

 1

Interface Builder
Jason Chalecki

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

chalecki@andrew.cmu.edu

ABSTRACT
Implementation of a graphical user interface for a non-
trivial application tends to be tedious and error prone. A
simple, visual GUI builder was implemented to explore
issues with the current state of graphical application
development. Various implementation issues are discussed
in relation to enabling a GUI builder tool to be easily
extensible to prevent discouraging stagnation of GUI
controls. Additionally, design/interaction observations are
discussed in the context of making the user’s experience
efficient and integrating with the rest of the development
process.

Keywords
Graphical User Interface (GUI), Interface layout, GUI
development, GUI tools.

INTRODUCTION
For over two decades, a Graphical User Interface (GUI) has
been a common method of interacting with computer
systems. However, they tend to be very tedious to
implement due to the many different concerns that need to
be addressed. Drawing non-trivial objects, i.e. anything
more complicated than a basic shape, tends to require a lot
of code. There are lots of different logical mechanisms in
which the user could provide input. Providing rich
interaction with these mechanisms, or controls, generally
requires writing a lot of case specific code. The user is
typically allowed to drive the order in which input is given,
which requires more flexibility in the application. Again,
this results in more code. As the volume of code increases,
it gets increasingly more likely to commit coding errors,
thus programming GUIs tends to be error prone. Graphical
control libraries or toolkits have mitigated a lot these issues
by providing implementations for commonly used input and
output controls. This relieves the programmer of having to

implement much of the “small picture” functionality
associated with an application. However, the programmer
still generally has to worry about where the controls are
positioned on the screen, which still tends to require a good
bit of code to implement. Within this paper, the
implementation of a tool to allow developers to generate
code for a graphical layout through visual creation of that
layout is explored. Before this is done, however, some
alternative or similar solutions to the problem are briefly
reviewed.

RELATED WORK
There have been several classes of solutions to mitigate this
problem. Some are more like “syntactic sugar” for the
initial problem in that the programmer still needs to
consciously think about each and every detail, but will need
to write less to specify them. Some reduce the amount of
effort required by trying to provide intelligent default
configurations whenever possible. Others reduce the
amount of effort required by moving the specification
mechanism into the problem domain, i.e. allowing the
implementation to be made visually.

Resource Files
One of the earliest methods of addressing the issue of
simplifying the implementation of graphical layout of
controls was through a simple declarative programming
language. This approach was common in Microsoft
Windows® applications, where it was typically known as a
resource file. (The resource file could be used for other
purposes, as well.) In this file, a programmer would
succinctly specify the size and location, in addition to other
control-specific configuration parameters such as the text to
be shown for a label control. A separate, provided program
would then convert the declarative description into
instructions that would display the described interface.
While this was method was a lot simpler than implementing
it by hand, it was still tedious for the programmer to figure
out the exact pixel locations and sizes for each and every
control that was to be displayed.

Layout Managers
A somewhat evolutionary solution to this new problem was
conceptually very simple. The code library would make
intelligent assumptions for parameters that were not

explicitly specified by the programmer. This approach is
typically known as a layout management. The layout
manager would usually take care of configuration with
regard to size and position. Many controls would expose a
preferred size for its configuration. For example, a button
would calculate its preferred size to be that which is just big
enough to be able to fit its entire label. The layout manager
would use these sizes, as long as enough space was
available. For positioning concerns, the programmer would
instruct the layout manager as to the relative positions of
control. This would typically mean determining the
direction in which subsequent controls are displayed, e.g.
vertically or horizontally, and the relative order of the
controls. Container controls were typically available so that
this approach could be used to recursively and simply build
up complex and interesting layouts.

Visual Layout Tools
While the approach provided by layout management
systems did in fact relieve the programmer from the burden
of dealing with somewhat inconsequential, details such as
at which exact pixel location should a control be drawn, it
still kept the solution to a conceptually visual problem
outside of the visual domain. This would generally mean
much iteration over the exact configuration of the layout
manager and controls so that the displayed interface would
appear as desired. A general solution to the initial problem
that also addressed the concern arose as graphical
applications, themselves, became more popular. In this
solution, the programmer visually draws the interface of the
application exactly as it should appear. The tool providing
this functionality typically provides a palette of the controls
that are available. The programmer creates new control
instances and directly places them in a representation of the
application that is being built. As this is the solution
explored by this paper, issues arising with this approach
will be discussed later in this paper.

