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Abstract Humanoid service robots in domestic environ-
ments have to interact with humans and their surroundings
in a safe and reliable way. One way to manage that is to
equip the robotic systemswith force-torque sensors to realize
a physically compliant whole-body behavior via impedance
control. To provide mobility, such robots often have wheeled
platforms. The main advantage is that no balancing effort
has to be made compared to legged humanoids. However,
the nonholonomy of most wheeled systems prohibits the
direct implementation of impedance control due to kine-
matic rolling constraints that must be taken into account in
modeling and control. In this paper we design a whole-body
impedance controller for such a robot, which employs an
admittance interface to the kinematically controlled mobile
platform. The upper body impedance control law, the plat-
form admittance interface, and the compensation of dynamic
couplings between both subsystems yield a passive closed
loop. The convergence of the state to an invariant set is shown.
To prove asymptotic stability in the case of redundancy,
priority-based approaches can be employed. In principle, the
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presented approach is the extension of the well-known and
established impedance controller to mobile robots. Exper-
imental validations are performed on the humanoid robot
Rollin’ Justin. The method is suitable for compliant manipu-
lation tasks with low-dimensional planning in the task space.
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1 Introduction

Robots in industrial applications are usually caged and
mostly restricted to workspaces where the presence of
humans is excluded. The next step towards domestic appli-
cations in households and human environments requires
massive adaptation and effort to make future service robots
safe and reliable. A central point in this context is to make
the robots compliant w. r. t. their environment. Beside using
particular mechanics such as passive springs to provide soft
behavior (Ham et al. 2009; Siciliano and Khatib 2008),
the concept of active compliance (Hogan 1985) is a well
established robot control technology. Elaborate compliant
whole-body control concepts have been developed starting
with theoretical investigations and simulations (Khatib et al.
2004; Sentis and Khatib 2005). By now these techniques
are more and more applied and validated on real hardware
(Nagasaka et al. 2010; Dietrich et al. 2012b; Moro et al.
2013). However, formal stability analyses do not exist.

Humanoid robots are predestined to be employed in ser-
vice robotic environments since households (rooms, tools,
geometries) are specifically designed for humans, e. g. two-
handed manipulation and human dimensions. In the last
decade, a wide variety of different systems have been devel-
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oped: HRP-4 (Kaneko et al. 2011), ASIMO (Sakagami et al.
2002), ARMAR-III (Asfour et al. 2006), TWENDY-ONE
(Iwata and Sugano 2009), LOLA (Lohmeier et al. 2009),
Rollin’ Justin (Borst et al. 2009), PR2 (Bohren et al. 2011),
just to name a few. One can classify these robots w. r. t. their
kind of locomotion. On the one hand, there are legged sys-
tems such as HRP-4 or ASIMO, and on the other hand,
wheeled humanoid robots such as TWENDY-ONEor Rollin’
Justin have been designed. Up to now many complex ser-
vice tasks have been executed by wheeled robots only. The
advantage of most of these mobile bases (excluding plat-
forms with less than three wheels (Stilman et al. 2010)) is
to focus on sophisticated manipulation skills without the
necessity of making large efforts for balancing and stabi-
lizing the gait. Based on these considerations we expect that
wheeled systems will occupy an important place in future
service robotics. We have already shown that whole-body
impedance frameworks applied to wheeled humanoid robots
give promising results (Dietrich et al. 2011a, 2012b). How-
ever, the nonholonomy of the mobile platform requires to
handle the kinematic rolling constraints for consistent loco-
motion. An admittance coupling can be used to integrate the
base into the whole-body framework on force-torque level.
However, experiments revealed that the parameterization of
the whole-body impedance and the platform admittance are
restricted such that conservative gains must be chosen to pre-
serve stability. That significantly degrades the performance
of the method in turn.

In this article wewill present a newwhole-body controller
and verify that the mentioned robustness problems are due to
inertia and Coriolis/centrifugal couplings between the upper
body and the mobile base. The closed-loop passivity allows
for a proof of asymptotic stability of the desired equilibrium.
Compared to the standard concept (Dietrich et al. 2011a,
2012b), the performance of the whole-body controller is
superior while ensuring stability at the same time. Experi-
ments on the humanoid robot Rollin’ Justin (Fig. 1) validate
the approach.

The remainder of this paper is organized as follows:After a
brief introduction to the dynamics representation of the robot
in Sect. 2, the control of the subsystems (platform, upper
body) is explained in Sect. 3. The whole-body impedance
controller and the formal stability analysis are presented in
Sect. 4. Comparative experiments in Sect. 5 confirm our
theoretical results on Rollin’ Justin. The discussion of the
approach in Sect. 6 closes the paper.

2 Fundamentals

This section briefly recapitulates rigid robot dynamics
(Sect. 2.1) and restricts it to nonholonomic, wheeled robots
(Sect. 2.2) for later use in the succeeding analysis.

