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Abstract—High-speed routers have become the new bottleneck

in the Internet with the growth of the bandwidth through fiber
technology.  Switching technology has not grown at the same
speed as transmission technology.  With the introduction of
Dense Wavelength Division Multiplexed networks, the demands
on the switch have increased.  Also, there is a need for high port
density on these routers with a consideration of cost and
performance.  With all attention being paid to high speed and
high port density, we have almost forgotten about the rich
variety of services that are to be supported on this network.  This
constraint requires Quality of Service (QoS) guarantees that
make the design much more difficult.  In this paper, we look at
the design, simulation and evaluation of a high speed router
switch ISIS and show that it is possible to make routers with
high port density while still meeting the diverse Quality of
Service (QoS) requirements that are demanded of routers today.

Index Terms—high-speed router, iSlip, Quality of Service,
simulator.

I. INTRODUCTION

IGH speed routers have been a bottleneck for high
speed networks.  While transmission strategies have

progressed from using copper wires to fibers that carry orders
of magnitude more bandwidth.  The technology has not
stopped at that and there are new mechanisms being
developed that allows for more bandwidth to be packed into a
single fiber.  With the advent of multi-mode fibers, the
bandwidth has almost kept up with the demands that today’s
Internet imposes on the network.  Starting from the standard
optical transmission strategies and moving towards Optical
Time-division multiplexing (OTDM) and then to Dense
wavelength-division multiplexing (DWDM), the transmission
speeds have reached terabits on a single fiber.  However, with
all of these advancements, there has been a serious concern as
to the switching capability within the network.  The switching
technology has fallen behind in the bandwidth race and we
are still trying to achieve gigabits per second speeds with
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routers.  However, it will not be fair to say that there have not
been any improvements in this area.  It is more appropriate to
say that the technologies being used have not changed
drastically to meet the challenges of high bandwidth.

Despite the various technologies that have been
incrementally developed and deployed, the Internet Protocol
(IP) has been the standard that has remained almost constant
in about two decades.  Its wide-spread deployment and high
usage in the form of the World Wide Web has made IP the
most prevalent form of network layer protocol deployed in
the World.  This does not restrict the services that can be
deployed over the IP network.  Most of these services are
quite different from the best effort services that are provided
by the generic IP protocol.  Thus, the IP networks of today
have to keep up with the demands imposed by new services
that require the network to provide certain Quality of Service
guarantees.

In this paper, we addressed the problem of making high-
speed routers without losing the advantages of providing QoS
support for new applications.  We designed our IP-router,
called ISIS with these constraints in mind and simulated and
evaluated its performance against other designs that do not
provide QoS guarantees.  We observed that it is possible, with
a little bit of extra effort, to produce routers that are as fast as
other designs while also providing significant QoS support to
applications and services.

We will start by listing down the goals that led us through
the entire design process.  We will then go on to explain the
various components in the system as well as some key issues
that we tackled in the design.

II. GOALS

There are many equally important characteristics that a
router should have if it has to be successful.  We decided the
important aspects that we wanted to concentrate on by
deciding on where the router will be placed.  As we are trying
to meet a challenge of high bandwidth, we naturally assumed
that the router would be placed as close to the core of the
network as possible. This gave us the following placement
strategies.

1. Aggregation point for large data centers
2. Backbone router at a major peering point
3. Backbone router for carrier facilities
4. Core router for IP transit providers
The characteristics that a router needs to have to be placed
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in such an environment are very demanding.  We have listed
down some of these properties that we would like our design
to have.

A. High bandwidth
The first challenge in this environment is the high

bandwidth that the router needs to support.  These include
speeds up to 10Gb/s that are not commonly available at the
moment, but the transmission technology for them has been
developed for quite some time.  The line speeds that we
aimed for were OC-48 that can have data rates of up to
2.48Gb/s.  We also wanted our design to be useful for OC-
192 speeds with slight modifications although that was not
one of our initial goals.

B. High Port Density
Another challenge that switching technology faces is the

port density that has to be provided on these routers.  With
the number of pipes that ISP’s need to provide to their
customers increasing, the routers have to have a huge number
of ports to accommodate this demand.  Switching is usually
not scalable with the number of ports and also suffers from
the physical constraints of Printed Circuit Boards (PCBs) that
are used to build this technology.  Port Density together with
standard router sizes that will fit in TELCO
(telecommunication companies) racks mean that the overall
capacity of the router should be high, in the range of hundreds
of OC-48 ports.  As a base design goal we went with 64 ports
on the router that gave the router a based capacity of 160Gb/s.
This is more than the current capacity that is available on
routers used by ISPs.  Cisco [4], for example, has the GSR-
12000 series routers that can have up to 80Gb/s in one router.
They do however, provide configurations with multiple boxes
that can have more than that aggregate capacity.  Juniper [5],
the other major player in the market, has a 40Gb/s router, the
M-40 and recently announced plans for a 160Gb/s router
named M-160 [6].  This shows that our design is at worst
comparable to the current industry leaders.

C. Performance
Performance is also a key issue during the design of any

such router.  The performance has direct implications for the
usability of the router in a real network.  It has to have
minimal delays incurred due to packet processing and
switching so as to let the flows through it as seamlessly as
possible.  The throughput of such a router has to remain high
with different traffic conditions and under various load
characteristics.  The packet drop rate on the router is also an
important measure of performance.  Recent technologies have
allowed routers to provide support during congestion in the
network and this was one of the goals of our design as well.

D. Cost
Cost of the router has to be controlled so that a solution can

be provided that does not cost an arm and a leg for the ISP or
carrier.  Cost can be controlled by using generic off-the-shelf

components that have reduced cost and by reducing the
complexity of the system so that the effort that goes into the
development process can be controlled.

E. Robustness
A router that is being placed so close to the core of the

network has to have tremendous robustness.  This means that
the router should be able to operate under all conditions.  This
includes external environment plus internal problems.  The
robustness features are built into the design of ISIS so that
redundancy is provided at all possible levels and the router
can work in critical component failure scenarios as well.

F. Major Routing Protocol Support
A router is only useful if it has excellent software running

on it.  Although this design project did not consider software
issues at all, we include the support for major protocols here
for completeness sake.  The router has to support unicast
routing protocols such as OSPF, RIP, IS-IS and BGP and
multicast routing protocols such as IGMP, DVMRP, PIM-
DM, PIM-SM, MBGP and MSDP.  This is in addition to
debugging utilities, management interfaces and configuration
support that is provided on the router.

G. Quality of Service
As mentioned earlier, we decided to include QoS support

from the router into our design.  Strict QoS support implies
hard guarantees for packets belonging to a particular flow on
delay and loss.  This involves very strict priorities and can
lead to degradation of overall system performance.  So we
included as a design goal, the provision of maximum QoS
support without forgoing the capacity of the system.  As it
turns out, it is possible to provide such a support in ISIS.

H. Scalability
And last but not the least, we want the design on ISIS to be

scalable.  The design of ISIS was done to make the capacity
high without overhauling the entire system.  By adding new
components, the system can be made incrementally scalable
and the overall capacity can be increased in simple steps.
This makes the design very suitable for the Internet where
bandwidth needs double every eight months or so and thus
providers can keep increasing the capacity of ISIS until the
limit is reached.  Our base design provides 160Gb/s capacity
but it can be scaled up in steps for terabits per second
capacity as well.

I. Realistic Design
Another important goal that is worth mentioning here is

that we decided to make the design of ISIS as realistic as
possible.  As this design will only be tested with a simulator,
it is very easy to forget the physical constraints that are
present and the standards that need to be followed and end up
designing a box that is almost impossible to produce.  We
made sure we kept in line with all industry standards and used
components that are available so that the final product can be
produced, if needed.
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III. OVERVIEW

With the goals that are listed above, we set out to design a
router. We used either off-the-shelf components or simple
ASICs for the design.  We also simulated and evaluated the
performance of the various schemes that we designed.

