ϕ is the vector of frontal-plane (roll/lean)
variables, and θ is the vector of sagittal-plane (pitch) variables.
The world coordinates of the support foot remain constant
during each cycle but will later be modeled for path planning.

The robot’s kinetic and potential energies define the La-
grangian function, given in coordinates by

L(q, q̇) = K(q, q̇)− V(q) =
1

2
q̇
T
M(q)q̇ − V(q), (2)

where the kinetic energy is expressed in terms of the n ×
n inertia/mass matrix M . Integral curves on TQ necessarily
satisfy the Euler-Lagrange (E-L) equations of this function:

d

dt
∇q̇L−∇qL = τ. (3)

This yields the 2nd-order ordinary differential equations

M(q)q̈ + C(q, q̇)q̇ +N(q) = Bu, (4)

where n×n-matrix C contains the Coriolis/centrifugal terms,
N = ∇qV is the vector of potential torques, and n × m-
matrix B maps the m-dimensional control input u to the n-
dimensional joint torques τ (m ≤ n). Control input u is subject
to actuator saturation at torque constant Umax.

We now incorporate the impulsive impact events associated
with instantaneous double-support into a hybrid system.

B. Hybrid Dynamical Systems

We begin with some formalisms for hybrid systems from
[2], [44]. Since knee-lock impacts introduce another level of
complexity to the hybrid model, we only consider discrete
events associated with foot-ground impacts (which does not
preclude knees without impacts [44]). We therefore define
hybrid models with one continuous phase, i.e., “systems with
impulse effects.” A hybrid control system has the form

H C :

�
ẋ = f(x) + g(x)u x ∈ D\G

x+ = ∆(x−) x− ∈ G
,

where G ⊂ D is called the guard and ∆ : G → D is the
reset map. We model walking on a flat surface by defining
domain D ⊂ TQ as the set of states with nonnegative swing
foot height. Guard G is then the set of states x for which this
height is zero and decreasing, and the resulting impact event
is modeled by discontinuous impact map ∆.

Given a controller for input u, we have a closed-loop hybrid
system H solved by a curve x(t) called a hybrid flow. An
appropriately designed controller will produce walking gaits
that typically repeat every two steps due to bilateral symmetry,
so we must also define periodicity. A walking gait that repeats
every h steps corresponds to an h-periodic hybrid flow x(t),
such that x(t) = x(t +

�h
i=1 Ti) for all t ≥ 0, where Ti is

the fixed time-to-impact between the (i−1)th and ith discrete
events. The image of such a hybrid flow in TQ is an invariant
set called an h-periodic hybrid orbit

O =

�
x ∈ D | x = x(t), t ∈ [0,

h�

i=1

Ti]

�
. (5)

If a periodic hybrid orbit is isolated, rather than one in a
continuum of orbital solutions, it is called a hybrid limit cycle.
We must now consider orbital stability of hybrid limit cycles
in order to account for perturbations in bipedal locomotion.

III. ASYMPTOTICALLY STABLE GAIT PRIMITIVES

Although this definition of hybrid system only applies to a
particular class of bipedal walkers, we can define gait prim-
itives for any mechanical system that admits asymptotically
stable hybrid limit cycles (discrete events can be trivially
defined to consider smooth systems). We first offer the relevant
forms of orbital stability in a general hybrid system.

A periodic hybrid orbit O is said to be (locally) asymptot-
ically stable if all hybrid flows initiated in a neighborhood
of O asymptotically approach the orbit. To be precise, we
define a stronger sense of stability: a hybrid orbit O is (locally)
exponentially stable (LES) if there exist constants k,α, γ > 0

such that for all hybrid flows x(t) with d(x(t0),O) < γ,

d(x(t),O) ≤ ke
−α(t−t0)d(x(t0),O) (6)

for all t ≥ t0. The distance function from vector x to set O in
Euclidean metric space (R2n, d) is d(x,O) := infy∈O ||x−y||.

Orbital stability is determined using the method of Poincaré

sections [44], which analyzes the Poincaré return map P :

G → G associated with hybrid system H . This is a discrete
map defined on some hyperplane G ⊂ TQ (we choose the
guard), which characterizes the evolution of hybrid flows
between intersections with G. In particular, the h-composition
of this map sends state xj ∈ G ahead h impact events by the
discrete system xj+h = Ph(xj). In the case of an h-periodic
hybrid orbit O, we have an h-fixed point x∗ ∈ G∩O such that
x∗ = Ph(x∗). We then know that periodic hybrid orbit O is
LES if and only if the associated fixed point x∗ is LES in the
discrete-time system defined by return map P .

We cannot analytically calculate this nonlinear map to
determine its stability about x∗, but we can numerically
approximate it through simulation [13]. This allows us to
locally analyze orbital stability as a linear discrete system by
the map’s linearization, δPh, where exponential stability is
equivalent to the eigenvalue magnitudes of δPh being strictly
within the unit circle. The local stability region about h-fixed
point x∗, known as the basin of attraction, is defined as

BoA(x
∗
) =

�
x ∈ G s.t. lim

z→∞
P

hz
(x) = x

∗
�
. (7)

The numerical details of Poincaré analysis are deferred to [13].
We can now formalize asymptotically stable gait primitives

corresponding to strategies for walking in 3D space.
Definition 1: An asymptotically stable gait primitive is a

pair G = (Ph
cl, x

∗), where closed-loop Poincaré map Pcl has
the asymptotically stable h-fixed point x∗ (modulo yaw).
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Turning gaits are asymptotically stable about a fixed change
in heading, s = ψ̄−ψ. Straight-ahead gaits are asymptotically
stable about a zero steering angle, i.e., a fixed heading ψ = ψ̄.
For the purpose of 3D dynamic walking on flat ground, we
require that gait primitives can be arbitrarily oriented about
the z-axis to walk from any initial heading.