Fig. 1 The humanoid robot Rollin’ Justin: its upper bodywith 43 actu-
ated DOF is torque-controlled (except for the two neck joints), the
mobile base with eight actuated DOF is position/velocity-controlled

2.1 General rigid robot dynamics

The dynamic equations of a fully actuated robot with n DOF
(degrees of freedom) and joint coordinates θ ∈ R

n can be
written as

M(θ)θ̈ + C(θ , θ̇)θ̇ + g(θ) = τ + τ ext . (1)

The inertia matrix M(θ) ∈ R
n×n is symmetric and positive

definite. Gravity forces and torques are taken into account
by g(θ) = (∂Vg(θ)/∂θ)T ∈ R

n , where Vg(θ) denotes the
gravity potential. Joint forces and torques are represented
by τ ∈ R

n and external forces and torques are denoted by
τ ext ∈ R

n .1 Coriolis and centrifugal effects are included in
C(θ , θ̇)θ̇ ∈ R

n . This term complies with

Ṁ(θ , θ̇) = C(θ , θ̇) + C(θ , θ̇)T (2)

which is equivalent to the skew symmetry of Ṁ(θ , θ̇) −
2C(θ , θ̇). This property is crucial for showing passivity
of (1) w. r. t. input τ and output θ̇ and the total energy
1
2 θ̇

T
M(θ)θ̇ + Vg(θ) as the storage function (Murray et al.

1994).

1 Since most manipulators are rather equipped with revolute joints than
prismatic joints, we refer to joint torques in this paper. Nevertheless,
the generalization to joint forces and joint torques can be made without
loss of generality.
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2.2 Robots with wheeled, nonholonomic mobile
platforms

The dynamics (1) can also be formulated for robots with
nonholonomic, wheeled mobile platforms under kinematic
rolling constraints. In the literature (Campion et al. 1996;
Siciliano and Khatib 2008), an undercarriage such as the
platform of Rollin’ Justin is called of ”type (1,2)” with a
maneuverability of dimension δm = 1, and a steerability of
dimension δs = 2. The analysis of this kind of system is a
standard issue in robotics and will not be performed here.
For a detailed investigation of the kinematic and dynamic
properties see Siciliano and Khatib (2008). Nonetheless, we
want to point out a few important properties which can be
concluded for type (1,2) platforms and apply them to the
mobile base of Rollin’ Justin.

1. Although the base cannot change its direction of motion
instantaneously, it is able to move freely in the plane by
adjusting the wheels (steering and propulsion) appropri-
ately.

2. Themobile platformhas basically threeDOF for the over-
all motion, which are: the translation forward/backward,
the translation left/right, and the rotation about the ver-
tical axis. In the following, we denote the respective
coordinates as r ∈ R

3.
3. The platform is dynamically feedback linearizable. Gior-

dano et al. (2009) have already implemented a controller,
which allows to command a desired trajectory rdes(t)
w. r. t. time t . An underlying wheel velocity controller is
then employed to realize the coordinated wheel behavior
(steering and propulsion).

In the following section, the mobile base control frame-
work will be presented. Afterwards, the upper body control
framework will be detailed.

3 Subsystem control

An increasing number of humanoid robots is equipped with
torque sensors in the upper body joints. That allows to
implement torque control techniques to realize a compliant
interaction behavior, e. g. by applying impedance-based laws
(Hogan 1985; Albu-Schäffer et al. 2007; Ott 2008). How-
ever, nonholonomic platforms require algorithms to solve the
kinematic rolling constraints. These constraints are usually
fulfilled from a kinematic perspective by suitable velocity
controllers (Thuilot et al. 1996; Asfour et al. 2006; Con-
nette et al. 2008; Giordano et al. 2009). For that reason, a
force-torque-based whole-body impedance framework can-
not be applied to such systems in a straightforward way. The
velocity-controlled subsystems have to be made accessible

Fig. 2 Control loop of the velocity controller for the mobile plat-
form. The control gains are high to compensate for any disturbances
as depicted

by an additional admittance interface to transform desired
forces and torques into applicable motion trajectories.

The velocity controller of themobile base of Rollin’ Justin
is briefly reviewed in Sect. 3.1. Afterwards, the admittance
interface is presented in Sect. 3.2. These two subsystems
are interconnected such that their interconnection has a vir-
tual force-torque input. The resulting equations of motion
of the wheeled platform and the upper body dynamics are
explained in Sect. 3.3. Sections 3.4 and 3.5 present the task
space impedance controller and demonstrate stability prob-
lems which arise when the impedance control law is applied
to the complete robot (via the admittance in the platform)
without modifications.