The rest of the paper is laid out as follows.  We will talk
about the overall router design in terms of the hardware
components needed.  We will, then talk about the key issues
in the design that need special attention and discuss these in
more detail.  We also designed and implemented a simulator
to simulate the router.  We will discuss the structure of the
simulator.  We will present results of our evaluation and give
an explanation of the results.  We will also give out an outline
of the physical specification of ISIS and talk about the layout
of the various components in the router.  Finally, we will try
to tackle the issue of scalability and present our architecture
for ISIS-A, the scalable version of ISIS.  In the end, we will
conclude with some recommendations and ideas for future
work in this area.

IV. OVERALL DESIGN

A. Specification
As mentioned earlier, we used a base design of 64 OC-48

ports on the router, giving an overall capacity of 160Gb/s.
This was our base design and towards the end we will talk
about how we made the design flexible.  Apart from that, we
also allowed for a Weight Fair Queuing mechanism to be
implemented for the switch to provide for some QoS support.
However, we soon figured out that this support is not enough
for our design goals and decided to look deeper into this
issue.

Apart from these standard concerns, we also tried to make
the design as realistic as possible.  We looked at the physical
constraints that our design had and worked with those in
mind.

B. Components
We designed our minimum specification box with 64 ports as
made up of various components.  These included
1. Line cards
2. Chassis
3. Switching Fabric
4. Scheduler

We have 4 ports per line card and thus have 16 line cards
in the entire box.  Given that our line speed is OC-48 that
implies a total traffic rate of 10Gb/s per line card.  The line
cards each have the necessary components to handle the
processing of packets as well as scheduling decisions through
the switch.  The line cards also have buffer space that is used
to store packets as they are being routed through the switch.
The chassis is a standard 19-inch rack mountable chassis with
redundancy features built into it. . The switching fabric that
we used is a 320Gb/s chipset by PMC Sierra [3] that fits our
design specifications perfectly.  This chip set provides us with
all the features that we needed for our design while being
suitable for the fast configuration times that we required at

OC-48 speeds. During our design process, we looked at a
number of other options in terms of the switching fabric but
were always met with a situation where the chip set was not
going to fulfill all our needs.  In this process, we looked at
Vitesse [8], AMCC[7] and TriQuint [9].

Figures 1 and 2 show the overall layout of our switch.
There are 16 line card modules that plug into the switching
fabric, each having a total traffic rate of 10Gb/s.  The back
plane that we used has 16 10Gb/s channels and can thus be
connected to each one of the line card modules easily.  Later,
we will talk about how to make this design extensible by
using these 10Gb/s channels.

Each port needs a transceiver that performs the physical
layer processing.  This includes synchronization of the
SONET clock and other physical level features.

Once the physical level processing is finished and an IP
packet is received, the packet is stored in a cell buffer.  This

16 Cards Switch

Figure 1: The entire layout of the router.  This includes the 16 line
cards each with four ports of OC-48 lines and the switching fabric on a
back plane

Transceiver

Framer Network processor

Cell buffer

Routing table

Scheduler + FQ

Figure 2: Components and functions that need to be performed per port
on each line card.  There will be four such modules in one line card.
This picture only shows modules for one port
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buffer is a fast DRAM so that packets can be written and read
at the speeds that they are being received by the transceiver.
The destination of the packet has to be looked up in a table to
figure out where to send the packet.  This process is called IP
lookup and happens at every packet time interval.  Whenever
a packet is received, its address needs to be looked at and its
destination checked in the routing table.  Therefore, we need
a processor for this purpose.  There are many choices
available in the market for these processors, including generic
off-the-shelf processors and sophisticated network processors.
We selected the Intel IXP 1200 [10] network processor that is
capable of doing IP lookup for about 4Gb/s of data.  This is
greater than our line speed of 2.48Gb/s and thus is a good
choice for our implementation.  However, we need four such
processors on a single line card.  Given the low cost of these
processors, we think the cost effectiveness of using the IXP
1200 against using a generic processor is much higher.

ISIS is an IP router that means that the packet sizes are
variable. However, the back plane works best when the sizes
of the packets that it is serving at fixed.  Therefore, we
decided to fragment the packet into fixed size cells.  We
chose a cell size of 64 bytes, with an overhead of 6 bytes.
These parameters were chosen due to the fact that the
minimum size IP packets in the network at around 40 bytes
and thus would fit into one cell.  However, this does incur an
extra overhead whenever the packets are broken into a cell.
These cells are then collected at the output and recombined to
make the packet before sending the packet out.

Other packet processing functions include the update of the
TTL value and discarding the packet if the TTL goes to zero.
The checksum on the IP packets need also be checked and
bad packets are dropped.  This processing is done with
specialized instructions in the IXP-1200 instruction set and
can thus be performed at very high speeds.

After the IP processing, the packet needs to be switched to
the output port it is destined for.  This is done through a
scheduler that is a distributed algorithm implemented as an
ASIC on each line card.  This turns out to be the bottleneck in
the capacity of the entire switch.  The many constraints that
need to be placed on the scheduler make its implementation
very hard and reduce the entire capacity of the switch.
Another problem that is observed in our design, with the
scheduler is that the distributed nature of the scheduler makes
it impossible to make QoS decisions at the input.  As we will
see later, this is a crucial component of our system and we
had to spend considerable amount of time on it.  However, in
the end we have a solution that meets all our goals and is
realistic as well.

C. Other details
There are some other very important details that we have not
addressed in this project.  These include the control processor
support and the routing protocol support that is to be provided
in any successful IP router. The switching fabric has buffers
that are usually managed as FIFO.  However, there have been
results to show that a FIFO discipline is not really fair.  We
have looked at the implementation of Random Early Drop
(RED) [11] for the buffers, but have not evaluated this

discipline any further.  We believe that such a discipline is
necessary for ISIS.

We also realize that routing table look up has traditionally
been a barrier to high speed routing.  Thus it would make
sense to have a scheme based on Multi-protocol Label
Switching (MPLS) as such a scheme can be implemented in
hardware at a very high speed.

We have also ignored multicast traffic for this project.
However, it is clear that such traffic needs to be handled.  The
effect of multicast traffic will make our results somewhat
different, however, not significantly.

V. QUEUING DECISIONS

It is evident from the overall design in the last section, that
packets that have been fragmented into fixed size cells can
not be sent through the switch as soon as they are available
and thus they need to be stored in a buffer.  We will look at
the buffering schemes as well as some basics about why they
need to be buffered in the first place.

A. Contention
Packets (cells) destined to a particular output port can

sometimes not get there in one time slot.  To see why this can
be the case, lets look at an extreme example, where all input
ports are sending packets to one output port.  The output port
and the output line can only handle the traffic that is being
generated by one input port and thus the switch needs to
buffer all the traffic that is being sent by other input ports.  It
is a crucial decision as to where to buffer these packets that
can not go through the switch.

B. Output Queuing
Packets that can not be sent out from the output link in the

time slot they are received can be buffered at the output.
However, it is easy to see that with a fabric that is operating at
the speed at which the line is operating, it won’t be possible
for the fabric to send that much traffic through.  In the worst
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Figure 3: Output queuing switch. Fabric requires to be N times faster
than the line speed to achieve this.
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case, all the input ports can be sending traffic to the same
output port and thus the fabric needs to operate at N times the
speed of the line where N is the number of ports on the
switch.  It is not hard to see that with line speeds increasing
and high port densities, it is almost impossible to build a
fabric that has N times the speed.  This factor, N, is referred
to as the speedup of the fabric.  Nominal speedups such as
1.25 or 1.5 are normal.  However, a speedup of 64 or 128 is
absurd.  This scheme also requires the output port buffers to
be able to write in to them at N times the speed of the line.
This makes the entire design very expensive and resistant to
scalability.  As one of our major concerns is scalability, this
design violates that principle.  The basic design of an output
queued switch is shown in Figure 3.

