
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:
How	to	Design	a	Good	API	and	Why	it	Matters

Josh	Bloch Charlie	Garrod

215-214

Administrivia

• Homework	4b	due	next	Thursday
• HW	4a	feedback	available	after	class

315-214

Key	concepts	from	Tuesday…

• Multiple	threads	run	in	same	program	concurrently
– Can	improve	style	and	performance
– But	you	must	avoid	shared	mutable	state…
– Or	synchronize	properly

• GUI	programming	a	simple	case	of	multithreading
– Event	dispatch	thread	handles	all	GUI	events
– Swing	calls	must	be	on EDT
– Time-consuming	(non-Swing)	must	be	off	EDT

415-214

Today’s	topic	API	Design
What	is	an	API?
• Short	for	Application	Programming	Interface
• A	component	specification	in	terms	of	its	
operations,	their	inputs,	and	their	outputs
– Defines	a	set	of	functionalities	independent	of	implementation
– Allows	implementation	to	vary	without	compromising	clients

• Defines	boundary	between	components	in	a	
programmatic	system
– Intermodular boundary

• A	public API	is	one	designed	for	use	by	others

515-214

Libraries,	frameworks	both	define	APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight()); }
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight()); }
}

your code

your code

API

API

615-214

Why	is	API	design	important?

• APIs	can	be	among	your	greatest	assets
– Users	invest	heavily:	acquiring,	writing,	learning
– Cost	to	stop using	an	API	can	be	prohibitive
– Successful	public	APIs	capture	users

• Can	also	be	among	your	greatest	liabilities
– Bad	API	can	cause	unending	stream	of	support	calls
– Can	inhibit	ability	to	move	forward

• Public	APIs	are	forever	– one	chance	to	get	it	right

715-214

Why	is	API	design	important	to	you?

• If	you	program,	you	are	an	API	designer
– Good	code	is	modular	– each	module	has	an	API

• Useful	modules	tend	to	get	reused
– Good	reusable	modules	are	an	asset
– Once	module	has	users,	can’t	change	API	at	will	

• Thinking	in	terms	of	APIs	improves	code	quality

815-214

Characteristics	of	a	good	API

• Easy	to	learn
• Easy	to	use,	even	without	documentation
• Hard	to	misuse
• Easy	to	read	and	maintain	code	that	uses	it
• Sufficiently	powerful	to	satisfy	requirements
• Easy	to	evolve
• Appropriate	to	audience

915-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design

1015-214

Gather	requirements–skeptically

• Often	you'll	get	proposed	solutions	instead
– Better	solutions	may	exist

• Your	job	is	to	extract	true	requirements	
– Should	take	the	form	of	use-cases

• Can	be	easier	&	more	rewarding	to	build	more	general	API

What	they	say:	“We	need	new	data	structures	and	RPCs	
with	the	Version	2	attributes”

What	they	mean:	“We	need	a	new	data	format	that	
accommodates	evolution	of	attributes”

1115-214

Start	with	short	spec	– 1	page	is	ideal

• At	this	stage,	agility	trumps	completeness
• Bounce	spec	off	as	many	people	as	possible
– Listen	to	their	input	and	take	it	seriously

• If	you	keep	the	spec	short,	it’s	easy	to	modify
• Flesh	it	out	as	you	gain	confidence

1215-214

Sample	early	API	draft
// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

// Ensures that collection contains o
boolean add(E o);

// Removes an instance of o from collection, if present
boolean remove(Object o);

// Returns true iff collection contains o
boolean contains(Object o) ;

// Returns number of elements in collection
int size() ;

// Returns true if collection is empty
boolean isEmpty();

... // Remainder omitted
}

1315-214

Write	to	your	API	early	and	often

• Start	before you've	implemented	the	API
– Saves	you	doing	implementation	you'll	throw	away

• Start	before you've	even	specified	it	properly
– Saves	you	from	writing	specs	you'll	throw	away