Property 1: Given G = (Ph
s , x

∗
ψ) with heading ψ and

steering angle s = ψ̄ − ψ, where ψ̄ is the h-step heading,

x
∗
ψ� := x

∗
ψ + (ρ 02n−1)

T

is an LES h-fixed point of Ph
s with heading ψ� = ψ + ρ and

steering angle s = (ψ̄ + ρ)− ψ�, for any ρ ∈ S1.
By construction, gait primitives are also independent of

world position and time. This spatial-temporal symmetry al-
lows primitives from a general set Ps = {Gst,Gtu(s),Gtu(−s)},
continuously parameterized by s, to be sequentially composed
from step to step. Each gait has a nominal walking arc on the
ground plane, with which walking paths are planned in SE(2).

IV. PLANNING WITH GAIT PRIMITIVES

Given a set of asymptotically stable gait primitives, we can
augment our hybrid model with an event-based (or stride-to-
stride) control input yielding the discrete-time switched system

x(i+ 1) = Pσ(i) (x(i)) , (8)

where, at every impact event, switching signal σ : Z+ →
{0, s,−s} chooses a closed-loop system Pσ(i) associated with
a gait primitive (parameterized by steering angle). Switching
between closed-loop systems from the primitive set causes
transients in system state, so we must derive rules for stability
in the sequential composition of gait primitives.

A. Rules for Sequential Composition

We present a discrete switched system formulation of the
funneling approach to composing controllers [4]. Let P

s be
a discrete primitive set for a general biped, where we do not
necessarily have a closed-form expression for the return map.

A biped employs gait primitive G
i = (Ph

i , x
∗
i ) during step

cycle i by implementing the controller yielding Poincaré map
Pi of closed-loop hybrid system H i. This is characterized by
the system state and primitive choice (oriented coincident with
the biped’s heading) at every impact event.

Definition 2: Step cycle i is represented by the pair Ti =

(xi−1,G
i), where G

i is the gait primitive employed after the
i− 1

th impact event with impact state xi−1. Moreover, Ti is
said to be switching if Gi �= G

i−1.
Step cycle Ti+1 is then related to Ti by xi = Pi(xi−1). The

biped may switch primitives at an impact before completing
the h-step gait cycle of the current primitive (when h > 1).

Definition 3: A step cycle Ti = (xi−1,G
i) is stable if

xi−1 ∈ BoA(x∗
i ), where x∗

i is the LES h-fixed point of return
map Pi from gait primitive G

i.
By invariance of the basin of attraction, if Ti is stable and

G
i+1 = G

i, then Ti+1 is stable. We derive rules for switching
stability by exploiting a convergence property of a bounded
range of continuously parameterized gait primitives:

Assumption 1: For every steering angle s ∈ [−S, S], there
exists LES h-fixed point x∗tu(s) of Ptu(s) with corresponding
BoA(x∗tu(s)). Then, by definition there exists a non-empty
open ball of radius rs > 0 about x∗tu(s) such that

B(x∗tu(s), rs) ⊂ BoA(x∗tu(s)),

where x∗tu(s) and rs are assumed continuous functions of s.
Property 2: Turning h-fixed point x∗tu(s) converges to

straight-ahead h-fixed point x∗st = x∗tu(0) in metric space
(R2n, d) as |s| → 0, where d is Euclidean distance. Formally
speaking, lim|s|→0 r

∗
s = 0 for r∗s := d(x∗tu(s), x∗st).

Turning motion more closely resembles straight-ahead mo-
tion for smaller steering angles. We know that turning curva-
ture κ = ±1/R converges to straight-line curvature κ = 0 as
turning radius R → ∞ ⇔ |s| → 0. Property 2 then follows
from Assumption 1 by continuity. We now can exploit overlap
in neighboring basins of attraction:

Lemma 1: Given Property 2, there exists positive steering
angle S̄ ≤ S such that for all s ∈ [−S̄, S̄]:

1) x∗st ∈ BoA(x∗tu(s))
2) x∗tu(s) ∈ BoA(x∗st)
3) x∗tu(−s) ∈ BoA(x∗tu(s))

Proof: [1.1] We first define minimal ball radius r :=

mins∈[−S,S](rs), positive by compactness of [−S, S], so

B(x∗tu(s), r) ⊂ B(x∗tu(s), rs) ⊂ BoA(x∗tu(s)),

for all s ∈ [−S, S]. Now, since r > 0 and lim|s|→0 r
∗
s = 0,

∃ S̄ ≤ S such that r∗s < r for all s ∈ [−S̄, S̄]. Then, x∗st ∈
B(x∗tu(s), r) for all s ∈ [−S̄, S̄], and the claim follows.

[1.2] First, by definition of LES, ∃ r∞ > 0 such that
B(x∗st, r∞) ⊂ BoA(x∗st). Then, again ∃ S̄ such that r∗s <

r∞ for all s ∈ [−S̄, S̄]. Hence, x∗tu(s) ∈ B(x∗st, r∞) for all
s ∈ [−S̄, S̄], and the claim follows.