This design however, is not all useless.  If all the packets
get to the output port as soon as they are received, a scheduler
placed at the output link can chose whichever packets to get
out on the link in arbitrary orders.  This is an ideal situation
for providing QoS in terms of delay bounds or priorities to
packets belonging to certain types of flows.  Thus output
queuing helps our final design goal of providing QoS.  With
an output queued switch, various output scheduling decisions
such as Weighted Fair Queuing (WFQ) [12], Worst-case
weighted fair queuing (WF2Q) and WF2Q+[13], can be
implemented quite easily and QoS guaranteed for certain
kinds of flows.  There is an overhead associated with any FQ
mechanism but there are techniques present that can reduce
that overhead.  Most FQ techniques incur the overhead of at
least one sorting operation that is an O (N) operation.  Recent
work by Huang and Su shows methods of reducing this
overhead by clever use of a data structure called calendar
queues and with some reasonable assumptions.  Thus, the
Output queued switch can be made ideal in terms of providing
QoS for flows through the switch.

The conflicting properties of the output queuing switch
make our decision difficult.  We decided to look at other
possibilities that may provide a better tradeoff between these
design goals than an output queued switch.

C. Input Queuing

The other possibility that we have is to let the packets be
buffered at the input side.  This means that the fabric runs
without a speedup and the packets that can not get through the
fabric in one time slot are buffered in the input buffer.  This
design has certain desirable properties.

One of these properties is the simplicity in terms of
hardware that is needed for building such a switch.  As the
fabric and the memory do not need any speedup, it is cheaper
and easier to build this switch as compared to the output
queuing switch.  There are scheduling algorithms that have
been around for switching packets through a fabric when
packets are being queued at the input side.  Using one of these
algorithms or its modifications, it could possibly produce a
switch with 100% throughput.

Another desirable property is the scalability of the design.
This switch can be extended to have a higher port density
without having to change the fabric.  If the scheduling
algorithm can handle the amount of traffic, the fabric just

needs to run at the speed of the line.  This is an important
consideration in our design and so makes an input queuing
switch a very possible choice.

The disadvantages of a input queued switch is that it does
not provide good support for QoS.  When packets are queued
at the input port, and scheduling is done in a distributed way,
there is no way for a FQ module to decide which packets are
destined for which output port for it to do some ordering
between the packets.  The only naïve solution is to have a
central scheduler that looks at all packets at all input ports to
make such a decision.  It is obvious that this solution means
that the switch design will not be scalable and will thus
violate our initial design goal.

The design of such a switch is shown in Figure 4.  Unlike
the output queued switch, it is not easy to ensure that the
throughput of the switch is 100%.  In later sections, we will
see what causes the throughput of the switch to be less than
100% and if there are any solutions to this problem.

D. QoS with input queuing
Having said that providing QoS with input queued switches

is a tough problem, there has been some recent work done in
this area and there are some mechanisms by which soft QoS
guarantees can be ensured.  By soft guarantees, we mean
probabilistic guarantees on the delay and loss of packets from
a particular flow rather than a deterministic guarantee.

Stephens present one possible solution to this problem in
[14].  According to that, a switch that has input queuing can
bound delay, only if it has buffers at the cross-points in a
crossbar as well.  The number of buffers that are needed for
each cross-point in the crossbar are small, usually about 3-5
cells.  This makes the design of the crossbar easy and
inexpensive.  The key features of the architecture are the FQ
servers that are implemented at the inputs, outputs and at the
crossbar buffers.  With these FQ servers, it is possible to
ensure a delay guarantee for flows.

Sw
itc

hi
ng

 F
ab

ric

Input Output

Figure 4: Input Queued Switch.  There are no guarantees for QoS
in this kind of a switch.
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This concept has also been shown to work with multiple
stage switches instead of a crossbar in [15] by Chiussi and
Francini who use the ATLANTA chipset for their
implementation.

These show that the solution is feasible and that it does
provide guarantees with input queued switches as well.
However, the solution is complicated and the resulting design
is expensive and has to use ASICs for a lot of the
components.  There is also some concern about the
throughput of such a switch given that it is non-work
conserving now.

E. A Third Option? Combined Input-Output Queuing
(CIOQ)

There is a third option as far as queuing disciplines are
concerned (Figure 5).  Instead of queuing at the input or the
output, it is possible to queue the cells at the input and the
output.  This means, that the fabric that is used needs to have
a speedup of greater than 1 but less than N, where N is the
number of ports in the switch.  With a speedup of 1, we get a
input queued switch and with a speedup of N we get an output
queued switch.  However, as we have seen that a speedup of
N is not practical for high-speed switches.  We have also seen
that the speedup of N is the ideal situation for providing QoS
support to the router.  Our hope is that by using a hybrid
approach, we will be able to provide some QoS support
without requiring a huge speedup.

There 
switches 
with nom
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in these schemes is quite complex and it is still a question
whether the implementation can be done in a distributed
manner without complex hardware.  But if it is possible to do
that, CIOQ provides a mechanism to achieve the goals for
ISIS.  In the next section, we will talk about all the scheduling
decisions including those with various queuing mechanisms.

VI. SCHEDULING DECISIONS

There are two problems faced by the current high-speed
switches simultaneously: a need for a faster switching/routing
infrastructure and a need to introduce guaranteed qualities of
service (QoS). Each problem can be solved independently:
switches and routers can be made faster by using input-
queued crossbars, instead of shared memory systems; and
QoS can be provided using WFQ-based packet scheduling.
However, these two solutions have been mutually exclusive
until now. All of the work on WFQ-based scheduling
algorithms have required that switches/routers use output
queuing, or centralized shared memory.  Thus we have to deal
with the trade-off in our design for the switch architecture. To
implement pure output queuing, we need speedup of  N for
the switch fabric that is not practical for our basic OC-48
channel. Thus we choose input queuing as our basic design.
And we will use iSlip algorithm, which uses virtual output
queuing (VOQ), to eliminate the head of line (HOL)
blocking. Recent research shows that a combined input output
queued (CIOQ) switch running twice as fast as an input-
queued switch can provide precise emulation of a broad class
of packet scheduling algorithms, including WFQ and strict
priorities. Although the speedup of 2 is still a too high
requirement now, but it might be possible in the near future.
So we analyze and simulate the CIOQ scheduling as our
alternative design to support QoS in the very high bandwidth
routers.

A. iSlip
One of the major types of blocking that can limit a crossbar

switch’s performance is called head-of-line (HOL) blocking.
HOL-blocking can significantly reduce the performance of a
crossbar switch wasting nearly half of the switch’s bandwidth.
In the very simplest crossbar switches, all of the cells waiting
at each input are stored in a single FIFO queue. When a cell
reaches the head of its FIFO queue, the centralized scheduler
considers it. The cell contends for its output with cells
destined to the same output, but currently at the HOL of other
inputs. It is the job of the centralized scheduler to decide
which cell will go next. This FIFO queuing has a problem:
cells ahead of them destined to a different output can hold up
cells. This phenomenon is called HOL-blocking. The
centralized scheduler only “sees” the cell at the head of  the
FIFO queue, and so the HOL  cell blocks packets behind it
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Figure 5: The buffering is needed at the inputs and the outputs of a
CIOQ switch.  The QoS guarantees that this switch can provide with a
speedup of 2 are phenomenal.

