23 GoF Design Patterns — an interactive tour

Charlie Garrod Michael Hilton

School of
Computer Science

| J
institute for
I S SOFTWARE
RESEARCH

-
»vv.!\lut('[N4
15-214 1 SOt

Administrivia

(NEW) Homework 6 out soon.
SE for Startups
No recitation tomorrow

Happy Thanksgiving

15-214

17—-356/17-766
SOF TWARE ENGINEERING
FOR STRAARTUPS

HOU WILL LEARN HOW TC:

Startup-engineering is critical to innovation. The skills required
to effectively prototype, launch, and scale products are vital to
engineers everywhere, from fledgling companies founded in
dorm rooms to local mid-size companies to internal startups
from multi-national tech giants. However, developing software
in‘a startup environment poses unique engineering challenges.
These challenges include making and justifying foundational
architectural and technical decisions despite extreme uncertain-
ty; rapidly prototyping and evaluating new ideas and features,
while building minimum viable products; prioritizing engineering
effort in severely constrained environments; and communicating
effectively both within a small engineering team and with inter-
nal and.external non-technical stakeholders.

This course teaches the skills necessary to engineer successfully
in a startup environment, . through lectures, group projects, case
study discussions, and guest speakers drawn from experienced,
practicing startup engineers. This is an engineering-focused
course; no entrepreneurship background is required or expected.
Students do not need to have a startup idea to participate fully.

Prerequisites: 15-214 OR 15-213

TUES/THURS
1030 - NSOAM

+

the right tradecffs when you
essure to defiver

da real MVP
(Minimum Viable Product)

Pivot: It's what startups do.

Deploy code continuously in high-stake,
Fast paced environment

Scale, scale, scale, then scale some more

Fight Fires For Fun and profi
(Crisis management and aveidance)

Sell out: Do you want to? Should you?

INSTRUCTORS:

lElaire Le Goues Micﬂael Hilfﬁn

- st r Carnegie Mellon University
IS RESEARCH Schoaol of Computer Science

N | S

institute for
SOFTWARE
RESEARCH

Last Time:

 Monster interface creates challenges for users
* Javais not a functional language

— “Bolted on” features are difficult to integrate well

=z et e
15-214 3 SOt

4
<&

>
o
—
—
o
N
-~
Z
=
<
[
m
<
0
~
ﬁl
=
m
v
7]
A
@)
Z
Z
r
m
~
&
rd
o
o
—
Z
)
w
M
z
m
v

e Published 1994
23 Patterns
* Widely known

W e cuuen)

SOPISSIA e LOSUYOf

= f

ite

Institute for
15-214 4 ol

15-214

Memento

| Proxy |

saving state

of iteration
Builder

creating
composites

l Adapter I
avoidit
hysrerggis Bridge

enumerating
children

adding
responsibilities

changing skin
versus guts

adding
sharing Interpreter operations | Chain of Responsibimy]
strategies
sharing
Strategy 'erm[;?,é,‘sl
sharii symi
stalesng Mediator
lependency
tasanen
defining
algorithm'’s

Steps
¥—| Template Method |_’___——— often uses\'

e

!

) Factory Method—l
configure factory
dynamlc\ally implement using
/{ Abstract Factory
single
single

instance

'

Singleton

Figure 1.1: Design pattern relationships

composed
using Command
to objects
Decorator ‘s:‘f";r;)rzgs ”es dsm!ng
: e defining
adding traversals :
operations the chain
defining
grammar

5

institute for
SOFTWARE
RESEARCH

Object Oriented Design Principles:

* Program to an interface, not an
implementation

* Favor object composition over
class inheritance

-
Institute f r
15-214 6 [

Pattern Name

* Intent —the aim of this pattern
* Use case — a motivating example

* Key types — the types that define pattern

— Italic type name indicates abstract class; typically this is an interface when
the patternis used in Java

* JDK - example(s) of this pattern in the JDK

-
Institute [r
15-214 7 [F o

Plan for today

1. Problem

2. Discussion

3. Example Solution
4. Pattern

Problem:

 Want to support multiple platforms with our
code. (e.g., Mac and Windows)

 We want our code to be platform independent

* Suppose we want to create W1 ndow with
setTi1le(String text) and repaint()

—How can we write code that will create the
correct Window for the correct platform,
without using conditionals?