[1.3] Recall x∗tu(s) → x∗st as |s| → 0, which means that
for each �/2 > 0, ∃ δ > 0 such that for all s ∈ [−δ, δ],
d(x∗tu(s), x∗st) < �/2. Then, the triangle inequality shows

d(x
∗tu(s)

, x
∗tu(-s)

) ≤ d(x
∗tu(s)

, x
∗st

) + d(x
∗tu(-s)

, x
∗st

)

< �.

Hence, if r∗tus := d(x∗tu(s), x∗tu(−s)), then lims→0 r
∗tu
s = 0.

Now, denoting each turning ball as B(x∗tu(s), rs), we can
define minimal ball radius r := mins∈[−S,S](rs) > 0. As we
saw in 1.1, ∃ S̄ such that r∗tus < r for all s ∈ [−S̄, S̄]. Then,
x∗tu(−s) ∈ B(x∗tu(s), r) for all s ∈ [−S̄, S̄], and the claim
follows. Equivalently, x∗tu(s) ∈ BoA(x∗tu(−s)).

Finally, we can take the minimum of S̄ from each proof to
find S̄ for the overall Lemma.

Remark 1: B(x∗tu(s), r) is an open ball so x∗st cannot
be on the boundary of BoA(x∗tu(s)). Therefore, points suffi-
ciently close to x∗st are also contained in BoA(x∗tu(s)). The
same holds for the other three claims in Lemma 1.

Asymptotic stability implies convergence to fixed points in
infinite time (exponentially fast in our case), but trajectories
will eventually be close enough to stably switch gaits. Given
enough time along a primitive, the biped’s state will be fun-
neled into the basin of attraction of the next desired primitive.
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Gtu(s)

Gtu( s)

Gtu(0)

V (x0)

V (x tu(-s))

V (x tu(0))

V (x tu(s))

Fig. 1. Sequential composition of Lyapunov funnels, each being the
graph of a Lyapunov function over its state space (illustrated as circular
neighborhoods in a planar global space). The funneled state trajectory (dotted
green) corresponds to the trajectory of the funneled Lyapunov functions (solid
blue). Figure obtained and modified from [4].

This is called the dwell time of switching signal σ(·) in (8).
This signal must be constrained to ensure stable composition
of primitives, for which we invoke our main result:

Theorem 1: Given Property 2, then for any s ∈ [−S̄, S̄]

there exists a minimum number of steps N ≥ 1, i.e., a lower
bound on dwell time, such that for all integers k ≥ N :

1) If x ∈ BoA(x∗st), then P k
st(x) ∈ BoA(x∗tu(s)).

2) If x ∈ BoA(x∗tu(s)), then P k
tu(s)(x) ∈ BoA(x∗st).

3) If x ∈ BoA(x∗tu(s)), then P k
tu(s)(x) ∈ BoA(x∗tu(−s)).

Proof: This follows directly from Lemma 1 and the
definition of asymptotic convergence (cf. [1], [4] for analogous
proofs concerning continuous-time switched systems).

Corollary 1: For any s ∈ [−S̄, S̄], there exists a minimum
dwell time N ≥ 1 such that for any integer k ≥ N , any
switching step cycle Ti+k that follows a stable step cycle Ti

is also stable.
Hence, a hierarchical controller (such as a finite-state ma-

chine) can easily constrain σ(·) for stable path planning,
piecing together straight and curved gait segments such that the
turns are not too sharp or the primitive switches too frequent.
The steering sharpness must be bounded by steering angle S̄,
a condition that can be verified in simulation. However, mini-
mum dwell time N depends explicitly on each gait primitive’s
basin of attraction and rate of exponential convergence, both of
which can only be characterized numerically. We will examine
this lower bound using exhaustive simulation in Section V-D.

B. Planning Formulation

Given these switching rules, we can define stable walking
over a sequence of sequentially composed gait primitives.

Definition 4: A w-step walking path execution from ini-
tial condition x(0) = x0 is defined by the ordered set
E(x0) = (T1,T2, . . . ,Tw), where T1 = (x0,G

1). A walking
path execution E(x0) is robust if all steps Ti are stable.

This corresponds to a trajectory of composed walking arcs
on the ground surface R2. Recall that state x describes the
robot’s motion with respect to its joints. In the context of path
planning on a level walking surface, we need to consider the

robot’s SE(2) coordinates with respect to a world frame, i.e.,
the Euclidean coordinates of (x, y)-position (e.g., measured
at the stance foot) and heading ψ. Hence, every step i has
an associated world configuration ci = (xi

pos, y
i
pos,ψi)

T ∈
SE(2). The extension of a biped’s discrete state to xe

i =

(xi
pos, y

i
pos, x

T
i )

T is trivial, as the new coordinates are easily
updated by extended map P e

i according to robot kinematics.
We denote a boundary-constrained w-step path execution

as E
cw
c0 (x

e
0), where c0 is from xe

0 = (cT0 ,ϕ
T
0 , θ

T
0 , q̇

T
0 )

T and
cw is from xe

w = P e
w

�
xe
w−1

�
= (cTw,ϕ

T
w, θ

T
w, q̇

T
w)

T . We can
now invoke Theorem 1 to define paths for stable walking
between world configurations c0 and cf . We say that a final
configuration cf is reachable if there exists a non-empty class
of robust path executions

�
E
cw
c0 |cw = cf , w ≥ 1

�
. The finite

set of gait primitives is continuously parameterized by s to
provide a (large) continuous reachable set.

We plan these paths using walking arcs in SE(2). Transient
effects from gait switching (i.e., step cycle trajectories con-
verge back and forth between attractive orbits) prevent a fixed
mapping from steps to path arcs, but each path segment is
closely approximated by a nominal constant-curvature arc.