3.1 Mobile base velocity control

As mentioned above, a dynamic feedback linearization can
be applied to the platform of Rollin’ Justin. In combination
with an underlying, high-gain wheel velocity controller, one
is able to realize arbitrary desired trajectories in the coor-
dinates r, while the kinematic rolling constraints (Pfaffian
constraints) are automatically satisfied. The corresponding
control structure is illustrated in Fig. 2. Herein, the Veloc-
ity Controller block includes both the dynamic feedback
linearization (Giordano et al. 2009) and the underlying high-
gain wheel velocity controller. The signals w and ẇ denote
the wheel positions (steering and propulsion) and wheel
velocities, respectively. A major feature of the controller is
that it compensates for any disturbances due to the high gains.
These disturbances are primarily due to dynamic couplings
between the upper body of the robot and the mobile base.
Moreover, external forces/torques and dynamic effects of the
platform itself are compensated for.

Summarized, the sketched platform velocity control
framework allows the assumption ṙ ≈ ṙdes, while the desired
trajectory ṙdes may be arbitrary as long as it is smooth (twice
differentiable).

3.2 Admittance interface to mobile base

Using the velocity control framework from above, we are
free to command desired (virtual) base dynamics, which the
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platform is supposed to follow. Since our main goal is to
implement a whole-body impedance control law, a force-
torque interface is favored.

In this respect, we design an admittance simulation with
virtual platform inertia and virtual damping:

Madmr̈des + Dadmṙdes = τ virt
r + τ ext

r (3)

where τ virt
r ∈ R

3 is a virtual force/torque that can be used as
the control input (commanded by the whole-body impedance
controller) to generate the simulated velocity profile ṙdes.
External forces/torques τ ext

r ∈ R
3 can only be used in the

admittance if the platform is equipped with appropriate sen-
sor capabilities. If no sensors are available, τ ext

r has to be set
to zero in (3) although external loads may exist physically.
Note again that the underlying velocity controller compen-
sates for any disturbances, and τ ext

r belongs to this category.
In other words, if τ ext

r is not measured, the mobile platform
will be insensitive w. r. t. external forces and torques exerted
there. The parameters Madm and Dadm represent the virtual
inertia and damping of the admittance simulation, respec-
tively. A reasonable choice for these values is

Madm = diag(madm,1,madm,2,madm,3) (4)

= diag(m,m, I ), (5)

Dadm = diag(dadm,1, dadm,2, dadm,3), (6)

where m ∈ R
+ is the virtual platform mass and I ∈ R

+ is
the virtual moment of inertia. One can specify a decoupled
damping to determine the positive definite matrix via dadm,i

for i = 1 . . . 3. The advantages of the formulation (3) are
discussed in the following. A first-order low-pass filter can
be described in the Laplace domain as

sRdes
i (s) = Ki

Ti s + 1

(
τ virtr,i (s) + τ extr,i

)
, (7)

Ki = 1

dadm,i
, Ti = madm,i

dadm,i
. (8)

Here, Rdes
i (s) is the Laplace transform of the i th element

in rdes, τ virtr,i (s) and τ extr,i are the Laplace transforms of the

i th element in τ virt
r and τ ext

r , respectively. Based on (8)
we can parameterize the admittance simulation in an intu-
itive way. First, we choose the inertia parameters madm,i for
i = 1 . . . 3, i. e. the inertia of the platform which is supposed
to be perceived. Second, we parameterize the gains Ki for
i = 1 . . . 3. The whole-body impedance controller delivers
the maximum desired forces/torques (down to the platform).
Via Ki , we can directly compute the respective maximum
admittance velocity. That way, we restrict the base velocities
for safety. The reason behind limited forces/torques from the
whole-body impedance controller is that an excessive error

between the actual and the desired TCP (tool center point)
position/orientationmaynot lead to unfeasible control inputs.

Note again that the admittance (3) does not represent
a real physical system but it is only a simulated, desired
dynamic behavior we would like the platform to show. In
other words, if the admittance mass is set to 10kg, then the
platform behaves like it only weighs 10kg although its real
mass amounts to about 150kg.

3.3 Overall dynamics

Under the assumption of Sect. 3.1, i. e. ṙ ≈ ṙdes, the overall
dynamics can be formulated as

(
Madm 0
Mqr Mqq

)(
r̈
q̈

)
+

(
Dadm 0
Cqr Cqq

) (
ṙ
q̇

)
+

(
0
gq

)

=
(

τ virt
r
τ q

)
+

(
τ ext
r

τ ext
q

)
. (9)

The first line represents (3), while the second line describes
the upper bodydynamicswith joint configurationq ∈ R

nq for
nq upper body joint variables. Herein, Mqq is the respective
upper body inertia matrix and Mqr is the inertia coupling to
the mobile base. Accordingly, Cqr and Cqq denote the corre-
sponding Coriolis/centrifugal terms. All upper body gravity
torques are contained in gq. The torques τ q are considered
as the control inputs to the upper body and τ ext

q are the exter-
nal torques. Dependencies on the states are omitted in the
notations of (9). For later use, we define the vector

y =
(
r
q

)
, (10)

which describes the configuration of the robot. Herein the
mobile platform is only represented by its Cartesian posi-
tion r, while the wheel positions and steering angles w are
not represented. Thus, (10) is only a reduced configuration
description, but it defines the DOF which the whole-body
impedance controller will finally access. Before introducing
the impedance law, the properties of the dynamics (9) are
summarized:

1. Ahigh-gain velocity controller is used to fulfill the rolling
constraints and to realize the desired admittance dynam-
ics (3) for themobile base.All disturbances, including the
dynamic coupling forces/torques from the upper body,
are assumed to be compensated properly by this con-
troller (cf. Fig. 2).