Table 1: Eff
Speedup Queuing
1 Input
N Output

> 1 and < N CIOQ
ect of speedup of the fabric on the queuing discipline used.
has been some work done in the area of CIOQ
to see if it is possible to provide some level of QoS
inal speedup.  [16] and [17] are two such pieces of
t show that with a speedup of 2 in the fabric, it is
to emulate a output queued switch perfectly.  This
ery promising as a speedup of 2 is very realistic and
s QoS support that we demand.  The algorithm cited

that need to be delivered to different outputs. Even under
benign traffic patterns, HOL blocking limits the throughput to
just 60% of the aggregate  bandwidth for fixed or variable
length packets. When the traffic is bursty, or favors some
output ports the throughput can be much worse.
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There is a simple fix to this problem known as virtual
output queuing (VOQ). At each input, a separate FIFO queue
is maintained for each output, as shown in Figure 6.  After a
forwarding decision has been made, an arriving cell is placed
in the queue corresponding to its outgoing port.  At the
beginning of each time slot, a centralized scheduling
algorithm examines the contents of all the input queues, and
finds a conflict-free match between inputs and outputs. In
theory, a scheduling algorithm can increase the throughput of
a crossbar switch from 60% with FIFO queuing to a full
100% if VOQs are used.

iSLIP algorithm is one of the scheduling algorithms for
crossbar switches that use virtual output queuing. It is
designed to meet such properties as high throughput,
starvation free, fast and simple to implement. It is an iterative
algorithm, during each time slot, multiple iterations are
performed to select a crossbar configuration, matching inputs
to outputs. The iSLIP algorithm uses rotating priority
(“round-robin”) arbitration to schedule each active input and
output in turn. ISLIP attempts to quickly converge on a
conflict-free match in multiple iterations, where each iteration
consists of three steps. All inputs and outputs are initially
unmatched and only those inputs and outputs not matched at
the end of one iteration are eligible for matching in the next.
The three steps of each iteration operate in parallel on each
output and input. The steps of each iteration are

1. Step 1: Request. Each input sends a request to every
output for which it has a queued cell.

2. Step 2: Grant. If an output receives any requests, it
chooses the one that appears next in a   fixed, round robin
schedule starting from the highest priority element. The
output notifies each input whether or not its request was
granted.

3. Step 3: Accept. If an input receives a grant, it accepts the
one that appears next in a fixed, round robin schedule
starting from the highest priority element. The pointer to
the highest priority element of the round-robin schedule
is incremented (modulo N) to one location beyond the
accepted output. The pointer   to the highest priority
element at the corresponding output is incremented

(modulo N) to one location beyond the granted input.
The pointers are only updated after the first iteration.

By considering only unmatched inputs and outputs, each
iteration matches inputs and outputs that were not matched
during earlier iterations.

The performance of iSLIP is pretty good. In brief, it has
following main properties:
1) Property 1

High Throughput. For uniform, and un-correlated arrivals,
the algorithm enables 100% of the switch capacity to be used.
In our simulation, we have proved this.
2) Property 2

Starvation Free. No connection is starved. Because pointers
are not updated after the first iteration, an output will continue
to grant to the highest priority requesting input until it is
successful. Furthermore iSLIP is in some sense fair: with one
iteration and under heavy load, all queues with a common
output have identical throughput. But there are two kinds of
other blocking will make a packet’s delay unpredictable,
input- and output blocking. Input blocking arises because
VOQs at one input can blocked by other VOQs at the same
input that receive preferential service. It is very difficult to
predict exactly when a non-empty VOQ will receive service.
This is because it depends on the occupancy of other VOQs at
the same input. The VOQ must contend for access to the
crossbar switch with other VOQs that may block it for an
unpredictable number of cell times. Output blocking occurs
because each output line from the crossbar switch can only
transfer one cell at a time. Consider two cells at different
inputs that are both waiting to be transferred to the same
output. Only one cell can be transferred at a time, while the
other cell will be blocked until a later cell time. As with input
blocking, output blocking makes it very difficult to predict
when a cell will be delivered to its output. We can use some
techniques such as priority classes and speedup to control the
delay of packets. But this can only solve the problem to a
limited extent and we still can’t predict the time a cell will
spent within the switch fabric. Thus this makes it difficult to
implement output fair queuing to support QoS. We will see a
CIOQ scheduling with speedup of 2 will exactly emulate any
of the output fair queuing and provide the same QoS.
3) Property 3

Fast. The algorithm is guaranteed to complete in at most N
iterations. However, in practice the algorithm almost always
completes in fewer than   iterations. But this is still not good
enough for scalability because of its centralized iteration
process.
4) Property 4

Simple to implement. An iSLIP scheduler consists of 2N
programmable priority encoders. It can be implemented on a
single chip.

B. CIOQ
A switch with a speedup of S can remove up to S cells from

each input and deliver up to S packets to each output within a
time slot, where a time slot is the time between packet arrivals
at input ports. Hence, an OQ switch has a speedup of N while

Q(1,1)

Q(1,N)

Q(N,1)

Q(N,N)

HData

Data H

Input 1

Input N

Output 1

Output N

Matching, M

Crossbar
Switch

Centralized
Scheduler

Figure 6: Shows how VOQ works to prevent HOL blocking.
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an IQ switch has speedup of one. For values of S between 1
and N packets need to be buffered at the inputs before
switching as well as at the outputs after switching. We call
this architecture a combined input and output queued (CIOQ)
switch.

In order to offer QoS guarantee, the CIOQ switch should
behave identically to an OQ switch for all types of traffic.
Here a CIOQ switch is said to behave identically to an OQ
switch if, under identical inputs, the departure time of every
cell from both switches is identical. Recent research [1] has
shown that a speedup of 2 is sufficient and speedup of 2-1/N
is necessary for this exact emulation. As a benchmark with
which to compare our CIOQ switch, we will assume there
exists a shadow N*N OQ switch that is fed the same input
traffic pattern as our CIOQ switch. The key to solving the
speedup problem is a scheduling algorithm that keeps track of
the cells in the CIOQ switch. The scheduling algorithms
decides the order in which cells at the input are transferred
across the switch fabric to the output in such a way that the
cells may depart from the switch at the same time as they do
in the shadow OQ switch. Each time cells are to be
transferred, the scheduling algorithm selects a matching
between inputs and outputs so that each non empty input is
matched with at most one output and, conversely, each output
is matched with at most one input.

Before we explain the CIOQ scheduling algorithm further,
we give some definitions that are crucial to the following part.
1) Push-in-queues

Similar to a discrete-event queue, a push-in queue is one in
which arriving cells are added to an arbitrary location in the
queue based on some criterion. The only property that defines
a push-in queue is that once placed in the queue, cells may not
switch places with other cells. In other words, their relative
ordering remains unchanged. In general, we distinguish two
types of push-in queues: (1) “Push-In-First-Out” (PIFO)
queues, in which arriving cells are placed at an arbitrary
location, and the cell at the head of the queue is always the
next to depart. (2) “Push-In-Arbitrary-Out” (PIAO) queues, in
which cells are removed from the queue in an arbitrary order,
i.e. it is not necessarily the case that the next cell to depart is
the one currently at the head of the queue. We will use PIAO
queues as a buffering mechanism at the input of a CIOQ
switch. Each output maintains an output priority list: an
ordered list of cells at the input waiting to be transferred to
this particular output. The output priority list is always
arranged in the order in which the cells would depart from the
OQ switch we wish to emulate (i.e. the shadow OQ switch).
This priority list will depend on the queuing policy followed
by the OQ switch (FIFO, WFQ, strict priorities etc).
2) Time to Leave

TL(c) is the time slot in which cell c would leave the
shadow OQ switch. Of course, TL(c) is also the time slot in
which it must leave from our CIOQ switch for the identical
behavior to be achieved.

3) Output Cushion
OC(c) is the number of cells waiting in the output buffer at

cell c’s output port which have a lower time to leave value
than cell c.  If a cell has a small (or zero) output cushion, then
the scheduling algorithm must urgently deliver the cell to its
output so that it may depart when its time to leave is reached.
A cell’s output cushion can only be increased by newly
arriving cells that are destined to the same output and have a
more urgent time to leave.
4) Input Thread

IT(c) is the number of cells ahead of cell c in its input
priority list. In other words, it represents the number of cells
currently at the input that need to be transferred to their
outputs more urgently than cell c.  A cell’s input thread is
decremented only when a cell ahead of it is transferred from
the input, and is possibly incremented by newly arriving cells.
It would be undesirable for a cell to simultaneously have a
large input thread and a small output cushion, the cells ahead
of it at the input may prevent it from reaching its output

before its time to leave. This motivates the definition of
slackness.