Definition 5: The nominal walking arc of primitive G is the
tuple

�
δx∗

pos, δy
∗
pos, δψ

∗� ∈ SE(2) of the gait’s x-y axis and
yaw displacements, respectively, from initial heading ψ = 0.

For the gait primitives we consider, the heading change
equals the primitive’s steering angle, i.e., s = ψ̄ − ψ = δψ∗.
In order to sequentially compose walking arcs with different
orientations, we rotate the nominal arc’s x-y coordinate frame
with a group action of SO(2) to coincide with the initial
heading ψi of the following step cycle Ti+1:
�

δxi+1
pos

δyi+1
pos

�
=

�
cos(ψi) − sin(ψi)

sin(ψi) cos(ψi)

��
δx∗i+1

pos

δy∗i+1
pos

�
.

These nominal arcs grow a discrete tree in SE(2) with
branching factor three. We have thus reduced a complicated
kinodynamic motion planning problem in R2×TQ to a discrete
search problem in SE(2), where the planning algorithm is
designed to output a robust sequence S of steering angles pa-
rameterizing gait primitives. This corresponds to an open-loop
event-based controller that produces a constrained switching
signal σ(·) in the extended switched system

x
e
(i+ 1) = P

e
σ(i) (x

e
(i)) , (9)

We examine transient drift from pre-planned paths in Sections
V-E and V-F, but we first construct an example primitive set.

V. APPLICATION TO THE COMPASS-GAIT BIPED

This planning framework can be applied to any mechanical
system that admits hybrid limit cycles satisfying Properties
1-2. Model complexity only challenges the low-level control
design, so we demonstrate the high-level theory on a simple
3D compass-gait biped (see [8], [16], [19], [35] for more an-
thropomorphic models that admit asymptotically stable gaits).
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(no stable gaits)
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Fig. 2. Controlled reduction overview: the first reduction stage divides out
the yaw DOF of the transverse plane, and the second stage divides out the
lean DOF of the frontal plane, yielding the dynamics of the planar biped.

A. Modeling the Compass-Gait Biped

The 3D extension of the commonly studied planar compass-
gait biped is shown in Fig. 2. This simple 4-DOF biped has
no hip link, so each leg has identical single-support dynamics
(walking gaits will be 1-step periodic). We now describe our
biped’s hybrid control system H C .

We represent the configuration space of this biped by
Q = T4 with coordinate vector q = (qT1 , θ

T )T , where the
sagittal-plane and out-of-plane (scalar) variables are respec-
tively contained in vectors θ = (θs, θns)

T and q1 = (ψ,ϕ)T .
For simplicity we assume full actuation (m = n) including the
point foot/ankle in stance, but recent control theoretic work
considers phases of underactuation [37], yaw underactuation
[14], or no actuation [35] at the stance ankle in 3D walking.

This robot’s Lagrangian function L is defined by (2) in
terms of 4× 4 inertia/mass matrix

M(ϕ, θ) =




mψ(ϕ, θ) —– Mψϕθ(ϕ, θ)

| mϕ(θ) Mϕθ(θ)

MT
ψϕθ(ϕ, θ) MT

ϕθ(θ) Mθ(θ)



 ,

where Mθ is the 2 × 2 inertia submatrix corresponding to
the sagittal-plane DOFs. Note that M does not depend on
ψ, so yaw is called a cyclic variable. We see that the lower-
right 4× 4 submatrix only depends on θ and thus has another
cyclic variable ϕ. This recursively cyclic structure (a form of
rotational symmetry) is shown to be a general property of open
kinematic chains in [19], [20], which will be important to our
control law design and satisfying Property 1.

The potential energy has a similar cyclic form V(ϕ, θ) =

Vθ(θ) cos(ϕ), containing the planar subsystem potential en-
ergy Vθ. These cyclic Lagrangian terms are used to derive the
single-support dynamics (4), where torque map B ∈ R4×4 is
invertible for full actuation. Additional detail and expressions
for these symbolic modeling terms are provided in [14].

We assign common physical parameters from the literature
for our simulation results: M = 10 kg, m = 5 kg, l = 1 m, Umax

= 20 Nm. We now describe a low-level controller to stabilize
gaits for this biped, but recall that the planning framework
does not depend on a specific motor control strategy.

B. Deriving a Stabilizing Low-Level Controller

Reduction-based control exploits the existence of cyclic
variables to create controlled conservation laws that decom-
pose robot dynamics into lower-dimensional control problems
[14], [19], [20]. For our bipedal walker, we design momentum
conservation laws that control yaw toward desired heading
ψ̄ in the transverse plane and stabilize lean about vertical
ϕ̄ = 0 in the frontal plane (see Appendix). These conservation
laws can be expressed as nonholonomic constraints, which are
associated with an invariant surface in TQ:

Zψ̄ = {(q, q̇) | Jc(q)q̇ = b(q)} , (10)

where Jc and b are given in the Appendix. A geometric
reduction with respect to these conservation laws defines a
projection onto a reduced-order system corresponding to the
decoupled sagittal plane-of-motion. Therefore, full-order LAS
limit cycles can be constructed for locomotor patterns based
on periodic motions in the sagittal plane.

