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Abstract

In this paper we study the node distribution of an R-
tree storing region data, like for instance islands, lakes
or human-inhabited areas. We will show that real re-
gion datasets are packed in minimum bounding rectangles
(MBRs) whose area distribution follows the same power
law, namedREGAL (REGion Area Law) [12], as that for
the regions themselves. Moreover, these MBRs are packed
in their turn into MBRs following the same law, and so on
iteratively, up to the root of the R-tree. Based on this obser-
vation, we are able to accurately estimate the search effort
for range queries, the most prominent spatial operation, us-
ing a small number of easy-to-retrieve parameters.

Experiments on a variety of real datasets (islands, lakes,
human-inhabited areas) show that our estimation is accu-
rate, enjoying a maximum geometric average relative error
within 30%.

1. Introduction

The area distribution of real region datasets has been dis-
covered obeying to an hyperbolic power law, namedRE-
GAL (REGion Area Law) [12]. Korčak was the first to ob-
serve such a law, for the Aegean Islands [8]. Recent mea-
surements on 2-d region datasets from diverse applications
suggest that usually a similar power law holds [6]. In [12]
this fact has been used to estimate the selectivity of range
queries using only a few, easy-to-retrieve parameters, thus
outperforming previous time-consuming approaches requir-
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ing the knowledge of the extent of all the regions in the
dataset.

However, the above law has not yet been used to ana-
lyze the performances of any spatial access method used to
store region data. In particular, an extensively studied prob-
lem is that of providing a realistic statistical model for the
node distribution of the R-tree family [1, 4, 5, 13], which
are among the most popular data structures in the spatial
database community. In the past, most of the analysis ef-
forts in this direction have focused on point and line data
[3, 16], using the optimistic assumption that the leaf nodes
(and iteratively, their parents) were square-like rectangles,
roughly of the same size. Whereas this assumption can be
accepted when working on point and line data, for region
data it is too restrictive.

In this paper we deviate from this assumption, showing
that real region datasets are packed in minimum bounding
rectangles (MBRs) having a quite uniform aspect ratio and
whose area distribution follows the REGAL law, as that for
the regions themselves, independently, to some extent, of
the capacity of the buckets. We also show that the law prop-
agates towards further aggregation levels (i.e., buckets of
MBRs follow the REGAL law). Based on this observation,
we are able to accurately estimate the search effort for range
queries posed on region data stored by means of R-trees.
Since range queries are the most prominent spatial opera-
tion and R-trees are the most popular spatial access method,
we provide a significant contribution to the theoretical anal-
ysis of query optimization for GIS and spatial DBMS.

Thus, the problem we focus on is the following:We are
given a real set of region data stored using an R-tree: what
is the expected I/O complexity for range queries?We an-
swer this question in the rest of the paper, developing a re-
alistic statistical model for R-trees storing region data,and
showing how to use it to compute the I/O complexity of
range queries. Its maximum geometric average relative er-
ror is within 30%.



The paper is organized as follows: Section 2 gives a brief
description of previous work on the topic. In Section 3
we develop our model and we show how it can be used to
estimate the I/O complexity of window queries on regions
datasets. Section 4 provides a large collection of experimen-
tal results on real region data (collection of islands, lakes,
urban areas, etc.) and suggests some directions to a prac-
titioner for an effective application of our model. Finally,
Section 5 contains concluding remarks and future work.

2. Survey

The R-tree of Guttman [5] is a hierarchical spatial data
structure that is derived from the B-tree. Each node in the
tree corresponds to the smallestd-dimensional rectangle
that encloses its child nodes. A leaf node contains point-
ers to the actual geometric object in the database, instead
of child. All leaf nodes appear at the same level and parent
nodes are allowed to overlap. This will guarantee at least
50% of space utilization and will maintain a balanced struc-
ture.

Due to its good space and time performances, the R-
tree has been subject of further analysis and developments:
among the most successful variations, we recall the R+-tree
[15] and the R∗-tree [1]. In particular, the latter outper-
forms previous approaches, deferring the splits by ’force-
reinserting’ some of the entries of the overflowing nodes.

As far as the analysis of R-trees is concerned, in [3] a for-
mula that estimates the number of disk accesses for range
queries posed on point datasets has been developed. Re-
member that range (or window) queries, are the most popu-
lar spatial access operation [11, 9]. In [16], a model for the
prediction of R-tree performances is given, using the con-
cept ofdensityof data. However, the optimistic assump-
tion that the leaf nodes (and iteratively, their parents) were
square-like rectangles, roughly of the same size, is done.
Whereas this is reasonable for the class of data analyzed in
[16], for region data this is not the case.

