
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Designing (Sub-)Systems

Object-oriented analysis: Modeling a problem
domain

Charlie Garrod Bogdan Vasilescu

217-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

317-214

Administrivia

• Homework 3 due tonight 11:59 p.m.
– Homework 4 out soon

• (Optional) reading for today:
– UML & Patterns Ch 17: Use case realizations, interaction diagrams (POS

example)

– EJ 49, 54, 69: Check parameters for validity, return empty not null, use
exceptions for exceptional conditions

• Required reading for next Tuesday:
– UML & Patterns Ch 14—16: More interaction diagrams, responsibility

assignment

• Midterm exam Thursday next week (Feb 15)
– Review session: Wednesday Feb 14 5-7pm Margaret Morrison A14
– Practice exam coming soon

417-214

Key concepts from Tuesday

517-214

The Composite Design Pattern

Context

+operation()

Leaf

+operation()
+add(in c : Component)
+remove(in c : Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation() {
 for (c in children)
 c.operation();
}

Re
vi

ew

617-214

The Decorator Design Pattern
• Problem: Need arbitrary / dynamically composable extensions

to individual objects.

• Solution:
– Implement common interface as the

object you are extending
– But delegate primary responsibility to

an underlying object.
• Consequences:

– More flexible than static
inheritance

– Customizable, cohesive extensions
– Breaks object identity, self-references

Re
vi

ew

717-214

Using the Decorator for our Stack example

Using the decorator classes
• To construct a plain stack:

Stack s = new Stack();

• To construct an plain undo stack:
UndoStack s = new

UndoStack(new Stack());

• To construct a secure synchronized
undo stack:
SecureStack s = new

SecureStack(new
SynchronizedStack(new
UndoStack(new Stack())));

Re
vi

ew

817-214

Today

• Design goals and design principles

1017-214

Metrics of software quality

• Sufficiency / functional correctness
§ Fails to implement the specifications … Satisfies all of the specifications

• Robustness
§ Will crash on any anomalous event … Recovers from all anomalous events

• Flexibility
§ Must be replaced entirely if spec changes … Easily adaptable to changes

• Reusability
§ Cannot be used in another application … Usable without modification

• Efficiency
§ Fails to satisfy speed or storage requirement … satisfies requirements

• Scalability
§ Cannot be used as the basis of a larger version … is an outstanding basis…

• Security
§ Security not accounted for at all … No manner of breaching security is known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

Design
challenges/goals

1117-214

Design principles

• Low coupling
• Low representational gap
• High cohesion

1217-214

A design principle for reuse: low coupling

• Each component should depend on as few other components as
possible

• Benefits of low coupling:
– Enhances understandability
– Reduces cost of change
– Eases reuse

1317-214

High Coupling is undesirable

• Element with low coupling depends on only few other
elements (classes, subsystems, …)
– “few" is context-dependent

• A class with high coupling relies on many other classes
– Changes in related classes force local changes; changes in

local class forces changes in related classes (brittle, rippling
effects)

– Harder to understand in isolation.
– Harder to reuse because requires additional presence of

other dependent classes
– Difficult to extend – changes in many places

1417-214

class Shipment {
private List<Box> boxes;
int getWeight() {

int w=0;
for (Box box: boxes)

for (Item item: box.getItems())
w += item.weight;

return w;
}
class Box {

private List<Item> items;
Iterable<Item> getItems() { return items;}

}
class Item {

Box containedIn;
int weight;

}

Which classes are coupled?
How can coupling be improved?

1517-214

class Box {
private List<Item> items;
private Map<Item,Integer> weights;
Iterable<Item> getItems() { return items;}
int getWeight(Item item) { return weights.get(item);}

}
class Item {

private Box containedIn;
int getWeight() { return containedIn.getWeight(this);}

}

A different design.
How can coupling be improved?