DESIGN
As previously mentioned, approach to dealing with the
issues associated with layout of graphical controls explored
in this paper is that of a visual layout tool, which is named
Interface Builder. Consistent with this, the primary design
philosophy was to allow interaction in its most natural
modality whenever possible. This typically meant enabling
input through direct manipulation.

The most salient examples of where this philosophy was
evident are the resizing and moving of controls. All controls
could be positioned on the canvas, which represented the
display associated with the interface being designed,
through clicking down on them and holding with the
pointer device and dragging them to the desired location.
For controls that were fully resizable, a narrow region
around the boundary of the control could be clicked and
held and then dragged to increase or decrease the controls
size in that dimension (or both dimensions is a corner was
clicked). For controls that were only resizable in

one dimension, e.g. a text field can be made wider or
narrower but not taller or shorter, the ability to resize was
only available on the appropriate edges.

The other example of this is the manner in which the z-
order, that is, the order determining which control is on top
when controls overlap, is manipulated. Here all controls are
presented in a vertical list. Similar to the method for
moving controls, the representation of controls, which form
the list, can be “grabbed” and moved to the desired new
position.

Interface Definition Tasks
There are several core tasks involved with defining an
interface for a graphical application. They will be described
briefly, each followed by a description of the feature(s) in
Interface Builder that is used to accomplish them.

Creating a new control
The first task that must be completed before any other task
may start is deciding on a control that is needed and adding
it to the application. Interface Builder provides a palette of
available controls on the left edge of the application (See
Figure 1). A control type is chosen by clicking and holding
on one of the items in the palette. A new instance of the

Figure 1. The palette used to create new controls.

 3

control type is created by dragging the held item into the
layout pane and releasing it there (See Figure 2a & 2b).
Feedback is provided to indicate that no action will be taken
if the item is released in the palette (See Figure 3). The

initial position of the new control instance is at the location
where the item was released.

Positioning and sizing
After a control is created, it can be positioned and sized
through direct manipulation on the canvas. The canvas is
the large area of Interface Builder adjacent to the palette
and roughly occupying the center of the application (See
Figure 4). It represents the display area of the interface
being designed. The gesture used for resizing is similar, if
not identical to that used to resize windows in most
windowing operating systems, i.e. grab and drag a corner or
edge. Any part of the control that does not enable the
control to be resized when grabbed is used to enable the
control to be moved.

Determining z-order
When multiple controls exist, there is the possibility that
some controls will overlap. To determine which control is
on top, the z-order can be manipulated. The z-order pane,
located in the lower right corner of Interface Builder is used
to manipulate the z-order of controls. A representation of
each control is depicted in a vertical list in the z-order pane.
A control that is above another control in z-order will be
higher in the list, i.e. more towards the top. Having the list
be vertical provides a better match with users’ conception
of above and below. To change the relative z-order of a
control, that control can be dragged to the new desired
position (See Figure 5).

Figure 2b. A button palette item is released over the
canvas, creating a new button control.

Figure 3. Feedback indicating no action will be taken if
the item is released here.

Figure 2a. A button palette item is held above the
canvas.

Configuring parameters
In addition to size and position, most controls have other
properties that can be configured to affect the control’s
appearance and behavior. Interface Builder includes a
property editor, located in the upper right corner of the
application. The property editor exposes all properties on
the control, such as the label on a button, as textual values
(See Figure 6). Properties that are read-only are not
editable. Property values are updated in real time so they
always display the control’s current configuration. Size and
location are also just properties so they are visible, which is
helpful for high precision size or location tasks (and the
values can be directly set, depending on the control type.)

Generating code
After the interface is completely defined, the code to create
the interface must be generated. Interface Builder provides
a simple function to generate Java code in a user specified
file.