3. Proposed method

In this section, we first give the problem definition and
then we give the proposed solution. Table 1 gives a list of
main symbols used throughout this section.

3.1. Problem definition

Let us rigorously state the problem we are concerned
with. For the sake of clarity, we focus on the 2-dimensional
space, but all the results can be extended to thed-
dimensional space.

Symbol Definition
R Dataset of rectangles
n Count of rectangles ofR
N Count of nodes of the R-tree
B Patchiness exponent
DH Fractal dimension
A, W, H Total area, width and height ofR
Aj , Wj , Hj Area, width, height of the level-j nodes
σ Ratio width/height of rectangles
αj , ωj , ηj Area, width, height of largest level-j node
Nj Count of level-j nodes
m Count of levels in the R-tree
M Maximum number of rectangles per node
M Average number of rectangles per node
C(a) Count of regions having area at leasta
~q = (qx, qy) Query window of sidesqx, qy

DA(R, ~q) Number of disk accesses for query~q
U = [0, 1]2 Image space

Table 1. Symbol table

PROBLEM: disk accesses for range queries
Given:

• A set of similar rectangles (i.e., having a fixed given
aspect ratioσ between width and height)R =
{r1, r2, . . . , rn} embedded inU = [0, 1] × [0, 1] and
stored using an R-tree.

• A qx × qy window query~q.

Find the number of disk accessesDA(R, ~q) in R of the win-
dow query~q, that is, the number of R-tree nodes intersecting
~q.

The formula in [7, 11] provides a solution to the above
problem when we know the widthwi and the heighthi of
every node in the R-tree. LetN be the total number of nodes
in the R-tree. We have

DA(R, ~q) =

N
∑

i=1

(qx + wi) · (qy + hi) (1)

which can also be written

DA(R, ~q) = Atot + qx ·Htot + qy ·Wtot + qx · qy ·N (2)

whereAtot, Wtot and Htot are the total area, width and
height extent of the R-tree nodes. The question is to esti-
mate the selectivity with much less information.

3.2. Proposed solution using the REGAL law

Real region datasets do not obey the uniformity assump-
tion. Rather, it turns out that the complementary cumula-



tive distribution function1 (CCDF) of the areas of the re-
gions obeys the following hyperbolic power law (REGAL
law [12]):

C(a) = k · a−B k, B > 0, a ≥ 0. (3)

wherek, B are constant.
Korčak was the first to observe such a law, for the

Aegean Islands (he suggestedB ≈ 0.5) [8]. The expo-
nentB is also called thepatchiness exponent. Recent mea-
surements on 2-d region datasets from diverse applications
suggest that usually a similar power law holds [6], withB
in the range[0.5, 0.9]. In [12] such a law has been tested
on several real region datasets, it has been used to estimate
the selectivity of range queries for region datasets and it has
been shown its relationship with fractals.

We now show that under the realistic assumption that
buckets of rectangles inR obey (3), we can compute ac-
curate estimates on the number of disk accesses, once we
are given the patchiness exponentB.

3.3. Theoretical result on a synthetic dataset

Power laws go hand-in-hand with self-similarity and
fractals [14], and (3) is no exception. The concept of fractal
dimension of a set of spatial data (e.g., points, lines, regions,
etc.) is a well-established approach to better describe thein-
herent structure of the data themselves and to give an order
in the complexity of spatial data. Fractals are either exactly
or statistically self similar. Exact fractals are generated re-
cursively, by applying ageneratorto aninitiator. Let g be
the number of pieces the generator is decomposed into and
let r be the scaling factor; the fractal dimensionDH for a
strictly self-similar fractal is defined as

DH =
log g

log(1/r)
. (4)

For a straight line, we haveDH = 1; for the Koch
snowflake (see Figure 1) we haveDH = log 4/ log 3,
slightly higher than 1, that is, it is more rugged than a
straight line.

However, fractals like the Koch snowflake consist of
a single region. When the generator is decomposed into
disconnected pieces, multiple regions are created. These
are the so-calledσ−fractals. Figure 2 gives a possible
σ−fractal after 2 iterations on the sides of the square with
sidesmax.