• Continue	writing	to	API	as	you	flesh	it	out
– Prevents	nasty	surprises	right	before	you	ship

• Code	lives	on	as	examples,	unit	tests
– Among	the	most	important	code	you’ll	ever	write
– Forms	the	basis	of	Design	Fragments
[Fairbanks,	Garlan,	&	Scherlis,	OOPSLA	‘06,	P.	75]

1415-214

Write	3	implementations	of	each	
abstract	class	or	interface	before	release
• If	you	write	1,	it	probably	won’t	support	another
• If	you	write	2,	it	will	support	more	with	difficulty
• If	you	write	3,	it	will	work	fine
• Will	Tracz	calls	this	“The	Rule	of	Threes
• Confessions	of	a	Used	Program	Salesman,	Addison-Wesley,	1995)

1515-214

Maintain	realistic	expectations

• Most	API	designs	are	over-constrained
– You	won't	be	able	to	please	everyone
– Aim	to	displease	everyone	equally

• Expect	to	make	mistakes
– A	few	years	of	real-world	use	will	flush	them	out
– Expect	to	evolve	API

1615-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design

1715-214

API	should	do	one	thing	and	do	it	well

• Functionality	should	be	easy	to	explain
– If	it's	hard	to	name,	that's	generally	a	bad	sign
– Good	names	drive	development
– Be	amenable	to	splitting	and	merging	modules

• Good:	Font,	Set,	PrivateKey,	Lock,
ThreadFactory,	TimeUnit,	Future<T>

• Bad:	DynAnyFactoryOperations,
_BindingIteratorImplBase,
ENCODING_CDR_ENCAPS,	OMGVMCID

1815-214

API	should	be	as	small	as	possible	
but	no	smaller
• API	should	satisfy	its	requirements
• When	in	doubt	leave	it	out
– Functionality,	classes,	methods,	parameters,	etc.
– You	can	always	add,	but	you	can	never	remove

• Conceptual	weightmore	important	than	bulk
• Look	for	a	good	power-to-weight	ratio

1915-214

Implementation	should	not	impact	API

• Implementation	details	in	APIs	 are	harmful
– Confuse	users
– Inhibit	freedom	to	change	implementation

• Be	aware	of	what	is	an	implementation	detail
– Do	not	overspecify the	behavior	of	methods
• For	example:	do	not	specify	hash	functions

– All	tuning	parameters are	suspect
• Don't	let	implementation	details	“leak”	into	API
– Serialized	forms,	exceptions	thrown

2015-214

Minimize	accessibility	of	everything

• Make	classes,	members	as	private	as	possible
• Public	classes	should	have	no	public	fields
(with	the	exception	of	constants)

• Maximizes	information	hiding [Parnas]
• Minimizes	coupling
– Allows	modules	to	be,	understood,	used,	built,	
tested,	debugged,	and	optimized	independently

2115-214

Names	matter	– API	is	a	little	language

• Names	Should	Be	Largely	Self-Explanatory
– Avoid	cryptic	abbreviations

• Be	consistent
– Same	word	means	same	thing	throughout	API
– (and	ideally,	across	APIs	on	the	platform)

• Be	regular	– strive	for	symmetry
• If	you	get	it	right,	code	reads	like	prose

for (List<Integer> proposedSolution : Permutations.of(digits))
if (isSolution(proposedSolution))

solutions.add(proposedSolution);

2215-214

Grammar	is	a	part	of	naming

• Nouns	for	classes
– BigInteger,	PriorityQueue

• Nouns	or	adjectives	for	interfaces
– Collection,	Comparable

• Nouns,	linking	verbs	or	prepositions	for
non-mutative	methods
– size,	isEmpty,	plus

• Action	verbs	for	mutative	methods
– put,	add,	clear

2315-214

Documentation	matters

Reuse	is	something	that	is	far	easier	to	say	than	to	
do.		Doing	it	requires	both	good	design	and	very	
good	documentation.		Even	when	we	see	good	
design,	which	is	still	infrequently,	we	won't	see	the	
components	reused	without	good	documentation.