2. The term τ virt
r can be used as the control input for the

mobile platform.
3. The term τ q can be used as the control input for the upper

body joints.

123



Auton Robot (2016) 40:505–517 509

4. The properties of the dynamics (9) do not comply with
the standard formulation (1) any longer, e. g. the inertia
matrix is not symmetric and (2) cannot be concluded from
(9) anymore.

3.4 Impedance control in the operational space

A spatial impedance can be designed in the operational space
such as the Cartesian space of the TCP. The desired TCP
behavior is implemented by applying the impedance to the
complete system so that overall compliance w. r. t. the TCP is
achieved. The spatial error x̃ ∈ R

nx in the operational space
is given by

x̃(y) = x(y) − xdes, (11)

where nx is the dimension of the operational space (for
Cartesian impedance: nx = 6), x(y) describes the forward
kinematics and xdes is the desired TCP position/orientation.
The positive definite, virtual potential Vimp(x̃(y)) represents
the spatial spring which may be of the form

Vimp(x̃(y)) = 1

2
x̃(y)TKx̃(y) (12)

for a positive definite stiffness matrix K ∈ R
nx×nx . One can

compute the control torques from the spring potential and the
upper body damping as

τ imp = −
(

∂Vimp(x̃(y))
∂y

)T

, (13)

τ damp = −
(

0
Dqqq̇

)
, (14)

yielding the control input

(
τ virt
r
τ q

)
= τ imp + τ damp. (15)

The damping matrix Dqq ∈ R
nq×nq has to be positive defi-

nite.Dampingw. r. t. the platform subsystemhas already been
injected by the admittance in Sect. 3.2. In Sect. 4, the over-
all damping matrix D̄ will be introduced, which contains the
upper body and the platform damping. The impedance torque
τ imp consists of nq elements related to the upper body and
nr = 3 elements related to the mobile base. The upper body
torques are directly applied and commanded to the torque
controllers in the joints via τ q. The platform forces/torques
in τ imp are commanded as τ virt

r in the admittance (3).

Fig. 3 Linear simulation model with three DOF

Table 1 Parameters for the
simulation of the three DOF
robot

Parameter Value Unit

m1,m2,m3 1 kg

K 1 N/m

Dqq diag(1, 1) kg/s

Table 2 Elements of the system matrix A

Row\col. r q1 q2 ṙ q̇1 q̇2

ṙ 0 0 0 1 0 0

q̇1 0 0 0 0 1 0

q̇2 0 0 0 0 0 1

r̈ −1/madm −1/madm −1/madm −dadm/madm 0 0

q̈1 1/madm 1/madm 1/madm dadm/madm −1 1

q̈2 −1 −1 −1 0 1 −2

The units are omitted in the notations

3.5 Interaction between torque-controlled upper body
and admittance-controlled platform on a 3 DOF
system

In this section a linear three DOF system will be analyzed
to demonstrate the stability problems arising when (9) is
used together with the whole-body impedance (15). The
manipulator is sketched in Fig. 3. The system parameters
and the controller parameterization are given in Table 1.
The dynamics can be analyzed using standard methods from
linear control theory. The closed-loop dynamics can be rep-
resented as a continuous, time-invariant state-space model
ż = Az + Bu, where z = (r, q1, q2, ṙ , q̇1, q̇2)T is the state
vector, A defines the closed-loop poles (system matrix), and
the input is defined by the input matrix B and the input vec-
tor u. The stability properties are determined by A, whose
elements are shown in Table 2.

Different parameterizations of the virtual platform mass
madm and damping dadm have been applied and themaximum
real part of all closed-loop poles has been evaluated. Figure 4
shows where this value is larger than zero (unstable system)
and where it is negative (stable system). The instability orig-
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Fig. 4 Stable and unstable closed-loop poles of the linear three DOF
robot depending on the admittance parameterization. Inertia couplings
exist, i. e. Mqr �= 0. No Coriolis/centrifugal terms exist due to the use
of prismatic joints, i. e. Cqr = 0

inates from the inertia couplingMqr (9) between upper body
and mobile base.