5) Slackness
L(c) equals the output cushion of cell c minus its input

thread i.e. Slackness is a measure of how large a cell’s output
cushion is with respect to its input thread. If a cell’s slackness
is small, then it urgently needs to be transferred to its output.
6) Stable Matching
A matching of input ports to output ports is said to be stable if
for each cell c waiting in an input queue, one of the following
holds:
1. Cell c is part of the matching, i.e. c will be transferred

from the input side to the output side during this phase.
2. A cell that is ahead of c in its input priority list is part of

the matching.
3. A cell that is ahead of c in its output priority list is part of

the matching.
To illustrate our definitions, Figure 7 shows a snapshot of

the CIOQ switch with a number of cells waiting at its inputs
and outputs. We define the time of the snapshot to be time
slot 1. We use the notation (P,t) to represent a cell that, in the
shadow switch, will depart from output port P at time t, its
time to leave. Consider, for example, the cell denoted in the
figure by (A,3). For the CIOQ switch to mimic the shadow
OQ switch, the cell must depart from port A at time 3. Its
input thread is IT(c) = 1, since (B,1) is the only cell ahead of
it in the input priority list. Its output cushion is OC(c) = 2,

C,1

A,5 A,4 A,2 A,1A,3 B,1

C,3 A,6

A,7

B,2

B,3 C,2Z

Y

X

C

B

A

Input Queues Output Queues

Figure 7: CIOQ at work
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since out of the three cells queued at A’s output buffer, only
two cells (A,1) and (A,2) will depart before it. Further, the
slackness of cell c is given by L(c) = OC(c)  - IT(c) = 1.

The conditions for a stable matching can be achieved using
the so-called stable marriage problem. Solutions to the stable
marriage problem are called stable matching and were first
studied by Gale and Shapely [2]. They gave an algorithm that
finds a stable matching in at most M iterations, where M is
the sum of the lengths of all the input priority lists.

Our specification of the scheduling algorithm for a CIOQ
switch is almost complete: the only thing that remains is to
specify how the input queues are maintained. Different ways
of maintaining the input queues result in different scheduling
algorithms. On the output side, the CIOQ switch keeps track
of the time to leave of each waiting cell. During each time slot
the cell that departs from an output and is placed onto the
outgoing line is he one with the smallest time to leave. For
our CIOQ switch to successfully mimic the shadow OQ
switch, we must ensure that each cell crosses over to the
output side before it is time for the cell to leave. This is the
key point to design the queuing policy. The following is our
CIOQ scheduling algorithm.

Group By Virtual Output Queue (GBVOQ) algorithm
GBVOQ maintains a VOQ for each input-output port pair.

When a new cell arrives at an input port, GBVOQ checks to
see if the corresponding VOQ is empty. If it is, then the
incoming cell is also placed at the head of the entire input
queue, which means the corresponding VOQ will get the
highest priority. If, on the other hand, the VOQ corresponding
to the new arrival is non-empty, the new cell is placed into
VOQ according to the specific fair queuing policy of the
output queue. And the corresponding VOQ’s relative priority
is not changed. In our simulation, we just implement a simple
FIFO scheme, thus we just place the cell at the tail of the
nonempty VOQ.

Delay Till Critical (DTC) strategy:
In order to reduce the number of iterations needed to

compute a stable matching from N2, we introduce the Delay
Till Critical (DTC) strategy. During each scheduling phase,
we mark as active all cells with a slackness of zero or less,
and mark all other cells inactive. The stable matching
algorithm now considers only active cells. This simple
strategy reduces the number of iterations to compute a stable
matching from N2 to N. It is easy to see that all cells that are
in the same VOQ occupy contiguous positions in the input
queue. Therefore it is sufficient to just keep track of the
relative priority ordering of VOQs.

Stable Marriage Matching Algorithm:
At each scheduling phase, the centralized scheduler finds a

stable matching between the input ports and the output ports.
This is can be realized by the so-called stable marriage
matching algorithm.

First, each input port propose to its “favorite” output port.
Each output port who receives more than one proposal rejects
all but its “favorite” from among those which have proposed
to it. However, the output port does not accept it yet, but
keeps it in a waiting list to allow for the possibility that some
other input port with higher priority may request later. For the
output port, the relative priority of proposing input ports is
determined by the specific output queuing policy. In our
simulation, we just implement a simple FIFO scheme.

Second, those input ports that were rejected now propose to
the next choices in their output priority list. Each output
receiving proposals chooses its favorite from the group
consisting of the new proposals and the one in the waiting list,
if any. It rejects all the rest and again keeps the favorite in
suspense.

This iteration process proceeds in the same manner until all
the input ports have finished proposed for all its active cells.
We want to point out that the CIOQ scheduling algorithm can
be used to emulate any output queuing scheme. We need only
to use the specific OQ policy to calculate the relative priority
of the cells to insert them into the right position of the VOQs
and help the output ports to determine which proposing input
port to accept in the stable marriage matching algorithm.

The weakness of the CIOQ algorithm is from its
requirement of  speedup of 2 and its bad scalability. But we
still believe that it will help to support QoS in very high
bandwidth switches and routers in the near future.

VII. PHYSICAL LAYOUT

The physical design is a crucial element in coming up with
a useable product.  Even the most brilliant ideas can be
rendered useless by physical constraints or poor consideration
of practical factors.  We have devised a powerful switch but
we need to ensure that it can be integrated into a modern data
center environment.

A. Chassis Design
With the idea of flexibility in mind, we chose to separate

the router into two basic modules: the Line card Module and
the Switch Fabric/Control Module.  This separation enables
the user to be very flexible with rack placement and also
accommodates scaling and reconfiguration without requiring
much manual labor.  It also reduces cost by using a small
generic case for each module.  What enables us to separate
these normally eminent functions is the use of the LCS (Line
Card Switch) protocol for backplane data.  The LCS protocol
connects individual 10Gbps line cards to the switching matrix
over a multi-mode fiber optic connection.  These links can be
up to 200 ft. long so the user can put line cards in a separate
rack or possibly a separate room from the switch.  The new
configurations that are possible with this design are many.  It
will give architects and facilities managers quite a lot of room
to work with.
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Another aspect of the chassis design that some designers
overlook is the simple fact that this product must fit into an
industry standard 19 inch or 24 inch rack.  Any oversize
protrusion in any dimension can cause a lot of frustration and
unnecessary difficulty for integration.  Our generic case is
dimensioned 10 inches high by 17.25 inches wide (without
rack mounting brackets) by 18 inches deep.  This case is
perfectly suited to our circuit boards and should not cause any
headaches when it comes time to bolt it into the racks.  No
user wants to have to redesign their data center to
accommodate a new product, no matter how much it improves
performance.  We have made sure that our switch fits those
basic specifications.

The weight is also quite reasonable, topping out at around
50 pounds for a fully loaded line card module and about 35
pounds for a switch/control module with redundant fabrics.
Users should not have any trouble achieving high density
without buckling the raised floors.

This layout is depicted in Figure 10.

B. Power Specifications
An additional advantage of having a modular system is that

we do not have a huge box that requires special high current
power lines.  Each module is equipped with a 2+1-power
module configuration.  While it would be ideal to have a one
to one ratio for protection, it makes requirements on space
that add very little statistical superiority.  In addition, the
power can easily be connected to separate redundant power
feeds.  The line card module runs of 220 VAC and peaks out
at 2000 W of power.  It can also be equipped with -48 VDC
power modules topping out at 1700 W.  The switch/control
module requires slightly less power and draws 1500 W at 220
VAC and 1300 W under DC power.  This is perfectly
reasonable for most settings.

C. Standards Compliance
As a wise man once said "the wonderful thing about

standards, is that there are so many to choose from" and that`
certainly applies to network equipment.  There are numerous
well thought out international standards and we have tried to
make sure that our design will comply with the most
important ones.

Safety is always a fundamental concern and our device
should comply with UL 1950, IEC 60950 and 60825, TS 001
as well as AS/NZS 3260.  This should be adequate to ensure
that this is not a dangerous device to install in a facility.

Electromagnetic emissions, while a concern for network
engineers, are more significant to regulators who authorize
the sale of electronic devices in different countries.  Our
device should pass FCC Class A, ICES-003 Class A,
EN55022 Class B, VCCI Class B and AS/NZS 3548 Class B.