The multistage controlled reduction of Fig. 2 is imposed by
designing the control law such that the restriction of closed-
loop system (4) to Zψ̄ is given by reduced-order planar system

Mθ(θ)θ̈ + Cθ(θ, θ̇)θ̇ +Nθ(θ) = Bθvθ (11)

associated with reduced Lagrangian

Lθ(θ, θ̇) =
1

2
θ̇
T
Mθ(θ)θ̇ − Vθ(θ). (12)

Here, Cθ is the 2× 2 Coriolis matrix derived from Mθ, Nθ =

∇qVθ, Bθ is the lower-right 2×2 submatrix of B, and vθ ∈ R2

is a subsystem control input yielding stable planar walking on
flat ground (e.g., controlled symmetries [39]).

For this purpose, we would like to transform full-order
Lagrangian L into a so-called almost-cyclic Lagrangian Lλ,
defined in coordinates as

Lλ(q, q̇) := L(ϕ, θ, q̇) + L
aug
λ (q, q̇) (13)

=
1

2
q̇
T
Mλ(ϕ, θ)q̇ +Q

T
λ (q)q̇ − Vλ(q),

where the shaped inertia has two Schur complements of M :

Mλ = M −
�

0 0

0
−MT

ψϕθMψϕθ

mψ

�
−

�
0 0

0
−MT

ϕθMϕθ

mϕ

�

and gyroscopic term Qλ and potential energy Vλ depend on
the cyclic variables through function λ(q1) = −K(q1 − q̄1).
We defer the detailed expressions for these terms to [14], [20].

Remark 2: An important property of Lλ is that the as-
sociated E-L equations render Zψ̄ invariant [14]. In order
to account for initial conditions outside of Zψ̄ , an auxiliary
controller can be designed that further renders this surface
globally attractive in D. This will also correct for constraint
violations when changing the biped’s desired heading, i.e., set-
point ψ̄ can be piecewise constant.

Proposition 1: The closed-loop Euler-Lagrange equations
of Lλ restricted to Zψ̄ are given by planar system (11), i.e.,

d
dt∇θ̇Lλ −∇θLλ

��
Zψ̄

=
d
dt∇θ̇Lθ −∇θLθ. (14)
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Proof: Note that L
aug
λ does not explicitly cancel any

natural terms in L. Therefore, shaped Lλ can be decomposed
in terms of Lθ and remainder terms grouped in function Rem:

Lλ(q1, θ, q̇1, θ̇) = Lθ(θ, θ̇) + Rem(q1, θ, q̇1, θ̇).

The shaping terms of Lλ are designed in [20] such that the
E-L equations of Rem are zeroed on Zψ̄ , implying restriction
dynamics (14), equivalent to (11) of the planar biped.

Hence, geometric reduction of the shaped system projects
onto decoupled planar system (11). Almost-cyclic form (13)
is attained using Lagrangian-shaping torques that invert the
dynamics then reinsert those dynamics plus augmenting terms:

uλ(q, q̇) = B
−1

(C(q, q̇)q̇ +N(q) +M(q) (q̈des + v))

q̈des := M
−1
λ (q) (Cλ(q, q̇)q̇ +Nλ(q)) , (15)

where matrix Cλ(q, q̇) = CMλ(q, q̇) + CQλ(q) contains the
Coriolis terms from Mλ and the gyroscopic terms from Qλ,
vector Nλ = ∇qVλ contains the potential torques, and v is
some controller rendering Zψ̄ globally exponentially attractive
(cf. [14]). We now use this to build a set of gait primitives.

C. Constructing the Primitive Set

Control law (15) yields closed-loop hybrid system H st for
straight-ahead walking on flat ground. For our example, we
set ψ̄ = 0 without loss of generality and find the 1-fixed point
x∗st given in (16). We numerically verify LES of this straight-
ahead gait by linearizing the associated Poincaré map Pst, and
we denote the basin of attraction as BoAst(x

∗st). This defines
the straight-ahead gait primitive G

st = (H st, x∗st).
The associated hybrid orbit Ost is plotted in Fig. 3, showing

its periodicity over one step. We see that this upright gait has
no swaying in lean or yaw (which is to be expected for a
hipless biped), and the sagittal plane has a periodic step length
of 0.534 m and an approximate linear velocity of 0.727 m/s.

We create turning gaits by introducing a periodic distur-
bance into H st in the form of constant steering between
steps as in [15], [18]. We choose a steering angle s in the
event-based controller to increment desired yaw ψ̄ at each
step (positively for CW or negatively for CCW). This yields
closed-loop system H tu(s). We want to show that for any
sufficiently small |s|, this system’s trajectories converge to a 1-
step periodic orbit (modulo yaw) corresponding to a constant-
curvature turning gait with an LES 1-fixed point:

x
∗tu(s)

+ (s 02n−1)
T

= P
tu(s)

(x
∗tu(s)

) (19)

with BoAtu(s)(x
∗tu(s)). We can then define CW-turning and

CCW-turning gait primitives G
tu(s) and G

tu(−s), which have
symmetric orbits with opposite yaw/lean.

Starting H tu(s) from x∗st, we observe that hybrid flows
converge to a 1-fixed point x∗tu(s) associated with O

tu(s) for
any choice of s ∈ [−S, S], S = 0.492. We densely sample
steering values in [−S, S], finding the fixed point for each
sample and confirming LES as numerical evidence of As-
sumption 1 and Property 2. For a sufficiently dense sampling,
input-to-state stability guarantees that state trajectories will
remain nearby for steering values s between samples (arguably
resulting in unique LES fixed points).