When the system is analyzed with active compensation of
the couplingMqr, stability is ensured for all reasonable para-
meterizations madm > 0, dadm > 0. In this case the elements
in A, located in row/column 5/1, 5/2, 5/3 and 5/4, are zero,
cf. elements in Table 2. Then the resulting inertia matrix is
positive definite, while this is not the case if the couplingMqr

is uncompensated.
Albeit only analyzed for a linear system here, we have

experienced similar effects on Rollin’ Justin during our
experiments. Such an instability scenario due to the cou-
pling is demonstrated in the video. On Rollin’ Justin, one
has Coriolis and centrifugal couplings additionally, thus
Cqr �= 0.

4 Whole-body impedance controller and proof of
stability

In Sect. 3.5 it was shown that the inertia and Cori-
olis/centrifugal couplings between admittance-controlled
mobile base and torque-controlled upper body can desta-
bilize the system. In this section, the compensation of
these couplings in combination with the whole-body con-
trol framework and a proof of stability for the closed loop
are presented.

4.1 Controller

Based on the insights from Sect. 3.5, the inertia matrix
has to be decoupled such that it becomes symmetric again.
Therefore, the impedance control law (15) is extended by an
additional compensation term:

(
τ virt
r
τ q

)
= τ imp + τ damp + τ comp, (16)

τ comp =
(

0
Mqrr̈ + Cqrṙ + gq

)
. (17)

The compensation action τ comp brings the dynamics into the
standard form of rigid robot dynamics (cf. Sect. 2.1) such that
the resulting inertiamatrix is symmetric and positive definite,
and the property (2) holds again. The accelerations r̈ do not
have to be measured, they can be taken from the admittance
simulation (3) due to the assumption ṙ ≈ ṙdes. Thus

r̈ ≈ r̈des = M−1
adm

(
τ virt
r + τ ext

r − Dadmṙdes
)
. (18)

The controller structure on Rollin’ Justin is sketched in
Fig. 5.

Fig. 5 Whole-body impedance
control with the humanoid robot
Rollin’ Justin. The closed loop
is passive w. r. t. the input τ ext

r,q
and the output ẏ. The measured
upper body joint torques are
denoted by τmeas
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4.2 Stability analysis

With the proposed controller (16), the dynamic equations
take the form

M̄ÿ + C̄ẏ + D̄ẏ = τ imp + τ ext
r,q (19)

with

M̄ =
(
Madm 0
0 Mqq

)
, (20)

C̄ =
(
0 0
0 Cqq

)
, (21)

D̄ =
(
Dadm 0
0 Dqq

)
, (22)

τ ext
r,q =

(
τ ext
r

τ ext
q

)
. (23)

Based on the following continuously differentiable, energy-
like storage function one can conclude passivity and asymp-
totic stability:

V (x̃, ẏ) = 1

2
ẏT M̄ẏ + Vimp(x̃) . (24)

The time derivative yields

V̇ (x̃, ẏ) = ẏT τ ext
r,q − ẏT D̄ẏ . (25)

The reason for the beneficial and simple structure of (25)
is the modified dynamics (19). The only configuration-
dependent submatrix in M̄ is Mqq = Mqq(q), which
depends on the upper body configuration only. HenceCqq =
Cqq(q, q̇), and the property Ṁqq = Cqq +CT

qq holds, cf. (2).
If the compensation (17) was not applied in (16), the term

(25) would get more complex. Then it would not be possible
to conclude any stability properties from (25).

4.2.1 Passivity of the closed loop and LaSalle’s invariance
principle

Using the storage function V (x̃, ẏ), one can conclude strict
output passivity (van der Schaft 2000) of the closed loop
w. r. t. the input τ ext

r,q and the output ẏ, see Fig. 5. That becomes

clear in (25), where D̄ is positive definite.
An undisturbed system ((19) with τ ext

r,q = 0) is assumed

and LaSalle’s invariance principle is applied. Since V̇ (x̃, ẏ)
is only negative semi-definite, the states V̇ (x̃, ẏ) = 0, based
on (25), have to be investigated. For ẏ = ÿ = 0 and τ ext

r,q = 0,
(19) delivers

(
∂Vimp(x̃(y))

∂y

)T

= 0 (26)

which only holds for (x̃, ẏ) = (0, 0). Hence, one concludes
asymptotic stability of this equilibrium.

4.2.2 Robot setup and control task integration

With the insights from the above sections, one has to distin-
guish between different robot setups and task integrations,
determined by the dimension of the operational space nx
and the total number of actuated joints. The cases are (i)
non-redundant robots (nx = nr + nq), (ii) redundant robots
(nx < nr + nq) where only damping is applied in the null
space of the operational space task according to (22), and
(iii) redundant systems (nx < nr + nq) where further tasks
are applied in the null space of the operational space task.

(i) Non-redundant robot If nx = nr + nq then the robot is
non-redundantw. r. t. the operational space task, no null space
exists. Asymptotic stability of the equilibrium can even be
shown in the configuration space for the equilibrium (y∗, ẏ)
with x̃(y∗) = 0 and ẏ = 0.