The last major standard is a broader standard that is crucial
in order to sell the product to major US telecommunications
carriers.  The NEBS standards devised by Telcordia (formerly
Bellcore) provides a diverse set of requirements that are
suited to the more rigorous standards of voice service
providers.  We have tried to ensure that our product will be
NEBS SR-3580 Level 3 compliant.  This should be adequate
for most big Bell class carriers.

VIII. PARTS LIST

Due to a lack of time and expertise, we were unable to do a
thorough and accurate board level design.  However, we were
able to make an estimate and approximate the physical layout
of the cards.

The line card, while using mostly simpler off the shelf
parts, has a higher part count but most of the parts take up a
small area.  The only ASIC (the output queue manager)
should be a relatively simple state machine.

Figure 8: Physical card Layout
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A. Line card
1. 4x Intel IXP1200 Network Processors
2. 4x AMCC S3046 Transceiver Interface
3. 4x Agilent HFCT-5402D OC-48 Multimode Transceiver
4. 1x 8MB SRAM 1x 8MB boot ROM 4x SDRAM slot
5. 4x Vitesse VSC9112 Framer
6. 1x PMC Sierra PM9313 Data Slice
7. 1x PMC Sierra PM9315 Port Processor
8. 4x Output queue manager ASIC

The switch fabric cards are each comprised of TT1

crossbar switch elements and one modified TT1 scheduler IC.
Figure 8 shows the physical layout of a line card.

B. Switch Fabric Card
1x PMC Sierra PM9311 Scheduler

14x PMC Sierra PM9312 Crossbar
The control module is essentially a generic high end Intel

laptop motherboard with an interface into the switching
matrix as well as 2 flash card slots.

1. 1x Intel 440MX laptop motherboard
2. 2x Flash memory slots

C. Parts Selection Rationale
We tried, as much as possible to base our design around

using off the shelf parts.  While some efficiency and some
cost gains can be made by rolling our own ASICs, there is
usually no need to reinvent the wheel and custom designs can

often cause large delays in development.  As you can see, we
managed to fit this hardware into rather modestly sized
spaces.  We feel that the trade-off and advantages will yield a
feasible product.

Traffic

Traffic
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 Route Lookup

 Checksum

 Etc

Packet Packet

Break packet into
cells
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Figure 9: The overall structure of ngrSim.  The various modules are represented as separate blocks.  There are some modules that have multiple
implementation, such as the scheduler.

class handler {
public:

handler() { };
virtual ~handler() { };
virtual void handle(event *e) = 0;
void set_next_handler(handler * h)
{

next_handler = h;
}

protected:
handler * next_handler;

};

Figure 11: The description of the class handler.  This is an abstract class
that acts as a container for all of the objects in the simulation.  The handle
function is used every time an event needs to be run.

Figure 10: Possible design of the entire ISIS box without
scalability extensions.
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IX. SIMULATOR DESIGN

Once we had designed the entire system and looked at the
physical constraints that needed to be tackled, we developed a
simulator to evaluate the performance of the various
scheduling algorithms.  The design of the simulator was event
based with all actions happening with events.  As the switch
runs at a nanosecond simulated clock interval, we spent a lot
of effort designing the event handling routines and data
structure to ensure that the events are handled fast and the
extra overhead of this process does not effect the entire
simulation.

The simulator, called ngrSim (Next Generation Router
Simulator) is a modular design that allows for easy mix and
match of various components.  This means that we could try
different algorithms in different stages of the networks easily.
This also means that future development on the simulator is
very easy.  We will explain the simulator in more detail now.
Figure 9 represents the overall design of ngrSim.

A. Events
The simulator is event driven and thus events are an

important part of the simulator.  For generality purposes, we
used an abstract class handler, as a container for most of the
classes in the simulator.  The handler class has a function
called handle().  The structure of the handler class is shown in
Figure 11.  Using this class, we defined an event, to be a class
with a handler object, some data (that could be either packets
or cells) and a few other fields.

When the event at the head of the queue is removed by the
main dispatcher, the handle() function of the handler object in
the event is run.  This function is set at the time the event was
inserted into the event queue and it does the appropriate
action that needs to be taken. Figure 14 depicts the event
structure showing its important fields. During the handling
routines for events, new events are inserted into the queue to
be run at various times. When there arent any events in the
event queue, the simulation has ended.

B. Event Queue

The most important part of the simulator is an event queue.
The event queue is a priority list that is prioritized on the time
at which the event is supposed to run.  The events are inserted
into the event queue in an arbitrary order but are removed
from the front of the queue.  As this is a priority queue,
insertion of a new event is an O(N) event where N is the
number of events in the queue.  With a large switch
simulation, there could be a few million events in the event
queue at a time that reduces the performance of the simulator
tremendously.  The naïve way of making the event queue
would be a linked list.  However, due to the performance
penalty that might be incurred, we used a structure known as
Skip lists [18].  This structure is a probabilistic structure that
allows O(1) inserts on average.  With this list structure, the
performance of the simulator was enhanced and the running
time of simulation reduced.  The event queue also keeps time
of the current simulated time, which is the time of the last
event.  The event queue just takes an event from the head of
the queue and runs it, updates the time and gets the next event
after updating statistics.  Figure 13 shows this process as it is

Initialize the switch and declare various
components.  ALL READ FROM A

CONFIGURATION FILE

Start the periodic fabric pull and
the traffic generation events.

Main Loop

Get the event of the head of the
queue.  This updates the system

time as well
Call the handle function.

Check if simulation ended

Print the statistics and draw
graphs

Figure 12: Explanation of the main look of ngrSim.

// Initialize the components tgen, ipp,

// framer, sched, fab, reframer, opp

((crossbar*)fab)->start();

((tgen*)tg)->start();

while (1){

event* e = (eq.instance()).dequeue();

if (e == NULL && !sim_running)

break;

(e->get_next_handler())->handle(e);

if ((eq.instance()).get_time() > simTime){

sim_running = 0;

((tgen*)tg)->stop();

((crossbar*)fab)->stop();

}

}

// print Stats

Figure 13: Code for the main look of ngrSim
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written for ngrSim. Figure 12 shows the description of the
same steps explaining what each step involves.

C. Components
We followed the same modules that we used in the design

of the switch in the simulator as well.  The simulator code is
divided up into different modules each of that has an interface
with some other modules.  We made the interfaces generic so
that other variants of the modules can be written without ever
changing the entire structure or unrelated modules.

1) Traffic Generation (TGEN)
The first module is a traffic generation module.  This

module consists of N traffic modules, each one responsible
for generating traffic for the N input ports.  Currently, the
traffic generators generate traffic from an exponential
distribution.  An average load can be specified, which is a
percentage of the line speed.  A mean burst length specifies
that burst size that is allowed.  A hot spot share is the share of
the entire traffic coming in from that input port destined to
one specific port i.e. port 0.  This tries to emulate the non-
uniform destination addresses problem that does not come up
when destinations are picked randomly from the available set.
The traffic generator is started in the beginning of the
simulation.  This inserts the first generation events into the
event queues and starts the simulation process.  When these
events are fired, packets are generated, packaged into an
event and the handler object is set to the next module in line
that is the input port processor (IPP).  This event, when run,
will call the handle function defined in IPP.  Thus a seamless
interface between the traffic generation and the input port
processor is established through the handler abstract class.
2) Input Port Processor

The traffic generation module passes the packets to the IPP
through the event queue.  The input port processor, is a
network processor that does the normal IP packet processing
functions.  These functions include:

1. checksum check
2. TTL update
3. Checksum recalculation

4. Packet drop if TTL < 1
5. IP route lookup

These functions have to be performed for each packet.  The
speed at which these lookups have to be performed has to
match the speed of the incoming link.  It is generally assumed
that the average size of a packet on the Internet is about 1000
bytes.  With that calculation and given our line speed of
2.48Gb/s, we will have on average about 0.31Million packet
lookups a second.  The smallest size packets on the Internet
are about 20 bytes long and so in the worst case, there might
be 7.75Million packet lookups a second.  If we use a single
processor per line card, that will mean about 1.24Million
packet lookups a second average and 31 Million packet
lookups in worst case.  This number is too high a rate for any
processor to work at and so we will have one processor per
port.  In the simulator, we are already given the destination
address and so no lookup is required.  We simulate the delay
for the IPP without looking into it in any more detail.
3) Framer

IP packets are variable length packets.  Switching fabrics
work best when they are handling fixed length packets, as
they don’t have to calculate the time it would take for a
packet to go through the switch.  Fragmenting the packets as
they go through the fabric and then re-framing them back into
packets at the output side solves this problem.  This is done
with a Segmentation and Reassembly chip (SAR) which can
run at OC-48 speeds.  The re-framer waits for the cells of a
packet to arrive for certain duration of time before assuming
that some cell has been dropped and so the entire packet
needs to be dropped.  It is important to note, that even if a cell
with 1 bytes of data is lost, the entire packet has to be
discarded which has effect on the overall throughput of the
switch.  We will address this issue more in the evaluation
section.