The continuous evolution of the fixed point over this range
of steering angles is shown in Fig. 4. We notice that increasing
|s| perturbs the sagittal-plane orbit compared to O

st. The
x- and y-axis displacements for the nominal walking arc
associated with each steering angle (initialized from ψ = 0)
are also given in Fig. 4. Increasing |s| into the instability region
outside [−S, S], we observe period-doubling (flip) bifurcations
yielding 2- and 4-step periodic LES orbits [14], ultimately
leading to a chaotic strange attractor and falling.

We demonstrate a CW and CCW turning gait by choosing
ŝ = 0.32, which corresponds to the fixed points in (17)-(18).
The CW-turning gait is illustrated in the right-hand-side of
Fig. 3 (and CCW by symmetry), which shows the gait’s natural
leaning into the turn. We see in Fig. 4 that the nominal walking
arc for this CW gait primitive is characterized by δx∗

pos =

0.1733 m and δy∗pos = 0.5229 m. The sign of δx∗
pos is flipped

for the corresponding CCW gait. We verify that these turning
motions do not violate unilateral ground contact constraints
by calculating the ground reaction forces as in [14], [45].

These turning gaits naturally arise from our asymptotically
stable straight-ahead system, without changing any reference
trajectories. Integrating q̇T τ to obtain net work per step, the
specific mechanical cost of transport for each gait is c∗stmt =

0.052 and c
∗tu(±ŝ)
mt = 0.058, which compares favorably against

the Cornell biped at cmt = 0.055 and ASIMO at cmt = 1.6

[10]. We now must numerically derive the stability bounds
discussed in Section IV-A for this set of primitives.

D. Computing the Composition Rules

Although it is computationally difficult to find the exact re-
gion [−S̄, S̄], we can easily verify containment for a particular
s through simulation. We check convergence from all fixed
points of primitive set Pŝ = {Gst,Gtu(ŝ),Gtu(−ŝ)} to confirm
the conditions of Lemma 1, i.e., ŝ = 0.32 ∈ [S̄, S̄]:

x
∗st

, x
∗tu(ŝ)

, x
∗tu(−ŝ) ∈ BoAst

�
BoAtu(ŝ)

�
BoAtu(−ŝ).

This overlapping region also influences the minimum dwell
time N for Theorem 1. If the biped’s transient state leaves
this overlapping safe region, an unstable switching scenario
becomes possible. This is most likely caused by long primitive
sequences with high frequency switching, which accumulate
transient perturbations that cannot be attenuated during a short
duration. Eventually, the impact-event state from one gait
primitive may be outside the basin of attraction of the next.

We attempt to deduce N by exhaustively testing gait
switching scenarios with a “random walk,” picking a gait
primitive every step from a uniform random distribution.
We observe occasional falls after dozens of steps, implying
that N > 1. We next allow switching every other step and
are unable to produce falls after several lengthy simulations
(400+ steps), suggesting that minimum dwell time N = 2.
This is not a conservative estimate, but we have shown that
falling scenarios are rarely encountered. Emerging work on
transverse dynamics and sum-of-squares verification for basins
of attraction of hybrid limit cycles [31], [42] may prove
essential for conservative lower bounds on dwell time [1].
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x∗st ≈ (0, 0,−0.2704, 0.2704, 0, 0,−1.4896,−1.7986)T (16)

x∗tu(ŝ) ≈ (−0.0099,−0.0017,−0.2791, 0.2791,−0.0038, 0.0045,−1.5357,−1.9276)T (17)

x∗tu(−ŝ) ≈ (0.0099, 0.0017,−0.2791, 0.2791, 0.0038,−0.0045,−1.5357,−1.9276)T (18)
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Fig. 3. Straight-ahead (left) and CW-turning (right) gaits: phase portrait (top) and coordinate trajectories (bottom).
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Fig. 4. Evolution of CW turning fixed point x∗tu(|s|) (top) and x-y axis displacements (bottom) over steering angle s ∈ [0, 0.492].
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TABLE I

Steering Sequence Simulated Drift (m)
Case Steps Switches Net Yaw Max Mean Final
Random 1 72 36 0.32 0.540 0.226 0.538
Random 2 98 33 0.32 0.269 0.134 0.259
Planned 1 48 12 4.48 0.197 0.107 0.169
Planned 2 85 8 -0.32 0.168 0.105 0.168

These simulations provide evidence that the overlapping
attractive region of the primitive set is large, due to the close
proximity of the fixed points as well as the large sizes of
the associated basins of attraction. Hence, this primitive set
is capable of building a large class of robust walking paths,
enabling path planning through 3D space (animated in Fig. 5).

E. Bounding Transient Drift

Before implementing a planning algorithm, we examine
transient drift resulting from open-loop steering sequences in
biped switched system (9). We generate 100 random steering
sequences (step length between 10 and 100) from the prim-
itive set P

ŝ, computing the maximum, mean, and final drift
values in Euclidean distance from the nominal walking path
composed of primitive arcs. Trend lines are shown in Fig. 6.

All drift metrics tend to grow slowly linear with number of
switches and even slower with number of steps, but net change
in orientation alone has little influence on drift. Maximum drift
is usually close or equal to final drift. Upon inspection of the
extreme cases, we find that the direction of drift depends on
the direction of switching (e.g., from straight-ahead to a single
turning gait). Balancing the direction and timing of switches
has a canceling effect on accumulated drift. We characterize
two examples of this in Table I, where switching in random
case 1 is heavily biased towards one turning gait resulting in
more drift than case 2, which has more steps but balances
switching between both turning gaits.