Supporting tasks
Often defining an interface is a complex task that requires
time and several iterations. To add these needs, Interface
Builder includes the capabilities to export the current
interface definition and load it back at a later time so that
the interface definition process can be interrupted and
resumed.

Figure 4. The Interface Builder application: the palette is on the left, the properties pane is in the upper right, the z-order pane
is in the lower right, and the canvas is in the center.

 5

IMPLEMENTATION
Implementation of the Interface Builder additionally
revolved around two more principles: control extensibility
and editor extensibility.

Control Extensibility
There rate of innovation in the sphere of control types
seems very slow. While this is probably not due to visual
layout tools being static in their control selection, the tools
used do, in large part, define how work is accomplished.
Additionally, due to implementation resource constraints,
the full suite of common controls was not able to be
supported. (Currently the supported controls are: label, text
field, button, check box, vertical slider, a filled rectangle
and an outlined rectangle.) To address the first possible
concern, and in anticipation of the second, Interface Builder
was architected from the beginning to facilitate addition of
new supported control types.

Control interface
The primary mechanism that accomplishes this goal is the
use of a very simple contract that each control must follow.
Principle in this contract is the aspect of control properties.
Each control provides two methods to get and set each of its
properties by name. The values are exposed as strings.
Additionally, a method must be provided that enumerates
the names of the controls properties. In addition to these
three methods, functionality must be provided to save the
control and generate Java code based on its current
configuration.

Control factory interface
The control interface contract addresses the tasks of
configuring a control and generating Java code for an
interface. However, before a user could ever get to that
point, controls must be created. To provide this
functionality, a control factory must be provided for each
type of control. The control factory is responsible for

instantiating new control instances in a default
configuration. It additionally provides the functionality to
load previously saved controls. Finally, it must provide a
canonical depiction of its control type. This is used, for
example, by the palette to show what controls are currently
supported.

Editor Extensibility
There will always be better and different ways to
accomplish a task. Interface Builder prepares for this by
encouraging a loose coupling between controls and an
editor and between editors. Interface Builder currently has
three control editors: the layout pane, the properties pane,
and the z-order pane. (The palette is conceptually not quite
an editor, and in implementation, together with the canvas,
it is part of the layout pane.) By encouraging loose
coupling, Interface Builder facilitates modification of itself
to add new and better editors as they arise.

Loose coupling
The mechanism by which a loosely coupled implementation
is achieved primarily consists of a central object (hereafter
“manager”) and an event notification framework (See
Figure 7). The manager keeps track of all controls currently
defined as well as all control factories that are available.
Editors register with the manager to receive notification
about interesting events such as controls being added,
control properties being changed, or a control being made
the selection. Additionally, editors may register with the
manager to receive notification about control factories, such
as new ones being made available. The layout pane does
this on behalf of the palette to expose the available factories
to the user so that new controls may be instantiated.

An aspect created by control extensibility aids in the loose
coupling. By having each property be discoverable and

Figure 6. The properties for a button control, which has
intrinsic, i.e. not directly mutable, size.

Figure 5. The myBackground control is about to be
reposition below the myCheckBox and myButton

controls.

exposed in a common, simple format, existing editors can
typically work well on new types of controls.

ISSUES ENCOUNTERED
By in large, there were very few issues encountered during
the implementation of Interface Builder. There was one
issue of interest from a design perspective and one issue of
interest from an implementation perspective.

Design Issue
The design issue encountered concerned the z-order pane.
While the vertically oriented list is probably a natural
presentation for working with the z-order of controls (which
would require user testing to confirm), it was unclear how
to best associate each entry in the list with the
corresponding control. A simple way would possibly be to
show a scaled version of the control as the entry. This has
issues in that some different control may not be visually
distinguishable. Or, more subtly, some different controls
may only be visually distinguishable by size, which would
be destroyed by scaling. The current implementation simply
shows a property of the controls that is required to be
globally unique, i.e. the variable name used in generated
Java code. This is sufficient to distinguish between controls,
and in small interfaces with well named variables, it is
probably even an acceptable solution. However, it is
unlikely that this solution is satisfactory for the interfaces
that are present in most widely used graphical applications.
A possible solution would be to combine the two
approaches since multiple cues will make it easier to recall.
For the specific combination of editors currently supported,
adding highlights, or a similar device, to controls
immediately above and below where the active control
would be reordered to would probably be very helpful. (The
active control is currently made the selection so that

provides a cue.) However, care would need to be taken in
designing this capability so that the layout pane and z-order
pane do not become tightly coupled.