(ii) Redundant robot with null space damping If nx < nr +
nq then the robot is redundant w. r. t. the operational space
task, a null space exists. If the control law (16) is applied,
the overall damping matrix (22) is positive definite, thus the
damping also covers the null space of the operational space
task. Passivity and asymptotic stability of the equilibrium
(x̃(y∗), ẏ) = (0, 0) can be shown. The joint configuration y∗
cannot be determined because the null space configuration is
not unique.

(iii) Redundant robot with further null space tasks If nx <

nr + nq then the robot is redundant w. r. t. the operational
space task, a null space exists. In order to properly define the
null space behavior also on position level, priority-based con-
trol concepts can be applied. The complete stability analysis
of this case goes beyond the scope of this paper. But the
present system has the same structure as the one in our recent
work (Dietrich et al. 2013). Thus, the stability analysis (Diet-
rich et al. 2013) fully applies to the case investigated here.
In short, dynamic consistency within the task hierarchy is
implemented (Khatib 1987;Dietrich et al. 2015) and the tasks
are decoupled in a way such that conditional stability theory
(van der Schaft 2000) can be successively applied to each
hierarchy level to show asymptotic stability of the overall,
priority-consistent equilibrium (y∗, ẏ) with ẏ = 0.

5 Experiments

The control law is validated on the humanoid robot Rollin’
Justin following the structure in Fig. 5. The control gains
are set according to Table 3, where the Cartesian stiffness
matrix K is split up into its translational part Ktransl and
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Table 3 Parameters for the experiments on Rollin’ Justin

Gain Value

Madm diag(7.5 kg, 7.5 kg, 2.5 kgm2)

Dadm diag(24 kg/s, 24 kg/s, 8 kgm2/s)

Ktransl diag(1000N/m, 1000N/m, 1000N/m)

Krot diag(100Nm/rad, 100Nm/rad, 100Nm/rad)

Dqq ξ = (0.7, 0.7, 0.7, 0.7, 0.7, 0.7)

Fig. 6 Comparison of the TCP behavior in forward direction

rotational part Krot. The upper body damping matrix Dqq is
configuration-dependent in order to realize damping ratios ξ

related to a desired mass-spring-damper relation at the TCP.
This so-called Double Diagonalization approach is further
explained in Albu-Schäffer et al. (2003). The following ser-
ial kinematic chain is considered for Rollin’ Justin: 3 DOF in
theCartesian directions of themobile base, 4DOF in the torso
joints (3 active, 1 passive), and 7 DOF in the right arm. Thus
13 DOF are actuated in total. Furthermore an impedance
in the torso is applied to keep it within feasible regions in
the body frame, a self-collision avoidance (Dietrich et al.
2011b, 2012a) is applied, and a singularity avoidance for the
arm is activated in the null space of the Cartesian impedance
of the TCP to optimize the manipulability. These additional
subtasks have already been applied in our previous works
(Dietrich et al. 2011a, 2012b) in order to exploit the high
degree of kinematic redundancy in Rollin’ Justin.

In the first experiment, a continuous forward trajectory
of length 0.3m is commanded to the right TCP. The tran-
sient spatial behavior of the TCP is shown in Fig. 6. With
compensation, a nice impedance behavior is achieved with
small overshooting. This is due to two reasons: first, the
damping ratio for the Cartesian impedance is set to 0.7, cf.
Table 3, which is a standard parameterization for this kind
of lightweight robot (Albu-Schäffer et al. 2003) that leads
to a fast response at the cost of small overshoots. Second,
the kinematic velocity controller of the mobile base does
not ensure ṙ = ṙdes. The introduced phase delay inevitably
leads to slight uncertainties in the model such that the for-
mulation (9) does not perfectly match the real dynamics.
Without compensation, the system oscillates significantly

Fig. 7 Kinetic energy, potential energy, and the sum of both in exper-
iments with and without compensation

and takes a relatively long time to reach a steady state. How-
ever, by applying the chosen parameterization the system
still remains stable, evenwithout compensation. Note that we
have chosen these gains for a proper comparison of the per-
formances between active and inactive compensation. If the
admittance mass and damping were further reduced, insta-
bility would result without compensation of the inertia and
Coriolis/centrifugal couplings. Such a scenariowill be shown
in the last experiment and in the video.