1617-214

Law of Demeter

• Each module should have only limited knowledge about other
units: only units "closely" related to the current unit

• In particular: Don’t talk to strangers!
• For instance, no a.getB().getC().foo()

for (Item i: shipment.getBox().getItems())
i.getWeight() …

1717-214

Coupling: Discussion

• Subclass/superclass coupling is particularly strong
– protected fields and methods are visible
– subclass is fragile to many superclass changes, e.g. change in method

signatures, added abstract methods
– Guideline: prefer composition to inheritance, to reduce coupling

• High coupling to very stable elements is usually not problematic
– A stable interface is unlikely to change, and likely well-understood
– Prefer coupling to interfaces over coupling to implementations

• Coupling is one principle among many
– Consider cohesion, low repr. gap, and other principles

1817-214

DESIGN PRINCIPLE: LOW
REPRESENTATIONAL GAP

1917-214

Representational gap

• Real-world concepts:

• Software concepts:

?
…

…

?
…

…
…

2017-214

Representational gap

• Real-world concepts:

• Software concepts:

Obj1
a
h
k()

Obj2
objs

…

Actor42
…

op12

2117-214

Representational gap

• Real-world concepts:

• Software concepts:

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

2217-214

Benefits of low representational gap

• Facilitates understanding of design and implementation
• Facilitates traceability from problem to solution
• Facilitates evolution

2317-214

A related design principle: high cohesion

• Each component should have a small set of closely-related
responsibilities

• Benefits:
– Facilitates understandability
– Facilitates reuse
– Eases maintenance

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

2417-214

High (left) vs low (right) cohesion

2517-214

class DatabaseApplication
public void authorizeOrder(Data data, User currentUser, ...){

// check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
// perform operation
// log end of operation
// release lock on objects

}
public void startShipping(OtherData data, User currentUser, ...){

// check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
// perform operation
// log end of operation
// release lock on objects

}
}

2717-214

Coupling vs. cohesion

• All code in one component?
– Low cohesion, low coupling

• Every statement / method in a separate component?
– High cohesion, high coupling

2817-214

Summary

• Design principles are useful heuristics
– Reduce coupling to increase understandability, reuse
– Lower representational gap to increase understandability, maintainability
– Increase cohesion to increase understandability

2917-214

REQUIREMENTS

3017-214

3117-214

Requirements say what the system will do (and not how
it will do it).

• The hardest single part of building a software system is deciding
precisely what to build.

• No other part of the conceptual work is as difficult as
establishing the detailed technical requirements ...

• No other part of the work so cripples the resulting system if done
wrong.

• No other part is as difficult to rectify later.
— Fred Brooks

3217-214

Requirements

• What does the customer want?
• What is required, desired, not necessary? Legal, policy

constraints?
• Customers often do not know what they really want; vague,

biased by what they see; change their mind; get new ideas…
• Difficult to define requirements precisely
• (Are we building the right thing? Not: Are we building the thing

right?)

Human and social issues

15-313 topic

3317-214

Lufthansa Flight 2904

• The Airbus A320-200 airplane
has a software-based braking
system that consists of:
– Ground spoilers (wing

plates extended to reduce
lift)

– Reverse thrusters
– Wheel brakes on the main

landing gear
• To engage the braking system,

the wheels of the plane must
be on the ground.

3417-214

Lufthansa Flight 2904

There are two �on ground� conditions:
1. Both shock absorber bear a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

• Ground spoilers activate for conditions 1 or 2
• Reverse thrust activates for condition 1 on both main landing

gears
• Wheel brake activation depends upon the rotation gain and

condition 2

3517-214

3617-214

Requirements

• What does the customer want?
• What is required, desired, not necessary? Legal, policy

constraints?
• Customers often do not know what they really want; vague,

biased by what they see; change their mind; get new ideas…
• Difficult to define requirements precisely
• (Are we building the right thing? Not: Are we building the thing

right?)

Human and social issues

15-313 topic

214 assumption:
Somebody has gathered the
requirements (mostly text).

Challenges:
How do we start implementing them?

How do we cope with changes?