Choosing a cell size is another interesting problem.  By
observation, we have seen that the distribution of packets on
the Internet is bi-modal with the two values being 40 and
1500 bytes.  The tradeoff in determining the cell size is the
overhead incurred while making the cell and the speed at
which the fabric has to switch.  If the cell is too small, the
fabric will have to switch at a much higher rate, making the
design complex.  On the other hand, if the cell size is too
large, the overhead of small packets will be significant.
Given these constraints, we chose a cell size of 64 bytes with
6 bytes of header. The header bytes include:

1. 2 input + output port number = 4 bytes
2. 1 byte for cell ID
3. 1 byte for flag + priority

The 2 bytes for ports mean that we can have as many as 65K
ports on the switch.  As we will see a little later, this was an
important decision as we ended up with 1024 ports in one of
our designs.  The overhead for some packet sizes can be high.
For example, for a packet size of 59 bytes, two cells are
required to transmit that packet.  The overhead in this case is
59/128 that is a staggering 46%.  We however, believe that
very few packets of that size will exist and thus in most cases,
our overhead will be significantly less than 46%.

Figure 14: Event structure.  The handler could be any object from
the simulation.
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4) Scheduler
The framer breaks up the packet into cell and these cells are

routed through the switch.  A scheduler module takes care of
the order in which cells are routed through the switch.  There
are many different forms of scheduling algorithms that can be
applied.  The scheduling algorithms for various kinds of
queuing disciplines mentioned before are also different.  For,
and output queuing switch, it does not matter which
scheduling algorithm is used because the algorithm is not
going to play a part in the performance at all.  For input
queued switches, iSlip [19] and First-come-first-serve (FCFS)
are the commonly used algorithms.  We tested out both of
these in our implementations.

The scheduler is slightly different from other modules in
that it does not add any new events to the event queue.  It has
a set of buffers, whose organization depends on the
scheduling algorithm used, that store the cells before they are
routed through the switch.  As the cells are all one size, it is
easy for the fabric to keep checking the scheduler at periodic
intervals about the cells that the scheduling algorithm wishes
to send through the fabric.  This way, the fabric can pull the
cells from the scheduler rather than the scheduler pushing
them.
5) Fabric

We have currently only implemented a crossbar fabric.  A
fabric, in general just polls the scheduler for cells at a fixed
interval.  This interval depends on the speedup of the fabric.
Lets say, if the fabric is running at the line speed (2.48Gb/s)
and the cell size is 64 bytes, then the fabric needs to pull cells
periodically every 25 nsec.  At a higher speedup, of lets say,
2, the fabric needs to do a pull every 12.5 nsec.  By adjusting
the fabric speed, we can easily simulate different speedups.

We have not implemented other fabrics but need to point
out that in ngrSim framework, it will be easy to add new
fabric modules as well.
6) Output port processing

After passing through the fabric and re-framing the cells
back into packets, the packets are sent to the OPP.  This is the
place where the packets are placed on to the outgoing link at
the given link speed.  Given that all the cells that have to
depart the port are there, it is easy to do any possible
arrangement of the cells to meet certain QoS guarantees.  For
example, if a high priority cell is behind in the OPP queue, it
can just be sent out early.  Many different Fair Queuing
mechanisms can be deployed here to achieve this purpose.

D. Miscellaneous Components
Apart from these basic components, there are many other

parts that have to be developed.  We have developed a
elaborate configuration mechanism that proved useful when
different configurations needed to be tested out many times.
We also employed a sophisticated statistic module in each
component to gather per component statistic that helps us in
evaluating the performance of each component separately.
We have also written various scripts to aid in the collection
and representation of data in a meaningful format.  All of
these are packaged with the source code of ngrSim.  In the
next section we will talk about some of the methodology that

we used to collect results and present the actual results of our
simulations.

X. SCALABILITY: ISIS-A

We designed ISIS with the base design with 128 OC-48
ports.  However, we had this important goal of making our
design scalable to large number of ports and high switching
capacity.  We went through many iterations of this process to
see if it was possible to scale this switch to a higher capacity.
We looked at the chipset that we were using and tried to
utilize features provided in it to achieve our goal of
scalability.

A. PMC chipset
The chipset we are using is PMC-Sierra’s TT1 chipset that

provides 320Gb/s of bandwidth.  The chipset uses a
proprietary protocol called line card-to-switch control (LCS)
protocol that is used to produce physical separation between
the line card modules and the switching fabric.  The LCS
protocol is run over optic fiber connections running at 10Gb/s
that connect line cards with 10Gb/s channels to the switching
fabric.  These line cards can therefore be separated from the
switching fabric by up to 200 meters.  This makes the design
of the box modular and allows incrementally increasing the
line card modules when the need for them arises. Thus we can
have 32 line cards sitting in 4 different line card modules
connected to the switching fabric through optic fiber running
LCS protocol.  This is great but it does not produce the kind
of scalability that we are interested in for ISIS.

B. ISIS-A: ISIS with an Attitude
We decided to take the design to the next level by using the

10Gb/s channels that the TT1 chipset provides and using

Line card Module
(160 Gb/s)

Routing Module
16 10Gb/s

Channels to other
switching modules

Figure 15: Details of each switching module in ISIS-A.
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them to connect them to different switching fabrics rather
than a line card module.  This way, we loose capacity on each
box but we gain as we have two switching fabrics working
together.  We can connect up to 16 other switching fabrics to
one switch fabric and utilize 160Gb/s of the switching
capacity for this purpose.  The rest of the capacity can be
used for the two line card modules that we connect to the box.
Figure 16 shows this in a little more detail.

The switching modules are connected to each other in a
mesh.  There are many possibilities as to how to connect these
switching fabrics together, including a hyper-cube structure,
but the simplest arrangement is a mesh.  There can be up to
17 switching modules connected together in this arrangement.
It is clear that each switching module will have a switching
capacity of 160Gb/s left after reserving 16 channels for the
mesh connections, which leads to a aggregate bandwidth of
over 2.5Tb/s.  Each module is shown in a little more detailed
form in Figure 15 also.  There are many issues with traffic
flow that need to be resolved in this design but it still lends
itself to these high capacity values and thus is the design for
scalability that we have selected.