-
Institute f r
15-214 o [H i

Abstract Factory Pattern

«Client»
GUIBuilder

Main

+ buildWindowlAbstractiidgetF actony) : void

+ main(String) : void

«AbstractProducts
Window

+
+

setTitle(String) : void

repaint) : void

«ConcreteProduct»
MSWindow

+
+

setTitle(String) : void
repaint) : void

«ConcreteProducts
MacOSXWindow

+
+

setTitle(String) : void
repaint) : void

aAbstractF actonyx
Abstractwidget Factory
+ createWindow) : Window
«ConcreteFactonys «ConcreteF actorys
MsWindowsWidgetFactory Mac0S XWidgetFactory
+ createWiindow() : Window + createWindow) : Window
15-214

institute for
10 i S SOFTWARE
RESEARCH

Abstract Factory

* Intent — allow creation of families of related
objects independent of implementation

 Use case — look-and-feel in a GUI toolkit
— Each L&F has its own windows, scrollbars, etc.

* Key types — Factory with methods to create each
family member, Products

e JDK—not common

= H”'milrf [
15-214 11 [FH s

Problem:

 How can a class (the same construction process)
create different representations of a complex
object?

* How can a class that includes creating a complex
object be simplified?

= H”'milrf [
15-214 12 [FH s

Builder Pattern

Director

+Construct(builder: Builder): void

Product

15-214

constructs

Builder

+BuidPart1{): void
+BuidPartx(): void
+GetProduct(): Product

1

ConcreteBuilder

+BuildPart1(): void
+BuildPartX(): void
+GetProduct(): Product

13

institute for
SOFTWARE
RESEARCH

Builder

* |[ntent — separate construction of complex object
from representation so same creation process
can create different representations

* use case — converting rich text to various formats
* types — Builder, ConcreteBuilders, Director, Products

= H”'milrf [
15-214 14 [HH o

Factory Method

 Intent — abstract creational method that lets
subclasses decide which class to instantiate

e Use case — creating documents in a framework

e Key types — Creator, which contains abstract
method to create an instance

 IDK—Iterable.iterator()

= H”'milrf [
15-214 15 [FHH s

Prototype

* Intent — create an object by cloning another
and tweaking as necessary

* Use case — writing a music score editor in a
graphical editor framework

* Key types — Prototype
e JDK - Cloneable, but avoid (except on arrays)
—Java and Prototype pattern are a poor fit

= H:‘wm[rr [
15-214 16 [FH o

Problem:
* Ensure there is only a single instance of a class

(e.g., java.lang.Runtime)
* Provide global access to that class

' institute for
15-214 17 [Hl e

Singleton

* [ntent — ensuring a class has only one instance

e Use case — GoF say print queue, file system,
company in an accounting system

— Compelling uses are rare but they do exist
e Key types — Singleton

 JDK—java.lang.Runtime.getRuntime(),
java.util.Collections.emptylList()

 Used for instance control

' institute for
15-214 18 [Hlame

Singleton Illustration

public class Elvis {
public static final Elvis ELVIS = new Elvis();

private Elvis() { }

// Alternative implementation
public enum Elvis {
ELVIS;

sing(Song song) { ... }
playGuitar(Riff riff) { ... }
eat(Food food) { ... }

take(Drug drug) { ... }

. institute for
15-214 19 A

Creational Patterns

Abstract factory
Builder

. Factory method
Prototype

O N

. Singleton

15-214

Adapter

* Intent — convert interface of a class into one that
another class requires, allowing interoperability

15-214

Jse case — numerous, e.g., arrays vs. collections
Key types — Target, Adaptee, Adapter

JIDK—=Arrays.asList(T[])

Problem:

15-214

ThreadScheduler

A

PreemptiveThreadScheduler

TimeSlicedThreadScheduler

P

UnixPTS

Z% |

WindowsPTS UnixTSTS

WindowsTSTS

image source: https://sourcemaking.com

22

institute for
SOFTWARE
RESEARCH

Problem:

ThreadShceduler
N
I I
PreemptiveThreadScheduler TimeSlicedThreadScheduler
AN AN
I |
UnixPTS WindowsPTS UnixTSTS WindowsTSTS
JVM_PTS JVM_TSTS

15-214

image source: https://sourcemaking.com

e
23 ot !J RESEARCH

Bridge Pattern

ThreadScheduler

AN

PreemptiveThreadScheduler

v

ThreadScheduler_Implementation

JAN

TimeSlicedThreadScheduler

UnixPTS

WindowsPTS

JVM_PTS

image source: https://sourcemaking.com

15-214

7= institute for
LS SOFTWARE
24

Bridge

* Intent — decouple an abstraction from its
implementation so they can vary independently

e Use case — portable windowing toolkit
e Key types — Abstraction, Implementor

e JDK —JDBC, Java Cryptography Extension (JCE),
Java Naming & Directory Interface (JNDI)

* Bridge pattern very similar to Service Provider
— Abstraction ~ API, Implementer ~ SPI

= H”'m[wf r
15-214 2s [H o

Problem:

Graphic ::= ellipse | Graphiclist
empty | Graphic GraphicList

Graphiclist

We want to print all Graphics (ellipse, or list).

' institute for
15-214 26 [i

Composite Pattern

15-214

Component

0..x

child

+ operation()

JA\

Leaf

+ operation()

Composite

operation()
add()
remove()
getChild()

+ + + +

parent

27

institute for
SOFTWARE
RESEARCH

Composite

* Intent — compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

e Use case — GUI toolkit (widgets and containers)

e Key type — Component that represents both
orimitives and their containers

* JDK—-javax.swing.JComponent

= H”'m[wf r
15-214 28 [F o

Decorator

* |Intent — attach features to an object dynamically
e Use case — attaching borders in a GUI toolkit

* Key types — Component, implement by decorator
and decorated

* JDK - Collections (e.g., Synchronized
wrappers), java. 10 streams, Swing components,
unmodifiableCollection

= H”'milrf [
15-214 20 [H o

Facade

* Intent — provide a simple unified interface to a
set of interfaces in a subsystem

— GoF allow for variants where the complex
underpinnings are exposed and hidden

* Use case — any complex system; GoF use compiler

* Key types — Facade (the simple unified interface)
 JDK—-java.util.concurrent.Executors

= H”'m[wf r
15-214 s0 [H o

Problem:

A

A

MESH

BARK

BARK

=

PARANS

POSITION

(EAVES

PARAMS
POSITION

MESH

BARK

LERAVES

PRR.AMS

MESH

BARK

POSITION

LéAUéSl

PARAMS
POSITION

Source: http://gameprogrammingpatterns.com/flyweight.html

15-214

Problem:

&

2

\ - —
. PARAMS
PARAMS PAZAMS PARAMS
P&SITION PaSITION POSITION PASITIEN

MoDEL

MESH

BAREK.

LEAVES

Source: http://gameprogrammingpatterns.com/flyweight.html

15-214

te |

Institute ror
32 I S r SOF TWARE
RESEARCH

Flyweight

* Intent — use sharing to support large numbers
of fine-grained objects efficiently

e Use case — characters in a document
e Key types — Flyweight (instance-controlled!)

— Some state can be extrinsic to reduce number of instances

* JDK — String literals (JVM feature)

' institute for
15-214 33 [F e

Proxy

* [ntent — surrogate for another object
e Use case — delay loading of images till needed
* Key types — Subject, Proxy, RealSubject

* Gof mention several flavors
— virtual proxy — stand-in that instantiates lazily
— remote proxy — local representative for remote obj
— protection proxy — denies some ops to some users
— smart reference — does locking or ref. counting, e.g.

e JDK — collections wrappers

15-214 sa [H

Structural Patterns

. Adapter

. Bridge

. Composite
Decorator
Facade

. Flyweight

Proxy

15-214