The maximum drift remains less than one step length in
all but one of the 100 random cases. This suggests that the
biped’s actual trajectory stays bounded around any pre-planned
path of bounded length (regardless of steering sequence). Drift
accumulates slowly enough that plans need only be iteratively
re-computed during very long walking paths (100+ steps). We
can therefore define appropriately large obstacle safety regions
and goal regions when planning open-loop paths through 3D
environments. We now implement such a planning algorithm
to provide open-loop control of switched system (9).

F. Planning Walking Paths

The gait primitive framework provides a layer of abstraction
above the low-level control and stability of a walking mech-
anism to enable motion planning by switching between pre-
stabilized gaits. We compose these separate gait primitives in
discrete pieces, traditionally called motion primitives, to gener-
ate trajectories that simultaneously perform obstacle avoidance
and direct the robot to a goal region in the workspace. In this
section, we present one possible approach to planning based
on gait primitives as a proof of concept of this hierarchical
framework. It is important to recognize that the development
of this paper gives us a parameterized set of motion primitives,

which opens the possibility of a wide variety of planning
algorithms being used in real robot systems.

For this demonstration, we choose the discrete set of motion
primitives P

ŝ, which corresponds to a discrete subset of the
continuous range of steering angles available to the dynamic
walker. Thus, the set of possible paths (concatenations of
motion primitives) can be characterized by a tree data structure
with branching factor equal to the cardinality b of the motion
primitive set. The number of paths encoded in this tree
expands exponentially as the number d of concatenated motion
primitives in a path grows. Thus, the tree will represent O(bd)

paths composed of nominal walking arcs. If d is large (the
path length to be walked is long) and we wish to choose a path
based on certain criteria, i.e., collision-free, reaches the goal,
and minimizes a cost function, we will need to heuristically
bias the exploration of the search tree. This is a well-studied
problem [3], [9], [29], and in particular the A∗ Algorithm has
been frequently applied to humanoid robots, e.g., [5], [27]. We
will use a variant of [5] to plan our dynamic walking paths.

We define a goal region Rf ⊂ SE(2) so that any robust
walking path execution E

cw
c0 (x

e
0) ending at world configuration

cw ∈ Rf is considered admissible. The planner outputs
a steering sequence S ∈ {s, 0,−s}w corresponding to the
sequence of gait primitives for each step in walking execution
E
cw
c0 (x

e
0). This sequence is designed to produce a trajectory

in system (9) that is collision free and terminates in the goal
region while minimizing a scalarized objective function that
penalizes nominal path length and number of gait switches:

C
�
E
cw
c0

�
=

w�

i=1

norm(δx
∗i
pos, δy

∗i
pos) + α {Gi−1 �= G

i}, (20)

where α = 0.7, favoring shorter and smoother walking paths.
The planner begins by performing a workspace decomposi-

tion that bounds obstacles with safety regions and decomposes
the free space into a set of convex cells. We use the shortest
path on the workspace skeleton1 to identify the path homotopy
class2 we will explore to find our path composed of motion
primitives. This heuristic works well in practice for reducing
the number of paths to be explored without removing desirable
paths [5]. Our second complexity-reducing approximation is a
branch and bound style of tree search, where we plan optimal
sequences of motion primitives between subgoal regions in
the configuration space. We identify these subgoals by finding
intersections between workspace curves corresponding to the
projection of paths belonging to our selected homotopy class
and boundaries of the workspace decomposition.

We employ the A∗ Algorithm to compute optimal paths
between subgoals. This algorithm expands the search tree by
choosing nodes from a priority queue that is sorted by the
cost-to-come, a partial computation of (20) on the segment of
the primitive sequence explored thus far, plus the estimated
cost-to-go. The true cost-to-go from a node, i.e., the minimal
cost to reach the goal set from the configuration of that node, is

1The workspace skeleton is a deformation retract of the free workspace,
implemented as a discrete approximation of the generalized Voronoi diagram.

2Two paths that are homotopic to one another are identical after a homotopic
transformation corresponding to a deformation retract [9].
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Fig. 5. Animations of S/CW gait primitives (left/middle) and an example planned walking execution (right). The sequence of primitives is (CCW, CCW,
CCW, S, S, S, CW, CW, S, S, S, S, S), where switching steps are indicated by circles at impact events.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Steps

D
rif

t [
m

]

 

 

Max
Mean
Final
Max
Mean
Final

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Switches

D
rif

t [
m

]

 

 

Max
Mean
Final
Max
Mean
Final

−10 −8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Net Change in Orientation

D
rif

t [
m

]

 

 

Max
Mean
Final
Max
Mean
Final

Fig. 6. Simulated maximum, mean, and final drift values (and regression lines) for 100 randomly generated steering sequences, against number of steps
(left), number of switches (middle), and net change in orientation (right).
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Fig. 7. Two planned walking environments with primitive set Pŝ, ŝ = 0.32. Planned steps are indicated by gray circles and simulated steps by black X’s.
Initial orientation is shown by a black line from the starting position. Supplementary downloadable videos available for planned walking cases.

not known until the algorithm completes, so it is approximated
with a heuristic function that lower bounds the true cost-to-go.
For this, we use the Euclidean distance between workspace
projections of the robot’s configuration at the node and the
closest point in the current subgoal region. Sequences of
motion primitives that violate dwell time constraints or likely
cause obstacle collisions are pruned during the process of node
expansion. When A∗ terminates, we are left with a path plan
from one subgoal region to the next. We can then start a new
search from the terminal configuration of this path to the next
subgoal region. The final subgoal region is identical to the
goal region, by which the plan generation is completed.