C. Routing within ISIS-A
Now that we have designed ISIS-A, we need to address the

issue of routing traffic between these modules.  The problem
is that the channels are only capable of carrying 10Gb/s of
traffic, while one entire switch can send 160Gb/s traffic
destined all for another switch in the worst case.  In this
scenario, the queues with the 10Gb/s channel will fill up and
the performance of the entire switch will fall dramatically.
That is also especially bad for our QoS goal in the beginning
that will be effected totally by this problem.  For the problem
of getting more traffic through from one switch to the other, a
solution that does not cater to QoS guarantees can do a
modified form of hot potato routing.  In this routing,
modules just keep pass the data between them until one
module finds bandwidth to handle all the data.  Lets take the
example of a switching module A that has 20Gb/s of data to

send to another module B.  Given that the channel between A
and B is only 10Gb/s, the rest of the 10Gb/s traffic can not be
sent over the channel between the two switching modules.  In
this scenario, the A sends the excess traffic over to another
module that is least loaded, lets say module C.  Module C
tries to send the traffic over to module B.  If it can, we have
sent the 20Gb/s traffic to module B.  If it does not succeed, it
carries the same algorithm to send traffic to another least
loaded module.  This continues until the traffic gets to its
desired destination.  It is also important to note that there are
some issues with looping in this structure.  This can be
avoided simply by adding TTL fields to cells so that they do
not loop around in the structure.

To keep track of the utilization of a channel, a queue can be
maintained and based on its occupancy, a decision to route
the extra traffic can be made.  These queues are already
provided as part of the TT1 chipset.

Thus routing on the ISIS-A occurs in three stages.
1. ports on the card itself (through the line card)
2. Other line cards on same module (through the fabric)
3. Other switching modules (through the interconnect)
This makes the switch load distribute between three

different flows and so perform better under heavy load.

D. QoS with ISIS-A
It is obvious that the routing scheme mentioned above

totally violates any QoS guarantees.  We can bring QoS into
the picture by a few mechanisms.

We can reserve the queue with each channel for high
priority traffic.  We can have more than just 2 classes as well,
although we believe that 2 might be enough.  If a high priority
cell arrives, it is sent using the reserved part of the channel.
That might mean dropping low priority traffic using that
channel but that is reasonable.

Another idea is a simple limit on the cell TTL.  This value
can bound the maximum delay that a cell has to experience.
A cell with a low TTL is treated a high priority and is sent
towards the destination as soon as possible.  We believe that
using these two schemes, efficient QoS can be provided to
flows without introducing complexity into the system.  The
guarantees provided will not be hard but will still satisfy most
service constraints.

XI. EVALUATION

We ran the simulator using scripts with random seeds.  The
figures that are presented in this section are each plotted after
running 5 experiments at each load value and then taking the
average of the 5.  We also made sure that we collect values
for the statistics only after running the simulation for a
considerable amount of time so as to let the simulation reach
a steady state.  Due to time constraints, we could only run
simulations for 4 and 6 ports.  We could only managed a few
simulations with 64 ports and observed that the results were
very similar for 16 ports.  Therefore, we believe that running
for a lesser number of ports.has not effected our simulation
results greatly.

Due to the shear number of the graphs that we had to use,
we have included the graphs as an appendix.  We present the

Figure 16: ISIS-A architecture showing the mesh between various
switching modules.
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explanation for the results below.  The appendix is labeled A-
I, and each page has 3 graphs.  So C-3 refers to the third
graph on page C.

A. Explanation of Results
A-1 With non-uniform traffic, all three schedulers (nFIFO,

iSLIP, and CIOQ) perform better with low drop rate even at
high loads.   FIFO experiences Head-Of-Line blocking and
thus had higher drop rate at high loads.

A-2 The delay for FIFO increases sharply at about 0.4 load
and then it starts dropping packets and so the delay flattens
out.  While other schedulers don’t drop packets that
frequently, FIFO causes higher delays for the packets.  CIOQ
performs better at high loads as compared to the other
schedulers.

A-3 CIOQ performance goes down when the traffic is non-
uniform.  This is seen by the drop rate of CIOQ with non-
uniform traffic.

B-1 B-2 FIFO under non-uniform traffic performs worse
than under uniform traffic.  This can be seen by the delay,
throughput graphs for FIFO with non-uniform load.  These
graphs use a fabric speedup of 1 and so the values for drop
rates and latencies are very high.

B-3 The drop-rate graph for FIFO with a speedup of 1.25
shows that with non-uniform traffic, the drops increase
significantly more than with uniform traffic.

C-1 C-2 For CIOQ, the delay and throughput graphs show
that under non-uniform traffic conditions, the performance of
this scheduling algorithm deteriorates  at about a load of 0.4.

C-3 The drop rate graph for FIFO with a speedup of 1
shows that drops increase when the traffic is non-uniform.
Comparing this graph to B-3 shows that the speedup of 1.25
is necessary to bring down the drop rates for FIFO under all
conditions.

D-1 D-2 The delay and throughput graphs for FIFO with
speedup of 1.25 shows that the performance goes down with
non-uniform traffic.  Comparing these graphs to B-1 B-2, we
can see that the speedup of 1.25 is necessary to get the
performance higher.

D-3 E-1 The latency with FIFO increases as we increase
the buffer size.  Cells have a longer time to stay in the buffer
before they are transferred out leading to high latency values.
However, the throughput is exactly the same.  This is because
when the buffer fills up, then the throughput is not dependent
on the buffer size but rather the latency will increase.

E-2 E-3 F-1 The delay function for smaller mean burst
length for FIFO is a step function, with different load, the
delay will stay constant until  it reaches the next level of load.
This is probably due to the traffic pattern under different load.
The delay for larger mbl is a constant growing function,
which is consistent with other results. The throughput under
small mean burst length is smaller than that under the larger
mbl. This is because the smaller packets takes more overhead
than larger packets.

F-2 F-3 G-1 We see for the uniform traffic, from load = 0.8
all the ports’ buffer are starting to saturate for iSlip, thus the

delay is beginning to increase greatly. But for hot spot = 2/n,
beginning at load = 0.4, the hot spot port’s buffer is beginning
to saturate, its delay is getting larger than that for uniform
traffic. And because only one hot spot port is saturated, the
it’s saturated delay is smaller than that of the uniform traffic.
G-2 With a FIFO scheduler and a speedup of 1.25, we
observe the a throughput is close to theoretical maximum of
58%.  At the scheduler, the throughput is 58%, while the
overall throughput is 40% due to drops after the scheduler.
(One cell drop result the drop of the whole packet)

G-3 With a FIFO scheduler and a speedup of 1, the
throughput is even worse because we don’t consider the
overhead taken by the cell headers.   We get a scheduler
throughput of 45% and overall throughput of 30%.

H-1 H-2 These figures illustrate the effect of speedup on
FIFO scheduler.  With the higher speedup, the drop rate
decreases and throughput increases.  At the speedup equal to
the number of ports, the throughput is 100% with drop rate
0%.  Also higher speedup result in lower delay because cells
travel across fabrics faster.

H-3 I-1 Among the three scheduler, CIOQ gives the best
throughput, follow by iSLIP.  FIFO is the worst due to HOL.
This is also the same trend in the delay graph.

I-2 Higher buffer size means higher delay,  because with a
small buffer, when buffer is full, the cell simply drops.
Bigger buffer can store more cells,  and when they finish
transmitting,  increase the overall delay.

I-3 Under uniform traffic, CIOQ has even lower delay than
nFIFO with only a speedup of 2.  ISILP is good until higher
load of 0.8.  This again illustrates CIOQ is a better  choice for
scheduler.

XII. CONCLUSION AND FUTURE WORK

We believe that it is possible to provide strong QoS
guarantees even in switches with very high capacity.  This has
normally been thought off as an impossible task.  However,
with the growing demands for QoS by new Internet Services,
this is an unavoidable fate.  We believe that using the
concepts in our design, and the scheduling results that we
have shown, it is possible to cater to a wide variety of
applications as far as the QoS guarantees are concerned.

We also looked at the physical aspects of the router and
ensured that we addressed the pressing issues of Central
Offices, including space and size.  The modular design of
ISIS and ISIS-A using the TT1 chipset lends itself to easy
configurations that can fit into any ISP Central office.

Our simulation results have shown that the throughput,
delay and drop rates for the scheduling algorithms that we
have chosen can meet the challenges of the new Internet.
However, given the modular design of the simulator, we
would like to test out more options in both scheduling and
Fabric design to see if we can improve on the performance of
ISIS.  Due to the time constraint, we could not simulate ISIS-
A and its routing algorithm, but believe that those concepts
can be easily tested out in the future.
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