In terms of the stability properties, the energy (24) is of
interest as well.2 The top plot in Fig. 7 depicts the kinetic
energies based on the admittance inertia. In case of uncom-
pensated inertia and Coriolis/centrifugal couplings, there are
large oscillations whose extent cannot be observed in the
TCP deviation in Fig. 6 alone. The potential energy part of

2 Equation (24) does not match the real physical energy due to the use
of the admittance inertia instead of the real one. An overall potential
energy including the other subtasks is not meaningful due to the null
space projections (Dietrich et al. (2013)).
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Fig. 8 Joint values, velocities, and torques in the second torso joint.
The axis of this joint lies in the horizontal plane and is responsible for
motions about the pitch axis

(24) is shown in the center diagram of Fig. 7. The sum of
the kinetic and the potential energy is given in the bottom
chart of Fig. 7. The stability problems without compensa-
tion become obvious here as well. To get an insight into the
behavior on joint level, Fig. 8 has been recorded. In the first
two charts the joint values and velocities of the second torso
joint are plotted for comparison. One can clearly see the dif-
ferences due to the compensation term. Note that this axis
is responsible for pitch motions and located directly above
the mobile base. Hence only small motions in this joint have
a massive impact on the TCP pose due to the long lever
arm. On joint torque level (third diagram in Fig. 8), large
oscillations can be observed in case of uncompensated iner-

Fig. 9 Physical human–robot interaction: the robot is disturbed during
the marked time period

tia and Coriolis/centrifugal couplings. In contrast, when they
are compensated, only the inevitable peaks during the accel-
eration and deceleration phase are noteworthy in the plot.
The bottom chart in Fig. 8 shows the actual compensation
torque in this specific joint.

In the next experiment, the compliance behavior is inves-
tigated and the parameters from Table 3 are used again. A
human disturbs the robot by moving the TCP away from the
desired equilibrium about 4cm, see Fig. 9 (top). During that
time, the mobile base starts to accelerate to compensate for
the error, see Fig. 9 (center). When abruptly releasing the
end-effector again, the TCP error converges properly in case
of active compensation. If deactivated, massive oscillations
can be observed in the error plots. When comparing the base
position, one can clearly see that the platform changes its
movingdirection repeatedly,while it shows a proper behavior
in case of activated compensation. The coordination between
upper body and mobile base is reasonable. While the plat-
form is still moving backwards (3 s < t < 8 s) from about
r1 ≈ 0.3m, the TCP error is already very small with less than
1cm. The total energy based on the admittance mass/inertia
and velocity is plotted in Fig. 9 (bottom). The short-time
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(a) t = 0 s (b) t = 0.5 s (c) t = 1 s (d) t = 1.5 s

Fig. 10 Snapshots from experiments on Rollin’ Justin with active
inertia and Coriolis/centrifugal decoupling. The platform admit-
tance is parameterized with Madm = diag(3 kg, 3 kg, 1 kgm2), Dadm
= diag(21 kg/s, 21 kg/s, 7 kgm2/s). The green plus symbol (+) indi-

cates the initial platform position. The green cross (×) indicates the
initial and desired position of the right TCP. The red plus symbol depicts
the actual platform position, and the red cross represents the actual TCP
position of the right arm (Color figure online)

(a) t = 0 s (b) t = 0.5 s (c) t = 1 s (d) t = 1.5 s

maximum 

emergency 
stop 

torque

Fig. 11 Snapshots from experiments on Rollin’ Justin with inac-
tive inertia and Coriolis/centrifugal decoupling. The platform admit-
tance is parameterized with Madm = diag(3 kg, 3 kg, 1 kgm2), Dadm
= diag(21 kg/s, 21 kg/s, 7 kgm2/s). The green plus symbol (+) indi-

cates the initial platform position. The green cross (×) indicates the
initial and desired position of the right TCP. The red plus symbol depicts
the actual platform position, and the red cross represents the actual TCP
position of the right arm (Color figure online)

increase in the energy (for activated compensation) at about
1 s < t < 1.5 s can be traced back to the performance of
the velocity controller for the mobile base and the result-
ing model uncertainties in (19). It should be mentioned that
the magnitude of the platform motion (Fig. 9, center) can be
actively influenced, e. g. by increasing the virtual platform
mass/inertia to make it move less. Moreover, one can define
the null space of the end-effector task, e. g. by applying an
impedance-based motion trajectory for the mobile base in
order to specify the platform behavior.

In the last experiment, a critical set of parameters for the
admittance is chosen so that instability finally occurs:

Madm = diag(3 kg, 3 kg, 1 kgm2) ,

Dadm = diag(21 kg/s, 21 kg/s, 7 kgm2/s) .

Note that the mobile base has a nominal mass of about
150kg. In other words, the velocity controller is instructed to
reduce the perceived inertia to only 2% of the original value.
Moreover, the platform has to accelerate and decelerate the
upper body of about 45kg additionally. Figure 10 shows the
experiment with active compensation of the inertia and Cori-
olis/centrifugal couplings. While the user is pulling the robot
at the right end-effector, the reactive whole-body controller
is compensating for the introduced Cartesian TCP deviation

bymoving backwards. After releasing the end-effector again,
the virtual equilibrium of the TCP is reached fast by exploit-
ing the kinematic redundancy in the upper body. The whole
transient only takes about 1.5 s.