It turns out that the following theorem holds:

1Remember that the cumulative distribution function off(x) : ℜ → ℜ

is defined asD(x) =
∫

x

−∞
f(t)dt, while the complementary cumulative

distribution function is defined asC(x) =
∫

+∞

x

f(t)dt.

(d)(a) (b) (c)

Figure 1. Koch snowflake: initiator (a), gen-
erator (b), second iteration (c) and relative
Koch snowflake (d)

g = 12
smax

DH = log 12

log 8
= 1.19

r = 1/8

Figure 2. The region generator (left) and the
synthetic dataset after two steps of genera-
tion (right)

Theorem 1 (Mandelbrot) For a σ-fractal in a d-
dimensional space, we have

B =
DH

d

where B is the patchiness exponent of the regions (d-
dimensional volumes) andDH is the fractal dimension of
their boundaries.

Proof. See [10]. 2

Figure 2 provides a good arithmetic example of the
above theorem. In fact, at the beginning, we have a square
of sidesmax and areaamax = s2

max, to which the generator
is recursively applied. Then, at the first stage of generation,
we create 4 regions of sider · smax. At the second stage we
create4 · g regions of sider2 · smax. In general, at thek-th
stage, we create4 ·gk−1 regions of siderk ·smax. Hence, as
the sides is multiplied byr, the CCDFC(s) of the number
of regions of side at leasts is multiplied byg. From Eq. (4),
we have then

C(s) = k · s−DH (5)

in which the crucial exponent isDH , and beings2 = a



C(a) = k′ · a−B (6)

whereB = 1
2DH . Interestingly, this result is indepen-

dent ofg and of the region contour roughness; moreover,
it extends to the case when the generator involves two or
more regions. Given the inherent self-similarity in real
datasets, the above relationship, to some extent, holds for
real datasets too. Our experiments on region datasets scat-
tered around the world and previous studies [6] confirm that
the law strongly holds for lakes, archipelagoes, vegetative
ecosystems, urban areas and many others.

Let us now see how the synthetic dataset can be used to
predict the performances of an R-tree used to store it. We
start by proving that the number of neighbors of any island
in the synthetic dataset follows a power law with exponent
DH −1. Without loss of generality, let besmax = 1 and as-
sume that the distance between the two pieces the generator
is decomposed into isr. With these assumptions, we have
that afterq ≥ 1 iterations, within a distance

ρq = 2 · (r + . . . + rq) = 2 · r − rq

1 − r
(7)

from the biggest island, exactly

T0(ρq) = 4+4g+ . . .4gq−1 = 4 · g
q − 1

g − 1
≈ 4 · gq

g − 1
(8)

islands are included. Now, if we shrink the distance by a
factor of 1/r, we have that within a distanceρ′q = r · ρq

from the biggest island, exactly

T0(ρ
′

q) = T0(ρq) − 4 · (1 + 4 + 4g + . . . 4gq−2) ≈

≈ 4 · gq−1 · (g − 4)

g − 1
=

T0(ρq)

g · r (9)

islands are enclosed. This means, as the distanceρ from the
biggest island is multiplied by a factor of1/r, the number
of neighborsT0(ρ) is multiplied by a factor ofg ·r. In other
words

T0(ρ) = k0 · ρ
log g·r
log 1/r = k0 · ρDH−1 (10)

wherek0 is a constant. Since afterq steps,4 · r1−q islands
surrounding the biggest island at a distance(2r)q are cre-
ated, we have from (10) that

4 · r1−q = k0 · (2r)q·(DH−1) (11)

and therefore, explicitingk0, it follows that (10) can be
rewritten as

T0(ρ) =
4 · r1−q

(2r)q·(DH−1)
· ρDH−1. (12)

Let nowTi(ρ) denote the number of neighbors of a level-
i island (i.e., an island generated after thei-th iteration).
Using the same arguments as above, we have that

Ti(ρ) = ki · ρDH−1 0 ≤ ρ ≤ ρi (13)

where

ρi = 2 · (r + . . . + rq−i). (14)

Since it must be

Ti((2r)q) ≡ 4 · ri+1−q = ki · (2r)q·(DH−1) (15)

it follows from (11) that

ki = ri · k0 =
√

ai · k0 (16)

whereai denotes the area of the level-i island. Hence, from
(15,16), to enclose exactlyM neighbors, a level-i island
must be inflated of a radius

∆i =

(

M√
ai · k0

)
1

DH−1

. (17)

This means that the area of the inflated island is

ãi = (
√

ai + 2∆i)
2

=

(

ri + 2 ·
(

M

ri · k0

)
1

DH−1

)2

.