3717-214

This lecture

• Understand functional requirements
• Understand the problem’s vocabulary (domain model)
• Understand the intended behavior (system sequence diagrams;

contracts)

3817-214

Problem
Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

• Real-world concepts
• Requirements, concepts
• Relationships among concepts
• Solving a problem
• Building a vocabulary

• System implementation
• Classes, objects
• References among objects and

inheritance hierarchies
• Computing a result
• Finding a solution

3917-214

Representational gap

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

• Real-world concepts:

• Software concepts:

Problem
Space

Domain Model

Solution
Space

Object Model

4017-214

A high-level software design process

• Project inception
• Gather requirements
• Define actors, and use cases
• Model / diagram the problem, define objects
• Define system behaviors
• Assign object responsibilities
• Define object interactions
• Model / diagram a potential solution
• Implement and test the solution
• Maintenance, evolution, …

15-313

15-214

…

4117-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

4217-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Understanding
the problem

Defining a
solution

4317-214

Input to the design process: Requirements and use cases

• Typically prose:

4417-214

Modeling a problem domain

• Identify key concepts of the domain description
– Identify nouns, verbs, and relationships between concepts
– Avoid non-specific vocabulary, e.g. "system"
– Distinguish operations and concepts
– Brainstorm with a domain expert

4517-214

Modeling a problem domain

• Identify key concepts of the domain description
– Identify nouns, verbs, and relationships between concepts
– Avoid non-specific vocabulary, e.g. "system"
– Distinguish operations and concepts
– Brainstorm with a domain expert

• Visualize as a UML class diagram, a domain model
– Show class and attribute concepts

• Real-world concepts only
• No operations/methods
• Distinguish class concepts from attribute concepts

– Show relationships and cardinalities

4617-214

Distinguishing domain vs. implementation concepts

• Domain-level concepts:
– Almost anything with a real-world analogue

• Implementation-level concepts:
– Implementation-like method names
– Programming types
– Visibility modifiers
– Helper methods or classes
– Artifacts of design patterns

4717-214

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

4817-214

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

Read description carefully, look for nouns and verbs

4917-214

One domain model for the library system

5017-214

Documenting a Domain Model

• Typical: UML class diagram
– Simple classes without methods and essential attributes only
– Associations, inheritances, … as needed
– Do not include implementation-specific details, e.g., types, method

signatures
– Include notes as needed

• Complement with examples, glossary, etc as needed
• Formality depends on size of project
• Expect revisions

5117-214

Notes on the library domain model

• All concepts are accessible to a non-programmer

• The UML is somewhat informal
– Relationships are often described with words

• Real-world "is-a" relationships are appropriate for a domain model

• Real-word abstractions are appropriate for a domain model

• Iteration is important
– This example is a first draft. Some terms (e.g. Item vs. LibraryItem, Account

vs. LibraryAccount) would likely be revised in a real design.

• Aggregate types are usually modeled as classes

• Primitive types (numbers, strings) are usually modeled as attributes

5217-214

Build a domain model for Monopoly

5317-214

Build a domain model for Monopoly

Monopoly is a game in which each player has a piece that moves around a game
board, with the piece’s change in location determined by rolling a pair of dice.
The game board consists of a set of properties (initially owned by a bank) that
may be purchased by the players.

When a piece lands on a property that is not owned, the player may use money
to buy the property from the bank for that property’s price. If a player lands on a
property she already owns, she may build houses and hotels on the property;
each house and hotel costs some price specific for the property. When a player’s
piece lands on a property owned by another player, the owner collects money
(rent) from the player whose piece landed on the property; the rent depends on
the number of houses and hotels built on the property.

The game is played until only one remaining player has money and property, with
all the other players being bankrupt.

5417-214

Hints for Object-Oriented Analysis
(see textbook for details)

• A domain model provides vocabulary
– for communication among developers, testers, clients, domain experts, …
– Agree on a single vocabulary, visualize it

• Focus on concepts, not software classes, not data
– ideas, things, objects
– Give it a name, define it and give examples (symbol, intension, extension)
– Add glossary
– Some might be implemented as classes, other might not

• There are many choices
• The model will never be perfectly correct

– that’s okay
– start with a partial model, model what's needed
– extend with additional information later
– communicate changes clearly
– otherwise danger of "analysis paralysis"

5517-214

Take-Home Messages

• To design a solution, problem needs to be understood
• Know your tools to build domain-level representations

– Domain models – understand domain and vocabulary
– System sequence diagrams + behavioral contracts – understand interactions

with environment
• Be fast and (sometimes) loose

– Elide obvious(?) details
– Iterate, iterate, iterate, …

• Domain classes often turn into Java classes
– Low representational gap principle to support design for understanding and

change
– Some domain classes don’t need to be modeled in code; other concepts only

live at the code level
• Get feedback from domain experts

– Use only domain-level concepts

