
115-214

School	of	
Computer	Science

23	GoF Design	Patterns	– an	interactive	tour

Charlie	Garrod Michael	Hilton



215-214

Administrivia

• (NEW)	Homework	6	out	soon.
• SE	for	Startups	
• No	recitation	tomorrow
• Happy	Thanksgiving



315-214

Last	Time:

• Monster	interface	creates	challenges	for	users
• Java	is	not	a	functional	language	

– “Bolted	on”	features	are	difficult	to	integrate	well



415-214

• Published	1994
• 23	Patterns
• Widely	known



515-214



615-214

Object	Oriented	Design	Principles:

• Program	to	an	interface,	not	an	
implementation
• Favor	object	composition	over	
class	inheritance



715-214

Pattern	Name

• Intent – the	aim	of	this	pattern
• Use	case	– a	motivating	example
• Key	types – the	types	that	define	pattern

– Italic	type	name	indicates	abstract	class;	typically	this	is	an	interface	when	
the	pattern	is	used	in	Java

• JDK – example(s)	of	this	pattern	in	the	JDK



815-214

Plan	for	today

1. Problem
2. Discussion
3. Example	Solution
4. Pattern



915-214

Problem:

• Want	to	support	multiple	platforms	with	our	
code.		(e.g.,	Mac	and	Windows)

• We	want	our	code	to	be	platform	independent
• Suppose	we	want	to	create	Window with	
setTile(String text) and	repaint()
–How	can	we	write	code	that	will	create	the	
correct		Window for	the	correct	platform,	
without	using	conditionals?



1015-214

Abstract	Factory	Pattern



1115-214

Abstract	Factory

• Intent	– allow	creation	of	families	of	related	
objects	independent	of	implementation

• Use	case	– look-and-feel	in	a	GUI	toolkit
– Each	L&F	has	its	own	windows,	scrollbars,	etc.

• Key	types	– Factory with	methods	to	create	each	
family	member,	Products

• JDK	– not	common



1215-214

Problem:

• How	can	a	class	(the	same	construction	process)	
create	different	representations	of	a	complex	
object?

• How	can	a	class	that	includes	creating	a	complex	
object	be	simplified?



1315-214

Builder	Pattern



1415-214

Builder

• Intent	– separate	construction	of	complex	object	
from	representation	so same	creation	process	
can	create	different	representations

• use	case	– converting	rich	text	to	various	formats
• types	– Builder,	ConcreteBuilders,	Director,	Products



1515-214

Factory	Method

• Intent	– abstract	creational	method	that	lets	
subclasses	decide	which	class	to	instantiate

• Use	case	– creating	documents	in	a	framework
• Key	types	– Creator,	which	contains	abstract	
method	to	create	an	instance

• JDK	– Iterable.iterator()



1615-214

Prototype

• Intent	– create	an	object	by	cloning	another
and	tweaking	as	necessary

• Use	case	– writing	a	music	score	editor	in	a	
graphical	editor	framework

• Key	types	– Prototype
• JDK	– Cloneable,	but	avoid	(except	on	arrays)
– Java	and	Prototype	pattern	are	a	poor	fit



1715-214

Problem:

• Ensure	there	is	only	a	single	instance	of	a	class	
(e.g.,	java.lang.Runtime)

• Provide	global	access	to	that	class



1815-214

Singleton

• Intent	– ensuring	a	class	has	only	one	instance
• Use	case	– GoF say	print	queue,	file	system,	
company	in	an	accounting	system
– Compelling	uses	are	rare	but	they	do	exist

• Key	types	– Singleton
• JDK	– java.lang.Runtime.getRuntime(), 

java.util.Collections.emptyList()
• Used	for	instance	control



1915-214

Singleton	Illustration

public class Elvis {
public static final Elvis ELVIS = new Elvis();
private Elvis() { }
...

}

// Alternative implementation
public enum Elvis {

ELVIS;

sing(Song song) { ... }

playGuitar(Riff riff) { ... }

eat(Food food) { ... }

take(Drug drug) { ... }
}



2015-214

Creational	Patterns

1. Abstract	factory
2. Builder
3. Factory	method
4. Prototype
5. Singleton



2115-214

Adapter

• Intent	– convert	interface	of	a	class	into	one	that	
another	class	requires,	allowing	interoperability

• Use	case	– numerous,	e.g.,	arrays	vs.	collections
• Key	types	– Target,	Adaptee,	Adapter
• JDK	– Arrays.asList(T[])



2215-214

Problem:

image source: https://sourcemaking.com



2315-214

Problem:

image source: https://sourcemaking.com



2415-214

Bridge	Pattern

image source: https://sourcemaking.com



2515-214

Bridge

• Intent	– decouple	an	abstraction	from	its	
implementation	so	they	can	vary	independently

• Use	case	– portable	windowing	toolkit
• Key	types	– Abstraction,	Implementor	
• JDK	– JDBC,	Java	Cryptography	Extension	(JCE),	
Java	Naming	&	Directory	Interface	(JNDI)

• Bridge	pattern	very similar	to	Service	Provider
–Abstraction	~	API,	Implementer ~	SPI



2615-214

Problem:

Graphic ::= ellipse | GraphicList
GraphicList ::= empty | Graphic GraphicList

We	want	to	print	all	Graphics	(ellipse,	or	list).



2715-214

Composite	Pattern



2815-214

Composite

• Intent	– compose	objects	into	tree	structures.	Let	
clients	treat	primitives	&	compositions	uniformly.

• Use	case	– GUI	toolkit	(widgets	and	containers)
• Key	type	– Component	that	represents	both	
primitives	and	their	containers

• JDK	– javax.swing.JComponent



2915-214

Decorator

• Intent	– attach	features	to	an	object	dynamically
• Use	case	– attaching	borders	in	a	GUI	toolkit
• Key	types	– Component,	implement	by	decorator	
and decorated

• JDK	– Collections	(e.g.,	Synchronized
wrappers),	java.io streams,	Swing	components,	
unmodifiableCollection



3015-214

Façade

• Intent	– provide	a	simple	unified	interface	to	a	
set	of	interfaces	in	a	subsystem
–GoF allow	for	variants	where	the	complex	
underpinnings	are	exposed	and	hidden

• Use	case	– any	complex	system;	GoF use	compiler
• Key	types	– Façade	(the	simple	unified	interface)
• JDK	– java.util.concurrent.Executors



3115-214

Problem:

Source: http://gameprogrammingpatterns.com/flyweight.html



3215-214

Problem:

Source: http://gameprogrammingpatterns.com/flyweight.html



3315-214

Flyweight

• Intent	– use	sharing	to	support	large	numbers
of	fine-grained	objects	efficiently

• Use	case	– characters	in	a	document
• Key	types	– Flyweight	(instance-controlled!)
– Some	state	can	be	extrinsic to	reduce	number	of	instances

• JDK	– String	literals	(JVM	feature)



3415-214

Proxy

• Intent	– surrogate	for	another	object
• Use	case	– delay	loading	of	images	till	needed
• Key	types	– Subject,	Proxy,	RealSubject
• Gof mention	several	flavors
– virtual	proxy	– stand-in	that	instantiates	lazily
– remote	proxy	– local	representative	for	remote	obj
– protection	proxy	– denies	some	ops	to	some	users
– smart	reference	– does	locking	or	ref.	counting,	e.g.

• JDK	– collections	wrappers



3515-214

Structural	Patterns

1. Adapter
2. Bridge
3. Composite
4. Decorator
5. Façade
6. Flyweight
7. Proxy