(18)
To understand how the CCDF of the inflated areas will

look like, let’s plot it in a log-log diagram against the CCDF
of the areas of the synthetic archipelago, settingM = 64
and stopping the generation process afterq = 8 steps. Note
that the inflation of the level-8 islands is not considered,
since we assume these islands are absorbed by the largest
ones. Results are shown in Figure 3.
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Figure 3. The CCDF of the area for the syn-
thetic archipelago (solid line) against the in-
flated archipelago (dotted line).



Few words need to be spent about the plots. The first ob-
servation is that the two functions almost coincide. This is
essentially due to the fact that the inflation of the largest
islands is small. The only meaningful difference arises
for the smallest islands, where the CCDF for the inflated
archipelago has a tilting. However, this deviation, given the
log-scale, only interests a limited portion of the function.
Thus, from each practical point of view, we can conclude
that the inflated archipelago follows almost perfectly the
REGAL law, with the same patchiness exponent as for the
original archipelago. The only thing we really need to pay
attention when concerned with R-trees storing real datasets
is the fact that the inflation of the largest objects will not
be infinitesimal, partially because of the fact that packingin
the R-tree is not optimal and partially because a real dataset,
even if obeying to the REGAL law, generally has a compli-
cated structure (namely, the biggest object is not surrounded
by plenty of very small objects, as for the synthetic dataset).
Therefore, if we want to give good estimations on the selec-
tivity, we need to check the inflation of the biggest object,
level by level. Once this is done, we can make use of the
REGAL law to describe the CCDF of the areas of all the
nodes of the R-tree on that level.

Summarizing, since the CCDF of the inflated areas must
follow (3), we have that

C̃(ã) = k̃ · ã−B. (19)

To determine the constantk̃, we make use of the bound-
ary condition1 ≡ C̃(ãmax) = k̃ · ã−B

max whereãmax is the
area of the largest inflated island. Therefore, (19) can be
finally written as

C̃(ã) = ãB
max · ã−B. (20)

3.4. The main result

In this section, we make use of (20) to predict the I/O
complexity of range queries posed on region data stored
using an R-tree. LetM denote the maximum number of
rectangles per node, and letM be the effective node utiliza-
tion (typically,M = 0.7 · M ). The number of leaf nodes is
N0 = n/M , while the number of nodes at level0 < j ≤ m,
where leaves are at level 0 and the root is at levelm, is
Nj = n/M

j+1
. Let Aj be the area of all level-j nodes in

the R-tree. We are now ready to prove the following:

Theorem 2 Given a setR = {r1, r2, . . . , rn} of rectangles
embedded inU = [0, 1]2 whose areas obey to the REGAL
law, having a fixed given aspect ratioσ between width and
height and a patchiness exponentB, the number of disk ac-
cesses for a rectangular window query~q = (qx, qy) is

DA(R, ~q) =

m
∑

j=0

αj ·

(

n

M
j+1

)(1− 1
B )

− 1

1 − 1
B

+
(

qx ·
√

1

σ
+

+qy ·
√

σ
)

·
m
∑

j=0

αj ·

(

n

M
j+1

)(1− 1
2B )

− 1

1 − 1
2B

+qx ·qy ·N (21)

whereαj is the area of the largest rectangle of thej-th level
of the R-tree,0 ≤ j ≤ m.

Proof. We start with (2). We need to estimateAtot,
Wtot and Htot. Let Cj(a) be the CCDF for the level-j
nodes of the R-tree. By assumption,Cj(a) obeys almost
perfectly to the REGAL law (20). As usual, we have that
1 ≡ Cj(αj) = k ·αj

−B, whereαj is the area of the largest
level-j rectangle. Therefore, it follows that

Cj(a) = αj
B · a−B.

From the inverse relation, we have

a(Cj) =

(

1

αj
B

· C
)

−
1
B

.