– D.	L.	Parnas,	Software	Aging.	Proceedings
of	the	16th	International	Conference	on
Software	Engineering,	1994

2415-214

Document	religiously

• Document	every class,	interface,	method,	
constructor,	parameter,	and	exception
– Class:	what	an	instance	represents
–Method:	contract	between	method	and	its	client
• Preconditions,	postconditions,	side-effects

– Parameter:	indicate	units,	form,	ownership
• Document	thread	safety
• If	class	is	mutable,	document	state	space

2515-214

Consider	performance	consequences

• Bad	decisions	can	limit	performance
–Making	type	mutable
– Providing	constructor	instead	of	static	factory	
– Using	implementation	type	instead	of	interface

• Do	not	warp	API	to	gain	performance
– Underlying	performance	issue	will	get	fixed,	
but	headaches	will	be	with	you	forever

– Good	design	usually	coincides	with	good	performance

2615-214

Performance	effects	of	a	bad	API	
decisions	can	be	real	and	permanent
• Component.getSize() returns	Dimension
• Dimension is	mutable
• Each	getSize call	must	allocate	Dimension
• Causes	millions	of	needless	object	allocations
• Alternative	added	in	1.2;	old	client	code	still	slow
– getX(),	getY()

2715-214

API	must	coexist	peacefully	with	platform

• Do	what	is	customary
– Obey	standard	naming	conventions
– Avoid	obsolete	parameter	and	return	types
– Mimic	patterns	in	core	APIs	and	language

• Take	advantage	of	API-friendly	features
– Generics,	varargs,	enums,	functional	interfaces

• Know	and	avoid	API	traps	and	pitfalls	
– Finalizers,	public	static	final	arrays,	etc.

• Don’t	transliterate	APIs

2815-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design

2915-214

Minimize	mutability

• Classes	should	be	immutable	unless	there’s	a	
good	reason	to	do	otherwise
– Advantages:	simple,	thread-safe,	reusable
– Disadvantage:	separate	object	for	each	value

• If	mutable,	keep	state-space	small,	well-defined
– Make	clear	when	it's	legal	to	call	which	method

Bad:				Date,	Calendar
Good:		TimerTask

3015-214

Subclass	only	where	it	makes	sense

• Subclassing implies	substitutability	(Liskov)
– Don’t	subclass	unless	an	is-a	relationship	exists
– Otherwise,	use	composition

• Don’t	subclass	just	to	reuse	implementation

Bad:	Properties extends	Hashtable
Stack extends	Vector

Good:	Set extends	Collection

3115-214

Design	&	document	for	inheritance
or	else	prohibit	it
• Inheritance	violates	encapsulation	(Snyder,	‘86)
– Subclasses	are	sensitive	to	implementation	details	of	
superclass

• If	you	allow	subclassing,	document	self-use
– How	do	methods	use	one	another?

• Conservative	policy:	all	concrete	classes	final

Bad:	Many	concrete	classes	in	J2SE	libraries
Good:	AbstractSet,	AbstractMap

3215-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design

3315-214

Don't	make	the	client	do	anything	
the	module	could	do
• Reduce	need	for	boilerplate	code
– Generally	done	via	cut-and-paste
– Ugly,	annoying,	and	error-prone

import org.w3c.dom.*;
import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out)throws IOException{

try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing

} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

3415-214

Don’t	violate	the	principle	of	least	astonishment

• User	of	API	should	not	be	surprised	by	behavior
– It's	worth	extra	implementation	effort
– It's	even	worth	reduced	performance

public class Thread implements Runnable {
// Tests whether current thread has been interrupted.
// Clears the interrupted status of current thread.
public static boolean interrupted();