Figure 11 shows the same scenario without compensation.
Only slightly touching the end-effector immediately desta-
bilizes the system. Notice that within only 1.5 s, i. e. between
Fig. 11a and 11d, the platformmoves a great distance forward
(Fig. 11b) and backward (Fig. 11c, d). At t = 1.5 s, the oper-
ator uses the emergency stop due to the large kinetic energy in
the system. Furthermore, at t = 1.5 s the maximum permis-
sible torque in the first horizontal torso axis (pitch motion)
of 230Nm is reached.

6 Discussion

The controller shapes the overall dynamics by modifying the
inertia matrix and the Coriolis/centrifugal terms. It is natural
to question whether such an intervention causes problems in
terms of robustness and availability of measurements. Can-
celling parts of the Coriolis and centrifugal matrix requires
model-based calculations but only positions and velocities
are used in the feedback law. These signals are usually mea-
sured or can be derived by differentiating w. r. t. time without
jeopardizing the robustness. The same applies to damping
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injection (14). An issue is the modification of the inertia
matrix since acceleration measurements have to be available.
However, the respective term in (17) only requires the Carte-
sian base accelerations. These signals can be taken from (3)
without resorting to any additional measurements or differ-
entiations w. r. t. time due to the assumption ṙ ≈ ṙdes made
in Sect. 3.1. Summarized, there are no critical issues in the
proposed control concept as also observed during the exper-
iments on Rollin’ Justin.

The high performance of the platform velocity controller,
which extinguishes any disturbances (cf. Fig. 2), is an
assumption made in the stability analysis. Naturally, there
will be a difference between the assumed, ideal closed-loop
system model and the actual dynamics. In order to further
close the gap between these two, one could consider imple-
menting a disturbance observer such as Ohnishi et al. (1996)
to improve the performance of the motion control of the plat-
form. In fact, during the experiments we have experienced
that the velocity control of the platform does not work per-
fectly but it introduces a phase delay. Nevertheless, we did
not encounter any stability problems during the experiments
related to these model uncertainties. From that perspective,
the assumption is justified on Rollin’ Justin.

Another aspect of the implementation is the knowledge
of the dynamic parameters which are used in the feedback.
Equation (9) can be computed in a straightforward way
with symbolic algebra programs. The wheel dynamics are
disregarded and the platform admittance (achieved via the
kinematic control) is assumed to be part of the computed
dynamics.

A further issue addresses the external forces/torques
exerted on the mobile base. In (3) they are used in the
admittance simulation. In order to provide interaction com-
pliance also with respect to external forces/torques exerted
there, measurements have to be performed. If no sensors are
available, this feedback is set to zero and exerted external
forces/torques will not lead to compliant behavior in the
platform. The velocity controller of the mobile base will
compensate for these disturbances as indicated in Fig. 2. Cur-
rently, Rollin’ Justin is not equipped with such sensors.

The proposed whole-body impedance controller can be
used for complex tasks such as household chores. Recently
we have presented a service application, where Rollin’ Justin
cleaned a largewindow (Leidner et al. 2014).However, in that
work the complete planning has been performed in the high-
dimensional configuration space, which is computationally
not efficient and very time-consuming in the planning step.
With the controller proposed here, we are able to do the plan-
ning in a dramatically reduced space such as the Cartesian
space of the end-effector which carries the window wiper. A
combination of Leidner et al. (2014) with the work proposed
here is expected to unite the benefits of hybrid reasoning
(global solutions in the planning) and compliant behavior in

terms of the whole-body impedance (local, reactive behav-
ior).

The field of application of the presented whole-body
impedance is not restricted to wheeled robots in principle. If
the motion of the mobile base is accessible, be it a wheeled,
legged, or flying system, then the approach can be used.
In general, the proposed controller can be applied to any
systemwithmotion-controlledmobile base and force-torque-
controlled manipulator mounted on it.

7 Conclusions

We have presented a whole-body impedance controller for
wheeled mobile humanoids with torque-controlled upper
body. As such systems usually have nonholonomic mobile
platforms, the kinematic rolling constraints have to be consid-
ered in the control of the base.Hence the platform systems are
mostly kinematically controlled. A compliant whole-body
behavior based on impedance laws can yet be applied by
using an admittance interface to the mobile base. Addition-
ally, that way one can reduce the apparent platform inertia
to obtain a humanoid robot consisting of subsystems (arms,
torso, platform) with similar inertial properties. The con-
troller proposed here takes these aspects into account and
deals with structural stability issues which arise when com-
bining torque control (upper body) with admittance control
(mobile platform). The control scheme allows a formal proof
of stability based on strict output passivity in the operational
space that features asymptotic stability of the desired equi-
librium. Experiments on the humanoid robot Rollin’ Justin
validated the approach. Possible applications for the method
are service tasks where compliant behavior is desired, safety
is required, and the planning is to be performed in a low-
dimensional task space instead of considering the complete
configuration space of the robot.
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