Therefore, ifaji denotes the area of thei-th rectangle of the
j-th R-tree level, it follows

Aj =

Nj
∑

i=1

aji ≈ αj

∫ Nj

1

C
−

1
B

j dCj =

= αj ·

(

n

M
j+1

)(1− 1
B )

− 1

1 − 1
B

. (22)

Let now CWj(w) denote the number of level-j nodes
having width at leastw. Since the rectangles inR are simi-
lar, we assume that such a similarity propagates towards the
upper levels of the R-tree. Therefore, for any R-tree rectan-
gle of areaa and widthw, we havea = 1

σ w2. Then, from
(3),CWj(w) obeys the following power law

CWj(w) = (σ · αj)
B · w−2B . (23)

Denoting with

ωj =
√

σ · αj (24)

the width of the largest level-j node, (23) can be written

CWj(w) = ωj
2B · w−2B .

Hence, from the inverse relation we have



w(CWj) =

(

1

ωj
2B

· CWj

)

−
1

2B

= ωj · CW
−

1
2B

j .

Therefore, ifwji denotes the width of thei-th rectangle of
thej-th R-tree level, it follows

Wj =

Nj
∑

i=1

wji ≈ ωj

∫ Nj

1

CW
−

1
2B

j dCWj =

= ωj ·

(

n

M
j+1

)(1− 1
2B )

− 1

1 − 1
2B

. (25)

Using similar arguments

Hj = ηj ·

(

n

M
j+1

)(1− 1
2B )

− 1

1 − 1
2B

(26)

where

ηj =

√

αj

σ
(27)

is the height of the largest level-j node. Therefore, from (2,
22, 24, 25, 26 27) the thesis follows. 2

As we show next, the above theorem will provide a good
estimation for window selectivity on real region datasets,as
soon as we are able to provide the area of the largest level-j
rectangle.

4. Experiments on real datasets

To assess experimentally the accuracy of our analysis,
we have used three different region datasets, that is:

• The Scandinavian Lakes (LAKES), available at
http://mapweb.parc.xerox.com/map/nogrid
(Xerox PARC Map Viewer) and consisting of 810
lakes.

• The Indonesia Archipelago (ISLANDS), available at
http://mapweb.parc.xerox.com/map/nogrid,
and consisting of 470 islands.

• A population density map of Europe (REGIONS). This
map has been created starting from a population den-
sity map from a World Atlas. Each grid cell is turned
to black if it has density above a threshold, namely 30
inhabitants/Km2. It consists of 757 regions.

We also used three additional datasets: the
Queen Elizabeth Islands (77 islands) and the
Japan Archipelago (186 islands), both available at
http://mapweb.parc.xerox.com/map/nogrid,
and a map of Italy agricultural plains (228 regions), created
starting from a geographic map from a World Atlas and
turning to black a grid cell whenever it is at most50 meters
above the sea level. We do not give details about these
datasets since the results were similar.

In the following subsections we present results for: (a)
verifying that the R-tree nodes obey to the REGAL law (3),
with patchiness exponent approximately equal to that of the
regions themselves; (b) verifying the accuracy of our for-
mula (21), onceαj is provided.

4.1. Verifying the REGAL law for the R-tree nodes

All the datasets were stored using1024× 1024 bitmaps,
as shown in Figure 4a-c. Preliminary, we have identified
all the regions and their MBRs in each dataset. Then, we
have computed all the relevant features needed for check-
ing our results. Note that to estimateB, we have computed
the CCDF of the MBRs area for each dataset and we have
interpolated the plotted points with a straight line using the
classic least-square method. Note also thatσ has been com-
puted by averaging over all the MBRs’ aspect ratios. After,
we have stored the datasets using thedeferred-split R-tree
(DR-tree) [1], settingM = 8. All the resulting R-trees
consist of three levels. Obtained data are summarized in
Table 2.

Feature LAKES ISLANDS REGIONS
n 810 470 757
B 0.85 0.60 0.70
N 208 118 182
σ 1.13 1.98 0.53
α0 43,925 99,008 49,364
α1 112,158 99,008 100,098
α2 241,776 202,620 195,714
Atot 2,264,047 1,229,336 1,771,251
Wtot 18,118 6,359 10,341
Htot 14,758 10,516 18,030

Table 2. Datasets features.

Figure 4a-c shows in a log-log diagram the resulting
CCDFs. It is impressive that for all three datasets, inde-
pendently of the R-tree level, the CCDF of the areas obey
almost perfectly to (3). As anticipated, there is a shifting
of the plots towards right as the level increases, since the
largest island tends to have a not negligible inflation.
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Figure 4. Used datasets: (a) LAKES; (b) IS-
LANDS; (c) REGIONS, together with their
patchiness plots log(count) vs log(area) for
the R-tree nodes.