}

3515-214

Here’s	what	happens	if	you	violate	both	
of	the	last	two	rules	at	the	same	time
// Spec says: "Skips over n bytes of data from this input."
// But this is a a lie. Ignore return value at your peril!
public long skip(long n) throws IOException;

The	only correct	way	to	use	InputStream.skip:
static void skipFully(InputStream in, long nBytes)

throws IOException {
long remaining = nBytes;
while (remaining != 0) {

long skipped = in.skip(remaining);
if (skipped == 0) // EOF

throw new EOFException();
remaining -= skipped;

}
}

3615-214

APIs	should	fail	fast:
report	errors	as	soon	as	possible
• Compile	time	is	best	– static	typing,	generics

public int max(int... args);
public int max(int first, int... rest);

• At	runtime,	first	bad	method	invocation	is	best
–Method	should	be	failure-atomic

/** A Properties instance maps strings to strings */
public class Properties extends Hashtable {

public Object put(Object key, Object value);

// Throws ClassCastException if this properties
// contains any keys or values that are not strings
public void save(OutputStream out, String comments);

}

3715-214

Provide	programmatic	access	to	all	
data	available	in	string	form
• Otherwise,	clients	will	parse	strings
– Painful	for	clients	
–Worse,	turns	string	format	into	de	facto	API

public class Throwable {
public void printStackTrace(PrintStream s);
public StackTraceElement[] getStackTrace(); // Since 1.4

}
public final class StackTraceElement {
public String getFileName();
public int getLineNumber();
public String getClassName();
public String getMethodName();
public boolean isNativeMethod();

}

3815-214

Overload	with	care

• Avoid	ambiguous overloadings
–Multiple	overloadings applicable	to	same	actuals

• Just	because	you	can	doesn't	mean	you	should
– Often	better	to	use	a	different	name

• If	you	must	provide	ambiguous	overloadings,	
ensure	same	behavior	for	same	arguments

public TreeSet(Collection<E> c); // Uses natural ordering
public TreeSet(SortedSet<E> s); // Uses ordering from s

3915-214

Use	appropriate	parameter	&	return	types

• Favor	interface	types	over	classes	for	input
– Provides	flexibility,	performance

• Use	most	specific	possible	input	parameter	type
– Moves	error	from	runtime	to	compile	time

• Don't	use	String if	a	better	type	exists
– Strings	are	cumbersome,	error-prone,	and	slow	

• Don't	use	floating	point	for	monetary	values
– Binary	floating	point	causes	inexact	results!

• Use	double (64	bits)	rather	than	float (32	bits)
– Precision	loss	is	real,	performance	loss	negligible

4015-214

Use	consistent	parameter	ordering	across	methods

• Especially	important	if	parameter	types	identical
#include <string.h>
char *strncpy(char *dst, char *src, size_t n);
void bcopy (void *src, void *dst, size_t n);

java.util.Collections – first	parameter	always	
collection	to	be	modified	or	queried

java.util.concurrent – time	always	specified	as		
long	delay,	TimeUnit unit

4115-214

Avoid	long	parameter	lists

• Three	or	fewer	parameters	is	ideal
– More	and	users	will	have	to	refer	to	docs

• Long	lists	of	identically	typed	params harmful
– Programmers	transpose	parameters	by	mistake
– Programs	still	compile	and	run,	but	misbehave!