Implementation Issue
The implementation issue concerned the layout pane. The
single biggest amount of time and code was spent on
implementing move and resize functionality for controls in
the layout pane. It was very tedious to implement all of the
cases that need to be handled to support moving and,
especially, resizing a control. While a lot of the code is very
similar, it was still different enough that it could not be
easily factored in to shared code. Yet none of the code was
specific to any type of control. Nor even was any code
aware of the fact that controls were anything more than a
rectangular region. It seems that it would be possible to
develop generic controls, or possibly, wrappers for controls,
that provide basic functionality to move and resize
rectangular controls. This is explored a little further in
“Future Directions”.

FUTURE DIRECTIONS
Implementation of Interface Builder highlighted several
opportunities for further exploration and investigation.

User Testing
First, and most importantly, user testing should be
performed on the current implementation of Interface
Builder. There are likely issues with the z-order pane.
Several solutions have been proposed. User testing would
be beneficial in determining which solution would be best
(as well as if there is even an issue to begin with).

editor 1

editor 2

factory collection

control collection

manager

change a property

notified of a
property change

Figure 7. A simple example of communication flow when a property on a control owned by the manager is modified by an
editor.

 7

Direct Manipulation Toolkit
As mentioned in the “Issues Encountered” section,
implementing support for moving or resizing of items on
screen is cumbersome and tedious. Unfortunately, these are
also some of the more natural direct manipulation
techniques for graphical applications. It seems unfortunate
that current applications must “reinvent the wheel” to
support them. (Or worst still, applications may simply not
even offer them as input methods.) It appears fruitful to
investigate adding generic support for moving and resizing
controls to a windowing toolkit. A first attempt would
probably restrict this to rectangular controls, with
supporting controls of arbitrary shapes being a logical next
step.

Active Interfaces
An interface that does not do anything is not that useful. As
helpful as aiding in designing and showing an interface
might be, there is still a lot of work involved in connecting
controls to application specific behavior. Interface Builder
currently only addresses this problem by allowing the user
to type (or more likely, paste) Java code that will get
hooked up to standard event handlers for controls. This is
still error prone in part because some of the assumptions of
the code are probably dependent on the interface. If the
interface changes, there is no way to update the code
automatically or even warn the user. The user must track
this on their own. Providing the user with a direct and
visual way to associate actions with controls in a way where
the tool, e.g. Interface Builder, understands the actions and

can monitor them for common errors would almost
certainly be of great benefit. For some actions, such as
setting another control’s property to a different value could
be done in an almost entirely rich semantic manner, such as
by demonstration or by creating different states of the
interface and transitioning between them. Invoking
application specific logic will probably be less compelling
in its experience but more useful to users.

CONCLUSION
While graphical applications have been around, and even
common for many years, development tools for creating
these applications appear to still be relatively immature. In
a visual layout tool, a simple flexible interface for controls
and an architecture promoting loose coupling between the
major components was found to greatly facilitate initial
implementation. It is hypothesized that these characteristics
will also aid in its ongoing usefulness by allowing it to
quickly grow and adapt to new user needs. The difficulty in
implementing simple move and resize direct manipulations,
as well as the agnostic way in which it was implemented,
led to the conclusion that addition of such functionality to a
windowing toolkit would be possible and beneficial.
Finally, observations were discussed regarding how the
next step in aiding graphical application development
appear to be in helping connect the interface to application
specific logic, and any tool that can successfully do that
will be a great benefit to programmers. How this connecting
of interface to logic should be enabled is still an open
question.