4.2. Accuracy of our I/O complexity estimation

To ascertain the accuracy of our formula (21), for each
dataset we have initially computed the theoretical I/O com-
plexity2 using (1). After, we applied (21), for query win-
dows of width20 · i, i = 1, . . . 10 and having three different
aspect ratios: 1:1 (square), 1:2 and 2:1, so that the most
usual window sizes and shapes are considered. Figure 5
shows the number of accesses estimated using our approach
for the LAKES, ISLANDS and REGIONS dataset, respec-
tively, as compared to the theoretical value (1). Finally, fol-
lowing the recommendations from statistics, we have also
computed thegeometric averageof relative errors, for each
dataset and for each different window aspect ratio, summa-
rized in Table 3. Note that, for each dataset, our approach is

2Of course, all the computations have been normalized to the1024 ×

1024 image space.

usually around 25% far from the reality.

Geometric average relative error (%)

Dataset
Ratio 1:1 1:2 2:1

LAKES 26.95 23.40 30.47
ISLANDS 29.07 24.46 31.85
REGIONS 28.21 23.62 33.33

Table 3. Geometric average relative error
(%) in estimating DA(R, ~q) of the proposed
method (REGAL), for each dataset and for
each aspect ratio of the query window.
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(c) REGIONS

Figure 5. Number of accesses vs query win-
dow width, for square, 1:2 and 2:1 window
queries (from left to right), for (a) LAKES, (b)
ISLANDS and (c) REGIONS datasets.

4.3. Directions for a practitioner: fast estimation of
B and αj

The final question is: how can a practitioner benefit of
our analysis? We have solid answers to this question. Up to
now, no methods were provided to estimate R-tree perfor-
mances in answering to range queries. Thus, to make use
of developed formulas [7, 11], one was required to compute
the total width and length extent of all the nodes in the R-
tree. This can be done by scanning the entire index storing
the data, that is, it is very time consuming.



On the contrary, the patchiness exponentB, the ratioσ
and the maximum areaαj of the level-j nodes can be com-
puted quickly. ConcerningB, we suggest two possible fast
ways to compute it, both of them based on sampling. The
first makes use of the representing bitmap, while the second
works on the database storing the data:

1. Focus on a subwindow of sizet × t of the bitmap,
extract the boundaries of the objects contained in it
and apply theO(t log t) time algorithm [2] to compute
their fractal dimensionDH . Assuming that regions are
self-similar (and then subwindows of the bitmap are
similar to the whole) and applying Theorem 1, we can
conclude thatB = DH/2 is a good approximation for
the realB of all the map.

2. Focus on a subwindow of the bitmap, retrieve from the
database all the objects contained in it and compute the
CCDF of their areas. Then, plot the obtained points in
a log-log diagram and interpolate them with a straight
line using the classic least-square method. The negated
slope of such a line corresponds to the patchiness ex-
ponent of the subset of objects. Once again, assuming
that regions are self-similar, we can be confident that
such exponent is representative for the whole dataset.

Concerningσ, a robust solution is to average the aspect
ratios over a small number of regions. Finally, to compute
αj for every R-tree level, it suffices to analyze the path from
the root to the leaf node containing the largest object in the
R-tree: in this way, we are not fully guaranteed to retrieve
the largest node on each level, but most likely this will hap-
pen (for our experiments, it always happened).

Therefore we conclude that our analysis is suitable in
practice and contributes to the solution to the problem of
I/O complexity evaluation for range queries posed on R-
trees storing region data.

5. Conclusions

The main contribution of this paper is the first tentative to
estimate the I/O complexity for answering to range queries
posed on region data stored in an R-tree. This has been done
by studying how the area distribution of the regions in the
underlying dataset propagates towards the upper levels of
the R-tree.

We showed that very few measures are needed (essen-
tially the average aspect ratio, the patchiness exponent and
the largest node on each R-tree level), to achieve accurate
results. Our experiments on diverse, real datasets, such as
archipelagoes, city regions, plain maps, hydro-graphic sys-
tems and many others showed that our approach achieves
estimates 30% close to the reality.

Promising future directions include the use ofσ-fractals
to study I/O complexity of additional query types (nearest
neighbor, spatial join, etc.).
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