• Techniques	for	shortening	parameter	lists
– Break	up	method
– Create	helper	class	to	hold	parameters
– Builder	Pattern

// Eleven (!) parameters including > four consecutive ints
HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName, DWORD dwStyle,

int x, int y, int nWidth, int nHeight, HWND hWndParent, HMENU hMenu,
HINSTANCE hInstance, LPVOID lpParam);

4215-214

Avoid	return	values	that	demand	
exceptional	processing
• Return	zero-length	array	or	empty	collection,	not	null

package java.awt.image;
public interface BufferedImageOp {
// Returns the rendering hints for this operation,
// or null if no hints have been set.
public RenderingHints getRenderingHints();

}

4315-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design

4415-214

Throw	exceptions	to	indicate	
exceptional	conditions
• Don’t	force	client	to	use	exceptions	for	control	flow

private byte[] a = new byte[CHUNK_SIZE];

void processBuffer (ByteBuffer buf) {
try {
while (true) {
buf.get(a);
processBytes(a, CHUNK_SIZE);

}
} catch (BufferUnderflowException e) {
int remaining = buf.remaining();
buf.get(a, 0, remaining);
processBytes(a, remaining);

}
}

• Conversely,	don’t	fail	silently
ThreadGroup.enumerate(Thread[] list)

4515-214

Favor	unchecked	exceptions

• Checked	– client	must	take	recovery	action
• Unchecked	– generally	a	programming	error
• Overuse	of	checked	exceptions	causes	boilerplate

try {
Foo f = (Foo) super.clone();
....

} catch (CloneNotSupportedException e) {
// This can't happen, since we’re Cloneable
throw new AssertionError();

}

4615-214

Include	failure-capture	information	in	exceptions

• Allows	diagnosis	and	repair	or	recovery
• For	unchecked	exceptions,	message	suffices
• For	checked	exceptions,	provide	accessors	

4715-214

API	Design	Summary

• A	good	API	is	a	blessing;	a	bad	one	a	curse
• API	Design	is	hard,	but	you	can’t	escape	it
– Accept	the	fact	that	we	all	make	mistakes
– Use	your	APIs	as	you	design	them
– Get	feedback	from	others

• This	talk	covered	some	heuristics	of	the	craft
– Don't	adhere	to	them	slavishly,	but...
– Don't	violate	them	without	good	reason

4815-214

Outline

• The	Process	of	API	Design
• General	Principles
• Class	Design
• Method	Design
• Exception	Design
• Two	API	refactorings (but	we’re	out	of	time)
–We	didn’t	go	over	this	section	in	class

4915-214

1.	Sublist operations	in	Vector
public class Vector {

public int indexOf(Object elem, int index);
public int lastIndexOf(Object elem, int index);
...

}

• Not	very	powerful	- supports	only	search
• Hard	to	use	without	documentation

5015-214

Sublist	operations	refactored
public interface List {

List subList(int fromIndex, int toIndex);
...

}

• Extremely	powerful	- supports	all operations
• Use	of	interface	reduces	conceptual	weight
– High	power-to-weight	ratio

• Easy	to	use	without	documentation

5115-214

2.	Thread-local	variables

// Broken - inappropriate use of String as capability.
// Keys constitute a shared global namespace.
public class ThreadLocal {

private ThreadLocal() { } // Non-instantiable

// Sets current thread’s value for named variable.
public static void set(String key, Object value);

// Returns current thread’s value for named variable.
public static Object get(String key);

}

5215-214

Thread-local	variables	refactored	(1)
public class ThreadLocal {

private ThreadLocal() { } // Noninstantiable

public static class Key { Key() { } }

// Generates a unique, unforgeable key
public static Key getKey() { return new Key(); }

public static void set(Key key, Object value);
public static Object get(Key key);

}

• Works,	but	requires	boilerplate	code	to	use
static ThreadLocal.Key serialNumberKey = ThreadLocal.getKey();
ThreadLocal.set(serialNumberKey, nextSerialNumber());
System.out.println(ThreadLocal.get(serialNumberKey));

5315-214

Thread-local	variables	refactored	(2)
public class ThreadLocal<T> {

public ThreadLocal() { }
public void set(T value);
public T get();

}

• Removes	clutter	from	API	and	client	code
static ThreadLocal<Integer> serialNumber =

new ThreadLocal<Integer>();
serialNumber.set(nextSerialNumber());
System.out.println(serialNumber.get());