Given the example environments of Fig. 7, the planner takes
seconds to produce the nominal paths shown in gray. The 4-
DOF biped is then simulated with the corresponding sequence

of gait primitives, resulting in a walking execution (shown in
black) that traces the pre-planned path into the goal region with
only minor drift. In both cases, the average and final errors
from planned step placements, given in the bottom rows of
Table I, are respectively 20% and 32% of one step length.

Recall that the biped does not explicitly track this planned
path – rather, the nominal walking arcs associated with the
open-loop primitive sequence accurately predict the walking
path execution. This is noteworthy given the transient effects
after each switching step. The observed drift may indeed
accumulate over long paths, but occasional re-planning can
compensate for this. We can also encode switching rules into
a regular language [12] and use a finite-state machine (i.e.,
discrete automaton) for closed-loop path tracking.
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VI. CONCLUSIONS

We reduced a complicated feedback motion planning prob-
lem in a high-dimensional state space to a much simpler
discrete path planning problem with a lower-dimensional
characterization of the robot’s configuration. This allows de-
composed, accurate planning of efficient bipedal locomotion
based on human-like passive walking principles, which is
fundamentally different from ZMP methods [22], [27], [46].

The planning framework of dynamic gait primitives can be
used with any control method that produces asymptotically
stable gaits (e.g., walking [8], [16], [19], [35], climbing [11],
or running [36], [44]). Each gait primitive is characterized by
its hybrid system and stable fixed point, thus corresponding to
a nominal periodic hybrid orbit. In our compass-gait example,
these orbits are naturally attractive by the (pseudo-passive)
robot dynamics after controlled reduction. This motion is
not prescribed by full-state trajectories [12] or subjected to
postural constraint (1), yet we have robustness over a large
class of paths composed of gait primitives.

In order to reach specific goal configurations, future work
might generalize this framework to allow primitive switching
within the full continuous range of available steering angles.
Gait primitives and their stability rules might also be pre-
computed using the feedback motion planning method of
randomized LQR trees [41] with sum-of-squares programming
[31], [42]. Practical implementations of the gait primitive
framework could integrate a suite of other feedback motion
planning tools, such as step-level planning over rough terrain
[32], [34] and time-scaling for variable walking speeds [23].

Experimental dynamic walking has been demonstrated on
planar robots using hybrid zero dynamics (cf. [40], [44]), and
3D results may soon be possible with advances in actuator
and biped mechanical design. Controlled reduction requires
actuation at the stance ankle, but the yaw DOF input can be
realized mechanically with a passive damper as shown in [14].
This would allow a more feasible (and arguably anthropomor-
phic) implementation with a 2-DOF ankle actuator for lean
and pitch. In fact, the preliminary investigation of [16] aims
to implement controlled reduction on the highly-redundant
Sarcos humanoid robot [6], encouraging a future generation
of fast and efficient humanoid walkers. Growing evidence for
switching in human locomotor control (cf. [14, Chapter 7])
also motivates investigation into the existence of primitives in
human motion planning.

APPENDIX: CONTROLLING CYCLIC VARIABLES

We exploit the recursively cyclic structure of M by defining
the generalized momentum p = M̂ q̇ with respect to inertia
matrix M̂ , defined by upper-triangular blocks from M :

M̂(ϕ, θ) =

�
M̂1(ϕ, θ) M12(ϕ, θ)

0 M2(θ)

�
,

where M2 = Mθ, and upper-triangular submatrix M̂1 ∈ R2×2

and off-diagonal matrix M12 ∈ R2×2 are given by

M̂1(ϕ, θ) =

�
mψ(ϕ, θ) mψϕ(ϕ, θ)

0 mϕ(θ)

�

M12(ϕ, θ) =

�
Mψθ(ϕ, θ)

Mϕθ(θ)

�
.

Given “divided” coordinate vector q1 = (ψ,ϕ)T and cor-
responding momenta p1, we wish to enforce a functional

conservation law that will stabilize q1 and p1:

p1 :=
�
I2×2 02×2

�
M̂ q̇ = −K(q1 − q̄1)

⇔
�
M̂1 M12

�
q̇ = −K(q1 − q̄1)

⇔ q̇1 = −M̂
−1
1

�
K(q1 − q̄1) +M12θ̇

�
, (21)

where K ∈ R2×2 is a diagonal positive-definite matrix of
constant gains, and q̄1 ∈ T2 is a constant vector of desired set-
points for coordinates q1. I.e., we wish to render invariant the
surface (10) in TQ associated with nonholonomic constraints,
where Jc = [M̂1 M12] and b = −K(q1− q̄1) is continuously
parameterized by desired set-point q̄1.

Due to the recursively cyclic and upper-triangular structure
of M̂ , it is easily shown that scaling terms M̂

−1
1 K and

M̂
−1
1 M12 in (21) have no dependence on ψ in the top row

and additionally no dependence on ϕ in the bottom row. We
then see that equation (21) represents a homogeneous first-
order linear system in q1 with time-varying coefficients based
on the trajectories (θ(t), θ̇(t)). Moreover, M̂−1

1 K is positive-
definite by the positive-definiteness of inertia matrix M and
consequently its diagonal blocks. Homogenous system (21)
then has negative gain linearity in q1, implying asymptotic
stability given asymptotic stability in the reduced subsystem
about some periodic solution (θ∗(t), θ̇∗(t)) (cf. [14]).

In order to produce periodic trajectories in reduced co-
ordinates (θ, θ̇), which are naturally coupled to the divided
coordinates, control law (15) is designed to both enforce (21)
and render the sagittal plane-of-motion decoupled [16], [20].
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